pose2sim/Pose2Sim/personAssociation.py

313 lines
13 KiB
Python
Raw Normal View History

2023-07-19 17:37:20 +08:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
###########################################################################
## TRACKING OF PERSON OF INTEREST ##
###########################################################################
Openpose detects all people in the field of view.
Which is the one of interest?
This module tries all possible triangulations of a chosen anatomical
point, and chooses the person for whom the reprojection error is smallest.
INPUTS:
- a calibration file (.toml extension)
- json files from each camera folders with several detected persons
- a Config.toml file
- a skeleton model
OUTPUTS:
- json files for each camera with only one person of interest
'''
## INIT
import os
import glob
import fnmatch
import numpy as np
import json
import itertools as it
import toml
from tqdm import tqdm
import logging
from Pose2Sim.common import computeP, weighted_triangulation, reprojection, \
euclidean_distance, natural_sort
from Pose2Sim.skeletons import *
## AUTHORSHIP INFORMATION
__author__ = "David Pagnon"
__copyright__ = "Copyright 2021, Pose2Sim"
__credits__ = ["David Pagnon"]
__license__ = "BSD 3-Clause License"
__version__ = '0.4'
__maintainer__ = "David Pagnon"
__email__ = "contact@david-pagnon.com"
__status__ = "Development"
## FUNCTIONS
def persons_combinations(json_files_framef):
'''
Find all possible combinations of detected persons' ids.
Person's id when no person detected is set to -1.
INPUT:
- json_files_framef: list of strings
OUTPUT:
- personsIDs_comb: array, list of lists of int
'''
n_cams = len(json_files_framef)
# amount of persons detected for each cam
nb_persons_per_cam = []
for c in range(n_cams):
with open(json_files_framef[c], 'r') as js:
nb_persons_per_cam += [len(json.load(js)['people'])]
# persons_combinations
id_no_detect = [i for i, x in enumerate(nb_persons_per_cam) if x == 0] # ids of cameras that have not detected any person
nb_persons_per_cam = [x if x != 0 else 1 for x in nb_persons_per_cam] # temporarily replace persons count by 1 when no detection
range_persons_per_cam = [range(nb_persons_per_cam[c]) for c in range(n_cams)]
personsIDs_comb = np.array(list(it.product(*range_persons_per_cam)), float) # all possible combinations of persons' ids
personsIDs_comb[:,id_no_detect] = np.nan # -1 = persons' ids when no person detected
return personsIDs_comb
def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_combinations, projection_matrices, tracked_keypoint_id):
'''
At the same time, chooses the right person among the multiple ones found by
OpenPose & excludes cameras with wrong 2d-pose estimation.
1. triangulate the tracked keypoint for all possible combinations of people,
2. compute difference between reprojection & original openpose detection,
3. take combination with smallest difference.
If error is too big, take off one or several of the cameras until err is
lower than "max_err_px".
INPUTS:
- a Config.toml file
- json_files_framef: list of strings
- personsIDs_combinations: array, list of lists of int
- projection_matrices: list of arrays
- tracked_keypoint_id: int
OUTPUTS:
- error_min: float
- persons_and_cameras_combination: array of ints
'''
error_threshold_tracking = config.get('personAssociation').get('reproj_error_threshold_association')
min_cameras_for_triangulation = config.get('triangulation').get('min_cameras_for_triangulation')
likelihood_threshold = config.get('triangulation').get('likelihood_threshold')
n_cams = len(json_files_framef)
error_min = np.inf
nb_cams_off = 0 # cameras will be taken-off until the reprojection error is under threshold
while error_min > error_threshold_tracking and n_cams - nb_cams_off >= min_cameras_for_triangulation:
# Try all persons combinations
for combination in personsIDs_combinations:
# Get x,y,likelihood values from files
x_files, y_files,likelihood_files = [], [], []
for index_cam, person_nb in enumerate(combination):
with open(json_files_framef[index_cam], 'r') as json_f:
js = json.load(json_f)
try:
x_files.append( js['people'][int(person_nb)]['pose_keypoints_2d'][tracked_keypoint_id*3] )
y_files.append( js['people'][int(person_nb)]['pose_keypoints_2d'][tracked_keypoint_id*3+1] )
likelihood_files.append( js['people'][int(person_nb)]['pose_keypoints_2d'][tracked_keypoint_id*3+2] )
except:
x_files.append(np.nan)
y_files.append(np.nan)
likelihood_files.append(np.nan)
# Replace likelihood by 0. if under likelihood_threshold
likelihood_files = [0. if lik < likelihood_threshold else lik for lik in likelihood_files]
# For each persons combination, create subsets with "nb_cams_off" cameras excluded
id_cams_off = list(it.combinations(range(len(combination)), nb_cams_off))
combinations_with_cams_off = np.array([combination.copy()]*len(id_cams_off))
for i, id in enumerate(id_cams_off):
combinations_with_cams_off[i,id] = np.nan
# Try all subsets
error_comb = []
for comb in combinations_with_cams_off:
# Filter x, y, likelihood, projection_matrices, with subset
x_files_filt = [x_files[i] for i in range(len(comb)) if not np.isnan(comb[i])]
y_files_filt = [y_files[i] for i in range(len(comb)) if not np.isnan(comb[i])]
likelihood_files_filt = [likelihood_files[i] for i in range(len(comb)) if not np.isnan(comb[i])]
projection_matrices_filt = [projection_matrices[i] for i in range(len(comb)) if not np.isnan(comb[i])]
# Triangulate 2D points
Q_comb = weighted_triangulation(projection_matrices_filt, x_files_filt, y_files_filt, likelihood_files_filt)
# Reprojection
x_calc, y_calc = reprojection(projection_matrices_filt, Q_comb)
# Reprojection error
error_comb_per_cam = []
for cam in range(len(x_calc)):
q_file = (x_files_filt[cam], y_files_filt[cam])
q_calc = (x_calc[cam], y_calc[cam])
error_comb_per_cam.append( euclidean_distance(q_file, q_calc) )
error_comb.append( np.mean(error_comb_per_cam) )
error_min = min(error_comb)
persons_and_cameras_combination = combinations_with_cams_off[np.argmin(error_comb)]
if error_min < error_threshold_tracking:
break
nb_cams_off += 1
return error_min, persons_and_cameras_combination
def recap_tracking(config, error, nb_cams_excluded):
'''
Print a message giving statistics on reprojection errors (in pixel and in m)
as well as the number of cameras that had to be excluded to reach threshold
conditions. Also stored in User/logs.txt.
INPUT:
- a Config.toml file
- error: dataframe
- nb_cams_excluded: dataframe
OUTPUT:
- Message in console
'''
# Read config
project_dir = config.get('project').get('project_dir')
if project_dir == '': project_dir = os.getcwd()
2023-08-21 03:55:13 +08:00
poseTracked_folder_name = config.get('project').get('poseAssociated_folder_name')
2023-07-19 17:37:20 +08:00
calib_folder_name = config.get('project').get('calib_folder_name')
tracked_keypoint = config.get('personAssociation').get('tracked_keypoint')
error_threshold_tracking = config.get('personAssociation').get('error_threshold_tracking')
poseTracked_dir = os.path.join(project_dir, poseTracked_folder_name)
calib_dir = os.path.join(project_dir, calib_folder_name)
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0]
# Error
mean_error_px = np.around(np.mean(error), decimals=1)
calib = toml.load(calib_file)
calib_cam1 = calib[list(calib.keys())[0]]
fm = calib_cam1['matrix'][0][0]
Dm = euclidean_distance(calib_cam1['translation'], [0,0,0])
mean_error_mm = np.around(mean_error_px * Dm / fm * 1000, decimals=1)
# Excluded cameras
mean_cam_off_count = np.around(np.mean(nb_cams_excluded), decimals=2)
# Recap
logging.info(f'\n--> Mean reprojection error for {tracked_keypoint} point on all frames is {mean_error_px} px, which roughly corresponds to {mean_error_mm} mm. ')
logging.info(f'--> In average, {mean_cam_off_count} cameras had to be excluded to reach the demanded {error_threshold_tracking} px error threshold.')
logging.info(f'\nTracked json files are stored in {poseTracked_dir}.')
def track_2d_all(config):
'''
For each frame,
- Find all possible combinations of detected persons
- Triangulate 'tracked_keypoint' for all combinations
- Reproject the point on all cameras
- Take combination with smallest reprojection error
- Write json file with only one detected person
Print recap message
INPUTS:
- a calibration file (.toml extension)
- json files from each camera folders with several detected persons
- a Config.toml file
- a skeleton model
OUTPUTS:
- json files for each camera with only one person of interest
'''
# Read config
project_dir = config.get('project').get('project_dir')
if project_dir == '': project_dir = os.getcwd()
calib_folder_name = config.get('project').get('calib_folder_name')
poseTracked_folder_name = config.get('project').get('poseAssociated_folder_name')
pose_folder_name = config.get('project').get('pose_folder_name')
pose_model = config.get('pose').get('pose_model')
tracked_keypoint = config.get('personAssociation').get('tracked_keypoint')
json_folder_extension = config.get('project').get('pose_json_folder_extension')
frame_range = config.get('project').get('frame_range')
calib_dir = os.path.join(project_dir, calib_folder_name)
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0]
pose_dir = os.path.join(project_dir, pose_folder_name)
poseTracked_dir = os.path.join(project_dir, poseTracked_folder_name)
# projection matrix from toml calibration file
P = computeP(calib_file)
# selection of tracked keypoint id
model = eval(pose_model)
tracked_keypoint_id = [node.id for _, _, node in RenderTree(model) if node.name==tracked_keypoint][0]
# 2d-pose files selection
pose_listdirs_names = next(os.walk(pose_dir))[1]
pose_listdirs_names = natural_sort(pose_listdirs_names)
json_dirs_names = [k for k in pose_listdirs_names if json_folder_extension in k]
json_files_names = [fnmatch.filter(os.listdir(os.path.join(pose_dir, js_dir)), '*.json') for js_dir in json_dirs_names]
json_files_names = [natural_sort(j) for j in json_files_names]
json_files = [[os.path.join(pose_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)]
# 2d-pose-associated files creation
if not os.path.exists(poseTracked_dir): os.mkdir(poseTracked_dir)
try: [os.mkdir(os.path.join(poseTracked_dir,k)) for k in json_dirs_names]
except: pass
json_tracked_files = [[os.path.join(poseTracked_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)]
# person's tracking
f_range = [[min([len(j) for j in json_files])] if frame_range==[] else frame_range][0]
n_cams = len(json_dirs_names)
error_min_tot, cameras_off_tot = [], []
for f in tqdm(range(*f_range)):
json_files_f = [json_files[c][f] for c in range(n_cams)]
json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)]
# all possible combinations of persons
personsIDs_comb = persons_combinations(json_files_f)
# choose person of interest and exclude cameras with bad pose estimation
error_min, persons_and_cameras_combination = best_persons_and_cameras_combination(config, json_files_f, personsIDs_comb, P, tracked_keypoint_id)
error_min_tot.append(error_min)
cameras_off_count = np.count_nonzero(np.isnan(persons_and_cameras_combination))
cameras_off_tot.append(cameras_off_count)
# rewrite json files with only one person of interest
for cam_nb, person_id in enumerate(persons_and_cameras_combination):
with open(json_tracked_files_f[cam_nb], 'w') as json_tracked_f:
with open(json_files_f[cam_nb], 'r') as json_f:
js = json.load(json_f)
if not np.isnan(person_id):
js['people'] = [js['people'][int(person_id)]]
else:
js['people'] = []
json_tracked_f.write(json.dumps(js))
# recap message
recap_tracking(config, error_min_tot, cameras_off_tot)