EasyMocap/config/1v1p/hand_detect_finetune.yml
2023-06-19 16:39:27 +08:00

139 lines
4.7 KiB
YAML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

smooth: &smooth_keypoints
weight: 50.
module: myeasymocap.operations.loss.Smooth
key_from_output: [keypoints, Th]
key_from_infos: [] # TODO: 根据2D的置信度来计算smooth权重
args:
keys: [Th, keypoints]
smooth_type: [Linear, Linear] # 这个depth似乎需要相机参数进行转换
norm: [l2, l2]
order: [2, 2]
weights: [1000., 1000.]
window_weight: [0.5, 0.3, 0.1, 0.1]
module: myeasymocap.stages.basestage.MultiStage
args:
output: output/sv1p_hand
at_step:
detect_by_mediapipe:
module: myeasymocap.backbone.mediapipe.hand.MediaPipe
key_from_data: [images, imgnames]
args:
ckpt: models/mediapipe/hand_landmarker.task
hand2d:
module: myeasymocap.backbone.hand2d.hand2d.MyHand2D
key_from_data: [images, imgnames]
key_from_previous: [bbox]
args:
# ckpt: /nas/public/EasyMocapModels/hrnetv2_w18_coco_wholebody_hand_256x256-1c028db7_20210908.pth
ckpt: /nas/public/EasyMocapModels/hand/resnet_kp2d_clean.pt
mode: resnet
vis2d:
module: myeasymocap.io.vis.Vis2D
skip: False
key_from_data: [images]
key_from_previous: [keypoints, bbox]
args:
name: vis_keypoints2d
scale: 0.5
infer_mano: #
module: myeasymocap.backbone.hmr.hmr.MyHMR
key_from_data: [images, imgnames]
key_from_previous: [bbox]
key_keep: [meta, cameras, imgnames] # 将这些参数都保留到最后的输出中
args:
ckpt: models/manol_pca45_noflat.ckpt
# TODO: add visualize for Init MANO
at_final:
load_hand_model: # 载入身体模型
module: myeasymocap.io.model.MANOLoader
args:
cfg_path: config/model/mano.yml
model_path: models/manov1.2/MANO_LEFT.pkl #models/handmesh/data/MANO_RIGHT.pkl # load mano model
regressor_path: models/manov1.2/J_regressor_mano_LEFT.txt #models/handmesh/data/J_regressor_mano_RIGHT.txt
num_pca_comps: 45
use_pca: True
use_flat_mean: False
# 这个模块返回两个内容body_model, model; 其中的body_model是用来进行可视化的
mean_param: # 初始化姿态这里将poses和shapes都进行平均
module: myeasymocap.operations.init.MeanShapes
key_from_data: [params]
args:
keys: ['shapes']
init_T: # 初始化每一帧的位置
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints, cameras, params]
key_from_previous: [model]
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [Th]
loss:
repro:
weight: 100.
module: myeasymocap.operations.loss.Keypoints2D
key_from_output: [keypoints]
key_from_infos: [keypoints, cameras]
args:
norm: l2
smooth: *smooth_keypoints
init_R: # 初始化每一帧的旋转
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints, cameras]
key_from_previous: [model, params]
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [Rh]
loss:
repro:
weight: 100.
module: myeasymocap.operations.loss.Keypoints2D
key_from_output: [keypoints]
key_from_infos: [keypoints, cameras]
args:
norm: l2
smooth: *smooth_keypoints
refine_poses: # 优化poses
repeat: 2
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints, cameras]
key_from_previous: [model, params]
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [poses, shapes, Rh, Th]
loss:
repro:
weight: 100.
module: myeasymocap.operations.loss.Keypoints2D
key_from_output: [keypoints]
key_from_infos: [keypoints, cameras]
args:
norm: l1
reg:
weight: 0.001
module: myeasymocap.operations.loss.RegLoss
key_from_output: [poses]
key_from_infos: []
args:
key: poses
norm: l2
smooth: *smooth_keypoints
write:
module: myeasymocap.io.write.WriteSMPL
key_from_data: [meta]
key_from_previous: [params, model]
args:
name: smpl
render:
module: myeasymocap.io.vis3d.Render_multiview
key_from_data: [cameras, imgnames]
key_from_previous: [hand_model, params]
args:
model_name: hand_model
backend: pyrender
view_list: [0]
scale: 0.5
make_video:
module: myeasymocap.io.video.MakeVideo
args:
fps: 50
keep_image: False