camera_calibrate/calibrate_extri.py
2024-12-05 21:27:45 +08:00

253 lines
11 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os.path as osp
import numpy as np
import cv2 as cv
import argparse
from tqdm import tqdm
from calib_tools import read_json, write_json
from calib_tools import read_img_paths
from calib_tools import DataPath
# //////////////////////////////////////////////////////////////////////////////////////////////////////////////
# detect_chessboard
# 辅助外参检测检测外参图片中的棋盘格角点生成json文件包含2d点和3d点
def _findChessboardCorners(img, pattern):
"basic function"
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
retval, corners = cv.findChessboardCorners(img, pattern,
flags=cv.CALIB_CB_ADAPTIVE_THRESH + cv.CALIB_CB_FAST_CHECK + cv.CALIB_CB_FILTER_QUADS)
if not retval:
return False, None
corners = cv.cornerSubPix(img, corners, (11, 11), (-1, -1), criteria)
corners = corners.squeeze()
return True, corners
def _findChessboardCornersAdapt(img, pattern):
"Adapt mode"
img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C,
cv.THRESH_BINARY, 21, 2)
return _findChessboardCorners(img, pattern)
# 检测棋盘格角点并且可视化
def findChessboardCorners(img_path, pattern, show):
img = cv.imread(img_path)
if img is None:
raise FileNotFoundError(f"Image not found at {img_path}")
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# Find the chess board corners
for func in [_findChessboardCorners, _findChessboardCornersAdapt]:
ret, corners = func(gray, pattern)
if ret: break
else:
return None
# 附加置信度 1.0 并返回
kpts2d = np.hstack([corners, np.ones((corners.shape[0], 1))])
# 标注棋盘格的原点和最后一个点
if show:
# Draw and display the corners
img_with_corners = cv.drawChessboardCorners(img, pattern, corners, ret)
# 标出棋盘格的原点
origin = tuple(corners[0].astype(int)) # 原点的像素坐标
cv.circle(img_with_corners, origin, 10, (0, 0, 255), -1) # 绘制原点
cv.putText(img_with_corners, "Origin", (origin[0] + 10, origin[1] - 10),
cv.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# 标出最后一个点
last_point = tuple(corners[-1].astype(int)) # 角点数组的最后一个点
cv.circle(img_with_corners, last_point, 10, (0, 255, 0), -1) # 绿色圆点
cv.putText(img_with_corners, "Last", (last_point[0] + 15, last_point[1] - 15),
cv.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) # 添加文字 "Last"
# 显示图像
cv.imwrite(osp.join(DataPath.extri_chessboard_vis, osp.basename(img_path)), img_with_corners)
return kpts2d
# 根据棋盘格生成三维坐标,棋盘格坐标系原点在左上角(同时也是全局坐标原点)
# 设定标定板z轴朝上yx表示棋盘在yx平面上
# easymocap
# 注意采用11x8的棋盘格长边是y轴11短边是x轴8可以用opencv试一下
def getChessboard3d(pattern, gridSize, axis='yx'):
# 注意这里为了让标定板z轴朝上设定了短边是x长边是y
template = np.mgrid[0:pattern[0], 0:pattern[1]].T.reshape(-1, 2) # 棋盘格的坐标
object_points = np.zeros((pattern[1] * pattern[0], 3), np.float32) # 3d坐标默认向上的坐标轴为0
# 长边是x,短边是z
if axis == 'xz':
object_points[:, 0] = template[:, 0]
object_points[:, 2] = template[:, 1]
elif axis == 'yx':
object_points[:, 0] = template[:, 1]
object_points[:, 1] = template[:, 0]
else:
raise NotImplementedError
object_points = object_points * gridSize
return object_points
# 检测文件夹下的所有棋盘格图片生成3d点和2d点存入json文件
# 图片应该按照cam0.jpg, cam1.jpg, cam2.jpg, ...的命名方式,要和内参文件夹对应
def detect_chessboard(extri_img_path, pattern, gridSize, show):
imgPaths = read_img_paths(extri_img_path)
if len(imgPaths) == 0:
print("No images found!")
return
data = {}
for imgPath in tqdm(imgPaths):
camname = osp.basename(imgPath).split(".")[0]
keypoints2d = findChessboardCorners(imgPath, pattern, show)
if keypoints2d is not None:
keypoints3d = getChessboard3d(pattern, gridSize)
data[camname] = {
"keypoints2d": keypoints2d.tolist(),
"keypoints3d": keypoints3d.tolist()
}
return data
# //////////////////////////////////////////////////////////////////////////////////////////////////////////////
def solvePnP(k3d, k2d, K, dist, flag, tryextri=False):
k2d = np.ascontiguousarray(k2d[:, :2]) # 保留前两列
# try different initial values:
if tryextri: # 尝试不同的初始化外参
def closure(rvec, tvec):
ret, rvec, tvec = cv.solvePnP(k3d, k2d, K, dist, rvec, tvec, True, flags=flag)
points2d_repro, xxx = cv.projectPoints(k3d, rvec, tvec, K, dist)
kpts_repro = points2d_repro.squeeze()
err = np.linalg.norm(points2d_repro.squeeze() - k2d, axis=1).mean()
return err, rvec, tvec, kpts_repro
# create a series of extrinsic parameters looking at the origin
height_guess = 2.7 # 相机的初始高度猜测
radius_guess = 4. # 相机的初始水平距离猜测,圆的半径,需要根据自己的实际情况调整
infos = []
for theta in np.linspace(0, 2 * np.pi, 180):
st = np.sin(theta)
ct = np.cos(theta)
center = np.array([radius_guess * ct, radius_guess * st, height_guess]).reshape(3, 1)
R = np.array([
[-st, ct, 0],
[0, 0, -1],
[-ct, -st, 0]
])
tvec = - R @ center
rvec = cv.Rodrigues(R)[0]
err, rvec, tvec, kpts_repro = closure(rvec, tvec)
infos.append({
'err': err,
'repro': kpts_repro,
'rvec': rvec,
'tvec': tvec
})
infos.sort(key=lambda x: x['err'])
err, rvec, tvec, kpts_repro = infos[0]['err'], infos[0]['rvec'], infos[0]['tvec'], infos[0]['repro']
else:
# 直接求解的初值是零向量
ret, rvec, tvec = cv.solvePnP(k3d, k2d, K, dist, flags=flag)
points2d_repro, xxx = cv.projectPoints(k3d, rvec, tvec, K, dist)
kpts_repro = points2d_repro.squeeze()
err = np.linalg.norm(points2d_repro.squeeze() - k2d, axis=1).mean()
# print(err)
return err, rvec, tvec, kpts_repro
# 对单个相机进行外参标定
def _calibrate_extri(k3d, k2d, K, dist, tryfocal=False, tryextri=False):
extri = {}
methods = [cv.SOLVEPNP_ITERATIVE]
# 检查关键点数据的数量是否匹配
if k3d.shape[0] != k2d.shape[0]:
print('k3d {} doesnot match k2d {}'.format(k3d.shape, k2d.shape))
length = min(k3d.shape[0], k2d.shape[0])
k3d = k3d[:length]
k2d = k2d[:length]
valididx = k2d[:, 2] > 0 # k2d第三列是置信度检查是否大于0
if valididx.sum() < 4: # 筛选出有效的2D和3D关键点数量大于4
rvec = np.zeros((1, 3)) # 初始话旋转和平移为0并标记为失败
tvec = np.zeros((3, 1))
extri['Rvec'] = rvec
extri['R'] = cv.Rodrigues(rvec)[0]
extri['T'] = tvec
print('[ERROR] Failed to initialize the extrinsic parameters')
return extri
k3d = k3d[valididx]
k2d = k2d[valididx]
# 优化相机焦距
# 如果启用焦距优化
if tryfocal:
infos = []
for focal in range(500, 5000, 10): # 遍历焦距范围
# 设置焦距值
K[0, 0] = focal # 更新 K 的 fx
K[1, 1] = focal # 更新 K 的 fy
for method in methods:
# 调用 solvePnP
err, rvec, tvec, kpts_repro = solvePnP(k3d, k2d, K, dist, method, tryextri)
# 保存结果
infos.append({
'focal': focal,
'err': err,
'rvec': rvec,
'tvec': tvec,
'repro': kpts_repro
})
# 根据重投影误差选择最佳焦距
infos.sort(key=lambda x: x['err'])
best_result = infos[0]
focal = best_result['focal']
err, rvec, tvec, kpts_repro = best_result['err'], best_result['rvec'], best_result['tvec'], best_result['repro']
# 更新内参中的焦距
K[0, 0] = focal
K[1, 1] = focal
print(f'[INFO] Optimal focal length found: {focal}, reprojection error: {err:.3f}')
else:
# 如果不优化焦距,直接调用 solvePnP
err, rvec, tvec, kpts_repro = solvePnP(k3d, k2d, K, dist, cv.SOLVEPNP_ITERATIVE, tryextri)
# 保存外参结果
extri['Rvec'] = rvec.tolist()
extri['R'] = cv.Rodrigues(rvec)[0].tolist()
extri['T'] = tvec.tolist()
center = - cv.Rodrigues(rvec)[0].T @ tvec
print(f'[INFO] Camera center: {center.squeeze()}, reprojection error: {err:.3f}')
return extri
def calibrate_extri(pattern, gridSize, show=True, tryfocal=True, tryextri=True):
extri = {}
intri_data = read_json(DataPath.intri_json_path)
kpts_data = detect_chessboard(DataPath.extri_chessboard_data, pattern, gridSize, show) # 棋盘格的模式和大小
# 获取内参
camnames = list(intri_data.keys())
for cam in camnames:
print(f'[INFO] Processing camera: {cam}')
K = np.array(intri_data[cam]['K'])
dist = np.array(intri_data[cam]['dist'])
k3d = np.array(kpts_data[cam]['keypoints3d'])
k2d = np.array(kpts_data[cam]['keypoints2d'])
extri[cam] = _calibrate_extri(k3d, k2d, K, dist, tryfocal, tryextri)
write_json(extri, osp.join(DataPath.extri_json_path, 'extri.json'))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="相机外参标定")
parser.add_argument("--pattern", type=str, default="11,8",
help="棋盘格角点数 (列数, 行数),例如 '11,8'")
parser.add_argument("--gridSize", type=float, default=60.0,
help="棋盘格方块的实际边长(单位与数据一致,例如 mm 或 m")
parser.add_argument("--show", dest="show", action="store_true", default=False, help="启用标定结果的可视化输出")
parser.add_argument("--tryfocal", dest="tryfocal", action="store_true", default=False, help="尝试优化焦距参数")
parser.add_argument("--tryextri", dest="tryextri", action="store_true", default=False, help="尝试优化外参")
args = parser.parse_args()
# 将解析结果传递给 calibrate_extri 函数
pattern = tuple(map(int, args.pattern.split(','))) # 将棋盘格角点数的字符串转换为元组
calibrate_extri(pattern, args.gridSize, show=args.show, tryfocal=args.tryfocal, tryextri=args.tryextri)