EasyMocap/config/mv1p/detect_triangulate_fitSMPL.yml
2023-06-19 16:39:27 +08:00

169 lines
5.4 KiB
YAML

module: myeasymocap.stages.basestage.MultiStage
args:
output: output/detect_triangulate_fitSMPL
at_step:
detect:
module: myeasymocap.backbone.yolo.yolo.BaseYOLOv5
key_from_data: [images, imgnames]
args:
model: yolov5m
name: person
keypoints2d:
module: myeasymocap.backbone.hrnet.myhrnet.MyHRNet
key_from_data: [images, imgnames]
key_from_previous: [bbox]
key_keep: []
args:
ckpt: data/models/pose_hrnet_w48_384x288.pth
vis2d:
module: myeasymocap.io.vis.Vis2D
skip: False
key_from_data: [images]
key_from_previous: [keypoints, bbox]
args:
name: vis_keypoints2d
scale: 0.5
triangulate:
module: myeasymocap.operations.triangulate.SimpleTriangulate
key_from_data: [cameras]
key_from_previous: [keypoints]
key_keep: [cameras, imgnames] # 用于最后的一起优化
args:
mode: iterative # [naive, iterative]
visualize:
module: myeasymocap.io.vis.Vis3D
skip: False
key_from_data: [images, cameras]
key_from_previous: [keypoints3d] # 用于最后的一起优化
args:
scale: 0.5
mode: center
at_final:
load_body_model:
module: myeasymocap.io.model.SMPLLoader
args:
model_path: models/pare/data/body_models/smpl/SMPL_NEUTRAL.pkl #
regressor_path: models/J_regressor_body25.npy
init_params:
module: myeasymocap.operations.init.InitParams
key_from_data: [keypoints3d]
args:
num_poses: 69
num_shapes: 10
fitShape:
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints3d]
key_from_previous: [model, params]
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [shapes]
loss:
k3d:
weight: 100.
module: myeasymocap.operations.loss.LimbLength
key_from_output: [keypoints]
key_from_infos: [keypoints3d]
args:
kintree: [[8, 1], [2, 5], [2, 3], [5, 6], [3, 4], [6, 7], [2, 3], [5, 6], [3, 4], [6, 7], [2, 3], [5, 6], [3, 4], [6, 7], [1, 0], [9, 12], [9, 10], [10, 11], [12, 13],[13, 14]]
regshape:
weight: 0.1
module: myeasymocap.operations.loss.RegLoss
key_from_output: [shapes]
key_from_infos: []
args:
key: shapes
norm: l2
init_RT:
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints, keypoints3d]
key_from_previous: [model, params]
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [Th, Rh]
loss:
k3d:
weight: 100.
module: myeasymocap.operations.loss.Keypoints3D
key_from_output: [keypoints]
key_from_infos: [keypoints3d]
args:
norm: l2
index_est: [2, 5, 9, 12]
index_gt: [2, 5, 9, 12]
smooth:
weight: 1.
module: myeasymocap.operations.loss.Smooth
key_from_output: [Th, keypoints]
key_from_infos: [] # TODO: 根据2D的置信度来计算smooth权重
args:
keys: [keypoints, Th]
smooth_type: [Linear, Linear] # 这个depth似乎需要相机参数进行转换
norm: [l2, l2]
order: [2, 2]
weights: [10., 100.]
window_weight: [0.5, 0.3, 0.1, 0.1]
refine_poses:
repeat: 2
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints, keypoints3d]
key_from_previous: [model, params]
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [poses, Rh, Th]
loss:
k3d:
weight: 1000.
module: myeasymocap.operations.loss.Keypoints3D
key_from_output: [keypoints]
key_from_infos: [keypoints3d]
args:
norm: l2
norm_info: 0.02
smooth:
weight: 1.
module: myeasymocap.operations.loss.Smooth
key_from_output: [poses, Th, keypoints]
key_from_infos: []
args:
keys: [Th, poses, keypoints]
smooth_type: [Linear, Linear, Linear]
norm: [l2, l2, l2]
order: [2, 2, 2]
weights: [100., 10., 10.,]
window_weight: [0.5, 0.3, 0.1, 0.1]
prior:
weight: 0.1
module: easymocap.multistage.gmm.GMMPrior
key_from_output: [poses]
key_from_infos: []
args:
start: 0
end: 69
write:
module: myeasymocap.io.write.WriteSMPL
key_from_data: [meta]
key_from_previous: [params, model]
args:
name: smpl
# render:
# module: myeasymocap.io.vis3d.Render_multiview
# key_from_data: [cameras, imgnames]
# key_from_previous: [params, body_model]
# args:
# backend: pyrender
# view_list: [0]
render_ground:
module: myeasymocap.io.vis3d.Render_multiview
key_from_data: [cameras, imgnames]
key_from_previous: [params, body_model]
args:
backend: pyrender
view_list: [3]
mode: ground
scale: 1.
shape: [1024, 1024]
make_video:
module: myeasymocap.io.video.MakeVideo
args:
fps: 50
keep_image: False