EasyMocap/easymocap/estimator/wrapper_base.py
2021-12-25 15:26:56 +08:00

52 lines
1.7 KiB
Python

import os
import cv2
import numpy as np
from ..annotator.file_utils import save_annot
def check_result(image_root, annot_root):
if os.path.exists(annot_root):
# check the number of images and keypoints
nimg = len(os.listdir(image_root))
nann = len(os.listdir(annot_root))
print('Check {} == {}'.format(nimg, nann))
if nimg == nann:
return True
return False
def create_annot_file(annotname, imgname):
assert os.path.exists(imgname), imgname
img = cv2.imread(imgname)
height, width = img.shape[0], img.shape[1]
imgnamesep = imgname.split(os.sep)
filename = os.sep.join(imgnamesep[imgnamesep.index('images'):])
annot = {
'filename':filename,
'height':height,
'width':width,
'annots': [],
'isKeyframe': False
}
save_annot(annotname, annot)
return annot
def bbox_from_keypoints(keypoints, rescale=1.2, detection_thresh=0.05, MIN_PIXEL=5):
"""Get center and scale for bounding box from openpose detections."""
valid = keypoints[:,-1] > detection_thresh
if valid.sum() < 3:
return [0, 0, 100, 100, 0]
valid_keypoints = keypoints[valid][:,:-1]
center = (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0))/2
bbox_size = valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0)
# adjust bounding box tightness
if bbox_size[0] < MIN_PIXEL or bbox_size[1] < MIN_PIXEL:
return [0, 0, 100, 100, 0]
bbox_size = bbox_size * rescale
bbox = [
center[0] - bbox_size[0]/2,
center[1] - bbox_size[1]/2,
center[0] + bbox_size[0]/2,
center[1] + bbox_size[1]/2,
keypoints[valid, 2].mean()
]
bbox = np.array(bbox).tolist()
return bbox