122 lines
4.9 KiB
Markdown
122 lines
4.9 KiB
Markdown
<!--
|
||
* @Date: 2021-03-07 14:41:22
|
||
* @Author: Qing Shuai
|
||
* @LastEditors: Qing Shuai
|
||
* @LastEditTime: 2021-03-13 21:42:11
|
||
* @FilePath: /EasyMocap/doc/02_output.md
|
||
-->
|
||
# EasyMocap Doc - Output
|
||
[En](Output) | [中文](#输出)
|
||
|
||
## Contents
|
||
1. [Json Format](#json-format)
|
||
2. [Export to .bvh](#export-to-bvh-format)
|
||
|
||
## Json Format
|
||
The results are saved in `json` format.
|
||
```bash
|
||
<output_root>
|
||
├── keypoints3d
|
||
│ ├── 000000.json
|
||
│ └── xxxxxx.json
|
||
└── smpl
|
||
├── 000000.jpg
|
||
├── 000000.json
|
||
└── 000004.json
|
||
```
|
||
The data in `keypoints3d/000000.json` is a list, each element represents a human body.
|
||
```bash
|
||
{
|
||
'id': <id>, # the person ID
|
||
'keypoints3d': [[x0, y0, z0, c0], [x1, y1, z0, c1], ..., [xn, yn, zn, cn]], # x,y,z is the 3D coordinates, c means the confidence of this joint. If the c=0, it means this joint is invisible.
|
||
}
|
||
```
|
||
The definition of the joints is as [body25](https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#pose-output-format-body_25).
|
||
|
||
The data in `smpl/000000.json` is also a list, each element represents the SMPL parameters which is slightly different from official model.
|
||
```bash
|
||
{
|
||
"id": <id>,
|
||
"Rh": <(1, 3)>,
|
||
"Th": <(1, 3)>,
|
||
"poses": <(1, 72/78/87)>,
|
||
"expression": <(1, 10)>,
|
||
"shapes": <(1, 10)>
|
||
}
|
||
```
|
||
If you use SMPL+H model, the poses contains `22x3+6+6`. We use `6` pca coefficients for each hand. `3(jaw, left eye, right eye)x3` poses of head are added for SMPL-X model.
|
||
|
||
### Attention (for SMPL/SMPL-X users)
|
||
|
||
**This parameter is a little different from original SMPL/SMPL-X parameters.**
|
||
|
||
We set the first 3 dimensions of `poses` to zero, and add a new parameter `Rh` to represents the global oritentation, the vertices of SMPL model V = RX(theta, beta) + T.
|
||
Please note that the paramter `Rh` is not equal to `global_orient` in SMPL-X model. We take this representation because that changing paramters to new coordinate system in origin is difficult(see [this link](https://www.dropbox.com/scl/fi/zkatuv5shs8d4tlwr8ecc/Change-parameters-to-new-coordinate-system.paper?dl=0&rlkey=lotq1sh6wzkmyttisc05h0in0)).
|
||
|
||
In our representation, you can just use `R'@(RX + T) + T'` to convert the model, and the new global rotaion and translation is simply written as `R'@R` and `R'@T + T'`
|
||
|
||
To compute the joints locations from these parameters, please refer to `./code/vis_render.py`. The key steps are:
|
||
```python
|
||
# 0. load SMPL model
|
||
from smplmodel import load_model
|
||
body_model = load_model(args.gender, model_type=args.model)
|
||
# 1. load parameters
|
||
infos = dataset.read_smpl(nf*step)
|
||
# 2. compute joints
|
||
joints = body_model(return_verts=False, return_tensor=False, **info)[0]
|
||
# 3. compute vertices
|
||
vertices = body_model(return_verts=True, return_tensor=False, **info)[0]
|
||
```
|
||
|
||
## Export to bvh format
|
||
To export the SMPL results to bvh file, you need to download the SMPL-maya model from the website of SMPL. Place the `.fbx` model in `./data/smplx/SMPL_maya`, it may be like this:
|
||
```bash
|
||
└── smplx
|
||
├── smpl
|
||
│ ├── SMPL_FEMALE.pkl
|
||
│ ├── SMPL_MALE.pkl
|
||
│ └── SMPL_NEUTRAL.pkl
|
||
├── SMPL_maya
|
||
│ ├── basicModel_f_lbs_10_207_0_v1.0.2.fbx
|
||
│ ├── basicModel_m_lbs_10_207_0_v1.0.2.fbx
|
||
│ ├── joints_mat_v1.0.2.pkl
|
||
│ ├── README.txt
|
||
│ ├── release_notes_v1.0.2.txt
|
||
│ └── SMPL_maya_plugin_v1.0.2.py
|
||
└── smplx
|
||
```
|
||
The Blender is also needed. The `<path_to_output_smpl>` is usually `${out}/smpl`, which contanis the `000000.json, ...` of SMPL parameters.
|
||
```bash
|
||
BLENDER_PATH=<path_to_blender>/blender-2.79a-linux-glibc219-x86_64
|
||
${BLENDER_PATH}/blender -b -t 12 -P scripts/postprocess/convert2bvh.py -- <path_to_output_smpl> --o <output_path>
|
||
```
|
||
We have not implement the export of SMPL+H, SMPL-X model yet. If you are interested on it, feel free to create a pull request to us.
|
||
|
||
-----
|
||
|
||
# 输出
|
||
## Json格式
|
||
关键点重建的结果会输出到`${out}/keypoints3d`路径下
|
||
```bash
|
||
<out>
|
||
├── keypoints3d
|
||
│ ├── 000000.json
|
||
│ └── xxxxxx.json
|
||
└── skel
|
||
```
|
||
每个json里面是一个列表,包含了当前帧的所有人,列表里的每一个元素表示一个人,内容如下:
|
||
```json
|
||
{
|
||
'id': <id>, # 表示人的跟踪的id
|
||
'keypoints3d': [[x0, y0, z0, c0], [x1, y1, z0, c1], ..., [xn, yn, zn, cn]]: # (N, 4),表示人的关键点坐标,c表示置信度,置信度为0则该关节点不可见
|
||
}
|
||
```
|
||
关键点的定义使用OpenPose的[BODY25格式](https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#pose-output-format-body_25)
|
||
|
||
## 导出为bvh格式
|
||
这里使用Blender进行导出,测试的Blender版本为2.79。需要先下载SMPL的fbx模型
|
||
```bash
|
||
BLENDER_PATH=<path_to_blender>/blender-2.79a-linux-glibc219-x86_64
|
||
${BLENDER_PATH}/blender -b -t 12 -P scripts/postprocess/convert2bvh.py -- <path_to_output_smpl> --o <path_to_bvh>
|
||
```
|