camera_calibrate/calibrate_intri.py

142 lines
4.8 KiB
Python
Raw Normal View History

2024-11-05 21:17:00 +08:00
import os
import os.path as osp
import glob
import cv2 as cv
import numpy as np
import json
import argparse
2024-11-05 21:25:01 +08:00
2024-11-05 21:17:00 +08:00
def calibrate_camera(imgFolder, chessboardSize, squareSize):
# 设置输出目录
outputFolder = osp.join(imgFolder, "output")
if not osp.exists(outputFolder):
os.makedirs(outputFolder)
# 图片路径
imgPaths = []
for extension in ["jpg", "png", "jpeg"]:
imgPaths += glob.glob(osp.join(imgFolder, "*.{}".format(extension)))
if len(imgPaths) == 0:
print("No images found!")
return
# 存储世界坐标和像素坐标
# 计算出棋盘格中每个网格角点的坐标,之后当成世界坐标
board_w, board_h = chessboardSize
board_grid = np.zeros((board_w * board_h, 3), np.float32)
board_grid[:, :2] = np.mgrid[0:board_w, 0:board_h].T.reshape(-1, 2) * squareSize
pointsWorld = []
pointsPixel = []
# 遍历图片
for imgPath in imgPaths:
img = cv.imread(imgPath)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 查找角点
ret, corners = cv.findChessboardCorners(gray, (board_w, board_h), None)
if ret:
2024-11-05 21:25:01 +08:00
cv.cornerSubPix(gray, corners, (11, 11), (-1, -1),
(cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001))
2024-11-05 21:17:00 +08:00
pointsWorld.append(board_grid)
pointsPixel.append(corners)
cv.drawChessboardCorners(img, (board_w, board_h), corners, ret)
cv.imwrite(osp.join(outputFolder, osp.basename(imgPath)), img)
# 标定相机
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(pointsWorld, pointsPixel, gray.shape[::-1], None, None)
print("Intrinsic matrix:\n", mtx.astype(np.float32))
print("Distortion coefficients:\n", dist.astype(np.float32))
# 计算重投影误差
nimg = len(pointsWorld)
img_error = np.zeros(nimg)
for i in range(nimg):
imgpoints2, _ = cv.projectPoints(pointsWorld[i], rvecs[i], tvecs[i], mtx, dist)
error = cv.norm(pointsPixel[i], imgpoints2, cv.NORM_L2) / len(imgpoints2)
img_error[i] = error
good_img = np.where(img_error < 0.5)[0]
mean_error = np.mean(img_error[good_img])
print("Reprojection error: ", mean_error)
# 挑选出重投影误差小于1.0的图片,重新标定相机
if len(good_img) == 0:
print("No images with error < 0.5")
elif len(good_img) == nimg:
print("All images have error < 0.5")
pass
2024-11-05 21:25:01 +08:00
else:
2024-11-05 21:17:00 +08:00
pointsWorld2 = [pointsWorld[i] for i in good_img]
pointsPixel2 = [pointsPixel[i] for i in good_img]
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(pointsWorld2, pointsPixel2, gray.shape[::-1], None, None)
print("Intrinsic matrix:\n", mtx.astype(np.float32))
print("Distortion coefficients:\n", dist.astype(np.float32))
return mtx, dist
2024-11-05 21:25:01 +08:00
def undistort_image(img, mtx, dist):
h, w = img.shape[:2]
newcameramtx, roi = cv.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))
dst = cv.undistort(img, mtx, dist, None, newcameramtx)
x, y, w, h = roi
dst = dst[y:y + h, x:x + w]
return dst
def undistort_images(imgFolder, mtx, dist):
imgPaths = []
for extension in ["jpg", "png", "jpeg"]:
imgPaths += glob.glob(osp.join(imgFolder, "*.{}".format(extension)))
if len(imgPaths) == 0:
print("No images found!")
return
outputFolder = osp.join(imgFolder, "undistorted_images")
if not osp.exists(outputFolder):
os.makedirs(outputFolder)
for imgPath in imgPaths:
img = cv.imread(imgPath)
dst = undistort_image(img, mtx, dist)
cv.imwrite(osp.join(outputFolder, osp.basename(imgPath)), dst)
print("Undistorted images saved to: ", outputFolder)
def calibrate_cameras(imgFolder, chessboardSize, squareSize):
mtxs = []
dists = []
for folder in glob.glob(osp.join(imgFolder, "*")):
if not osp.isdir(folder):
continue
mtx, dist = calibrate_camera(folder, chessboardSize, squareSize)
mtxs.append(mtx)
dists.append(dist)
return mtxs, dists
2024-11-05 21:17:00 +08:00
def write_json_data(mtx, dist, outputFolder):
data = {
"intrinsic_matrix": mtx.tolist(),
"distortion_coefficients": dist.tolist()
}
with open(osp.join(outputFolder, "calibration.json"), "w") as f:
json.dump(data, f, indent=4)
2024-11-05 21:25:01 +08:00
2024-11-05 21:17:00 +08:00
if __name__ == "__main__":
2024-11-05 21:25:01 +08:00
parser = argparse.ArgumentParser()
parser.add_argument("imgFolder", help="Folder containing images for calibration")
parser.add_argument("--chessboardSize", help="Size of chessboard (rows, cols)", default="11,8")
parser.add_argument("--squareSize", help="Size of square in chessboard", default=60)
args = parser.parse_args()
chessboardSize = tuple(map(int, args.chessboardSize.split(",")))
squareSize = float(args.squareSize)
2024-11-05 21:17:00 +08:00