EasyMocap/easymocap/neuralbody/trainer/recorder.py
2022-10-25 20:06:04 +08:00

133 lines
4.2 KiB
Python

'''
@ Date: 2021-09-05 20:11:27
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-09-05 20:11:27
@ FilePath: /EasyMocap/easymocap/neuralbody/trainer/recorder.py
'''
from collections import deque, defaultdict
import torch
from tensorboardX import SummaryWriter
import os
from termcolor import colored
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20):
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
def update(self, value):
self.deque.append(value)
self.count += 1
self.total += value
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque))
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
class Recorder(object):
def __init__(self, local_rank=0, resume=False, log_dir="", task=""):
self.local_rank = local_rank
if local_rank > 0:
return
if not resume:
print(colored('[{}] remove contents of directory {}'.format(local_rank, log_dir), 'red'))
os.system('rm -r %s/*' % log_dir)
# self.writer = SummaryWriter(log_dir=log_dir, flush_secs=5)
self.writer = SummaryWriter(log_dir=log_dir)
self.log_dir = log_dir
# scalars
self.epoch = 0
self.step = 0
self.loss_stats = defaultdict(SmoothedValue)
self.batch_time = SmoothedValue()
self.data_time = SmoothedValue()
# images
self.image_stats = defaultdict(object)
# if 'process_' + cfg.task in globals():
# self.processor = globals()['process_' + cfg.task]
# else:
# self.processor = None
self.processor = None
# self.cfg = cfg
def update_loss_stats(self, loss_dict):
if self.local_rank > 0:
return
for k, v in loss_dict.items():
self.loss_stats[k].update(v.detach().cpu())
def update_image_stats(self, image_stats):
if self.local_rank > 0:
return
# if self.processor is None:
# return
# image_stats = self.processor(image_stats)
for k, v in image_stats.items():
self.image_stats[k] = v #.detach().cpu()
def record(self, prefix, step=-1, loss_stats=None, image_stats=None):
if self.local_rank > 0:
return
pattern = prefix + '/{}'
step = step if step >= 0 else self.step
loss_stats = loss_stats if loss_stats else self.loss_stats
image_stats = image_stats if image_stats else self.image_stats
for k, v in loss_stats.items():
if isinstance(v, SmoothedValue):
self.writer.add_scalar(pattern.format(k), v.median, step)
else:
self.writer.add_scalar(pattern.format(k), v, step)
for k, v in image_stats.items():
if len(v.shape) == 2:
self.writer.add_image(pattern.format(k), v, step, dataformats='HW')
else:
self.writer.add_image(pattern.format(k), v, step)
def state_dict(self):
if self.local_rank > 0:
return
scalar_dict = {}
scalar_dict['step'] = self.step
return scalar_dict
def load_state_dict(self, scalar_dict):
if self.local_rank > 0:
return
self.step = scalar_dict['step']
def __str__(self):
if self.local_rank > 0:
return
loss_state = []
for k, v in self.loss_stats.items():
loss_state.append('{}: {:.4f}'.format(k, v.avg))
loss_state = ' '.join(loss_state)
recording_state = ' '.join(['epoch: {}', 'step: {}', '{}', 'data: {:.4f}', 'batch: {:.4f}'])
return recording_state.format(self.epoch, self.step, loss_state, self.data_time.avg, self.batch_time.avg)
def write_cfg(self, cfg):
if self.local_rank > 0:
return
print(cfg, file=open(os.path.join(self.log_dir, 'exp.yml'), 'w'))