EasyMocap/easymocap/mytools/reconstruction.py
2021-04-14 15:22:51 +08:00

116 lines
3.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

'''
* @ Date: 2020-09-14 11:01:52
* @ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-04-13 20:31:34
@ FilePath: /EasyMocapRelease/media/qing/Project/mirror/EasyMocap/easymocap/mytools/reconstruction.py
'''
import numpy as np
def solveZ(A):
u, s, v = np.linalg.svd(A)
X = v[-1, :]
X = X / X[3]
return X[:3]
def projectN3(kpts3d, Pall):
# kpts3d: (N, 3)
nViews = len(Pall)
kp3d = np.hstack((kpts3d[:, :3], np.ones((kpts3d.shape[0], 1))))
kp2ds = []
for nv in range(nViews):
kp2d = Pall[nv] @ kp3d.T
kp2d[:2, :] /= kp2d[2:, :]
kp2ds.append(kp2d.T[None, :, :])
kp2ds = np.vstack(kp2ds)
kp2ds[..., -1] = kp2ds[..., -1] * (kpts3d[None, :, -1] > 0.)
return kp2ds
def simple_reprojection_error(kpts1, kpts1_proj):
# (N, 3)
error = np.mean((kpts1[:, :2] - kpts1_proj[:, :2])**2)
return error
def simple_triangulate(kpts, Pall):
# kpts: (nViews, 3)
# Pall: (nViews, 3, 4)
# return: kpts3d(3,), conf: float
nViews = len(kpts)
A = np.zeros((nViews*2, 4), dtype=np.float)
result = np.zeros(4)
result[3] = kpts[:, 2].sum()/(kpts[:, 2]>0).sum()
for i in range(nViews):
P = Pall[i]
A[i*2, :] = kpts[i, 2]*(kpts[i, 0]*P[2:3,:] - P[0:1,:])
A[i*2 + 1, :] = kpts[i, 2]*(kpts[i, 1]*P[2:3,:] - P[1:2,:])
result[:3] = solveZ(A)
return result
def batch_triangulate(keypoints_, Pall, keypoints_pre=None, lamb=1e3):
# keypoints: (nViews, nJoints, 3)
# Pall: (nViews, 3, 4)
# A: (nJoints, nViewsx2, 4), x: (nJoints, 4, 1); b: (nJoints, nViewsx2, 1)
v = (keypoints_[:, :, -1]>0).sum(axis=0)
valid_joint = np.where(v > 1)[0]
keypoints = keypoints_[:, valid_joint]
conf3d = keypoints[:, :, -1].sum(axis=0)/v[valid_joint]
# P2: P矩阵的最后一行(1, nViews, 1, 4)
P0 = Pall[None, :, 0, :]
P1 = Pall[None, :, 1, :]
P2 = Pall[None, :, 2, :]
# uP2: x坐标乘上P2: (nJoints, nViews, 1, 4)
uP2 = keypoints[:, :, 0].T[:, :, None] * P2
vP2 = keypoints[:, :, 1].T[:, :, None] * P2
conf = keypoints[:, :, 2].T[:, :, None]
Au = conf * (uP2 - P0)
Av = conf * (vP2 - P1)
A = np.hstack([Au, Av])
if keypoints_pre is not None:
# keypoints_pre: (nJoints, 4)
B = np.eye(4)[None, :, :].repeat(A.shape[0], axis=0)
B[:, :3, 3] = -keypoints_pre[valid_joint, :3]
confpre = lamb * keypoints_pre[valid_joint, 3]
# 1, 0, 0, -x0
# 0, 1, 0, -y0
# 0, 0, 1, -z0
# 0, 0, 0, 0
B[:, 3, 3] = 0
B = B * confpre[:, None, None]
A = np.hstack((A, B))
u, s, v = np.linalg.svd(A)
X = v[:, -1, :]
X = X / X[:, 3:]
# out: (nJoints, 4)
result = np.zeros((keypoints_.shape[1], 4))
result[valid_joint, :3] = X[:, :3]
result[valid_joint, 3] = conf3d
return result
eps = 0.01
def simple_recon_person(keypoints_use, Puse):
out = batch_triangulate(keypoints_use, Puse)
# compute reprojection error
kpts_repro = projectN3(out, Puse)
square_diff = (keypoints_use[:, :, :2] - kpts_repro[:, :, :2])**2
conf = np.repeat(out[None, :, -1:], len(Puse), 0)
kpts_repro = np.concatenate((kpts_repro, conf), axis=2)
return out, kpts_repro
def check_limb(keypoints3d, limb_means, thres=0.5):
# keypoints3d: (nJ, 4)
valid = True
cnt = 0
for (src, dst), val in limb_means.items():
if not (keypoints3d[src, 3] > 0 and keypoints3d[dst, 3] > 0):
continue
cnt += 1
# 计算骨长
l_est = np.linalg.norm(keypoints3d[src, :3] - keypoints3d[dst, :3])
if abs(l_est - val['mean'])/val['mean']/val['std'] > thres:
valid = False
break
# 至少两段骨头可以使用
valid = valid and cnt > 2
return valid