EasyMocap/easymocap/annotator/basic_visualize.py
2022-08-21 16:13:47 +08:00

165 lines
6.3 KiB
Python

import numpy as np
import cv2
import os
from os.path import join
from ..mytools import plot_cross, plot_line, plot_bbox, plot_keypoints, get_rgb, merge
from ..mytools.file_utils import get_bbox_from_pose
from ..dataset import CONFIG
# click and (start, end) is the output of the OpenCV callback
def vis_point(img, click, **kwargs):
if click is not None:
plot_cross(img, click[0], click[1], (255, 255, 255))
return img
def vis_line(img, start, end, **kwargs):
if start is not None and end is not None:
lw = max(2, img.shape[0]//500)
cv2.line(img, (int(start[0]), int(start[1])),
(int(end[0]), int(end[1])), (0, 255, 0), lw)
return img
def vis_bbox(img, start, end, **kwargs):
if start is not None and end is not None:
lw = max(2, img.shape[0]//500)
cv2.rectangle(img, (int(start[0]), int(start[1])),
(int(end[0]), int(end[1])), (0, 255, 0), lw)
return img
def resize_to_screen(img, scale=1, **kwargs):
img = cv2.resize(img, None, fx=scale, fy=scale)
return img
def capture_screen(img, capture_screen=False, **kwargs):
if capture_screen:
from datetime import datetime
time_now = datetime.now().strftime("%m-%d-%H:%M:%S")
outname = join('capture', time_now+'.jpg')
os.makedirs('capture', exist_ok=True)
cv2.imwrite(outname, img)
print('Capture current screen to {}'.format(outname))
return img
def plot_text(img, annots, imgname, **kwargs):
if 'isKeyframe' in annots.keys():
if annots['isKeyframe']: # 关键帧使用红框表示
cv2.rectangle(img, (0, 0), (img.shape[1], img.shape[0]), (0, 0, 255), img.shape[1]//100)
else: # 非关键帧使用绿框表示
cv2.rectangle(img, (0, 0), (img.shape[1], img.shape[0]), (0, 255, 0), img.shape[1]//100)
imgname = '/'.join(imgname.split(os.sep)[-3:])
text_size = int(max(1, img.shape[0]//1500))
border = 20 * text_size
width = 2 * text_size
cv2.putText(img, '{}'.format(imgname), (border, img.shape[0]-border), cv2.FONT_HERSHEY_SIMPLEX, text_size, (0, 0, 255), width)
# 显示标注进度条:
if 'frame' in kwargs.keys():
width = img.shape[1]
frame, nFrames = kwargs['frame'], kwargs['nFrames']
lw = 12
pos = lambda x: int(width*(x+1)/nFrames)
COL_ALL = (0, 255, 0)
COL_CUR = (255, 0, 0)
COL_PIN = (255, 128, 128)
plot_line(img, (0, lw/2), (width, lw/2), lw, COL_ALL)
plot_line(img, (0, lw/2), (pos(frame), lw/2), lw, COL_CUR)
top = pos(frame)
pts = np.array([[top, lw], [top-lw, lw*4], [top+lw, lw*4]])
cv2.fillPoly(img, [pts], COL_PIN)
return img
def plot_bbox_body(img, annots, **kwargs):
annots = annots['annots']
for data in annots:
bbox = data['bbox']
# 画一个X形
x1, y1, x2, y2 = bbox[:4]
pid = data['personID']
color = get_rgb(pid)
lw = max(1, int((x2 - x1)//100))
plot_line(img, (x1, y1), (x2, y2), lw, color)
plot_line(img, (x1, y2), (x2, y1), lw, color)
# border
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, lw+1)
ratio = (y2-y1)/(x2-x1)
w = 10*lw
cv2.rectangle(img,
(int((x1+x2)/2-w), int((y1+y2)/2-w*ratio)),
(int((x1+x2)/2+w), int((y1+y2)/2+w*ratio)),
color, -1)
cv2.putText(img, '{}'.format(pid), (int(x1), int(y1)+20), cv2.FONT_HERSHEY_SIMPLEX, 5, color, 2)
return img
def plot_bbox_sp(img, annots, bbox_type='handl_bbox', add_center=False):
assert bbox_type in ('bbox', 'bbox_handl2d', 'bbox_handr2d', 'bbox_face2d')
for data in annots['annots']:
if bbox_type not in data.keys():
continue
bbox = data[bbox_type]
if bbox[-1] < 0.001: continue
# 画一个X形
x1, y1, x2, y2 = bbox[:4]
pid = data['personID']
color = get_rgb(pid)
lw = max(1, int((x2 - x1)//100))
plot_line(img, (x1, y1), (x2, y2), lw, color)
plot_line(img, (x1, y2), (x2, y1), lw, color)
# border
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, lw+1)
ratio = (y2-y1)/(x2-x1)/2
w = 10*lw
if add_center:
cv2.rectangle(img,
(int((x1+x2)/2-w), int((y1+y2)/2-w*ratio)),
(int((x1+x2)/2+w), int((y1+y2)/2+w*ratio)),
color, -1)
cv2.putText(img, '{}'.format(pid), (int(x1), int(y1)+20), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
return img
def plot_bbox_factory(bbox_type, add_center=False):
def ret_foo(img, annots, **kwargs):
return plot_bbox_sp(img, annots, bbox_type=bbox_type, add_center=add_center)
return ret_foo
def plot_skeleton(img, annots, body='body25', bbox_name='bbox', kpts_name='keypoints', **kwargs):
annots = annots['annots']
vis_conf = False
for data in annots:
pid = data.get('personID', -1)
if kpts_name in data.keys():
keypoints = data[kpts_name]
plot_keypoints(img, keypoints, pid, CONFIG[body], vis_conf=vis_conf, use_limb_color=True)
if bbox_name in data.keys():
bbox = data[bbox_name]
plot_bbox(img, bbox, pid)
elif kpts_name in data.keys():
bbox = get_bbox_from_pose(np.array(data[kpts_name]))
plot_bbox(img, bbox, pid)
return img
def plot_skeleton_factory(body):
restore_key = {
'body25': ('bbox', 'keypoints'),
'handl': ('bbox_handl2d', 'handl2d'),
'handr': ('bbox_handr2d', 'handr2d'),
'face': ('bbox_face2d', 'face2d'),
}
bbox_name, kpts_name = restore_key[body]
def ret_foo(img, annots, **kwargs):
return plot_skeleton(img, annots, body, bbox_name, kpts_name)
return ret_foo
def vis_active_bbox(img, annots, select, bbox_name, **kwargs):
active = select[bbox_name]
if active == -1 or active >= len(annots['annots']):
return img
else:
bbox = annots['annots'][active][bbox_name]
pid = annots['annots'][active]['personID']
mask = np.zeros_like(img, dtype=np.uint8)
cv2.rectangle(mask,
(int(bbox[0]), int(bbox[1])),
(int(bbox[2]), int(bbox[3])),
get_rgb(pid), -1)
img = cv2.addWeighted(img, 0.6, mask, 0.4, 0)
return img