reproj to mmpose/coco format

This commit is contained in:
davidpagnon 2024-10-10 00:11:27 +02:00
parent 5484812929
commit 02c6512b15

View File

@ -8,20 +8,19 @@
################################################## ##################################################
Reproject 3D points from a trc file to the camera planes determined by a Reproject 3D points from a trc file to the camera planes determined by a
toml calibration file. toml calibration file, to the DeepLabCut (default), MMpose, or
OpenPose format.
The output 2D points can be chosen to follow the DeepLabCut (default) or The order or the markers depends on the markerset chosen markerset--it is the same as in the trc file if unspecified.
the OpenPose format. If OpenPose is chosen, the HALPE_26 model is used, You can change the marker order in CONSTANTS if you need to.
with ear and eye at coordinates (0,0) since they are not used by Pose2Sim.
You can change the MODEL tree to a different one if you need to reproject
in OpenPose format with a different model than HALPE_26.
New: Moving cameras and zooming cameras are now supported. New: Moving cameras and zooming cameras are now supported.
Usage: Usage:
from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(r'<input_trc_file>', r'<input_calib_file>', '<output_format>', r'<output_file_root>') from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(r'<input_trc_file>', r'<input_calib_file>', '<output_format>', r'<output_file_root>')
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -o python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -odm
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -o -u python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -odm --markerset halpe26
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file --openpose --deeplabcut --mmpose --undistort
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -d -o output_file_root python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -d -o output_file_root
''' '''
@ -33,6 +32,7 @@ import numpy as np
import toml import toml
import cv2 import cv2
import json import json
import re
from anytree import Node, RenderTree from anytree import Node, RenderTree
from copy import deepcopy from copy import deepcopy
import argparse import argparse
@ -49,50 +49,20 @@ __email__ = "contact@david-pagnon.com"
__status__ = "Development" __status__ = "Development"
## SKELETON # CONSTANTS
'''HALPE_26 (full-body without hands, from AlphaPose, MMPose, etc.) halpe26_markers = ['NOSB', 'LEYE', 'REYE', 'LEAR', 'REAR', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R']
https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md halpeplus_markers = ['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']
https://github.com/open-mmlab/mmpose/tree/main/projects/rtmpose''' biocvplus_markers = ['ACROM_R', 'ACROM_L', 'C7', 'T10', 'CLAV', 'XIP_PROC', 'UA_R', 'ELB_LAT_R', 'ELB_MED_R', 'LA_R', 'WRI_LAT_R', 'WRI_MED_R', 'HAND_R', 'UA_L', 'ELB_LAT_L', 'ELB_MED_L', 'LA_L', 'WRI_LAT_L', 'WRI_MED_L', 'HAND_L', 'ASIS_R', 'ASIS_L', 'PSIS_R', 'PSIS_L', 'ILCREST_R', 'ILCREST_L', 'UL_R', 'KNEE_LAT_R', 'KNEE_MED_R', 'LL_R', 'MAL_LAT_R', 'MAL_MED_R', 'HEEL_R', 'MTP1_R', 'MTP5_R', 'TOE_R', 'UL_L', 'KNEE_LAT_L', 'KNEE_MED_L', 'LL_L', 'MAL_LAT_L', 'MAL_MED_L', 'HEEL_L', 'MTP1_L', 'MTP5_L', 'TOE_L', 'THD', 'NOSB']
MODEL = Node("Hip", id=19, children=[
Node("RHip", id=12, children=[
Node("RKnee", id=14, children=[
Node("RAnkle", id=16, children=[
Node("RBigToe", id=21, children=[
Node("RSmallToe", id=23),
]),
Node("RHeel", id=25),
]),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=15, children=[
Node("LBigToe", id=20, children=[
Node("LSmallToe", id=22),
]),
Node("LHeel", id=24),
]),
]),
]),
Node("Neck", id=18, children=[
Node("Head", id=17, children=[
Node("Nose", id=0),
]),
Node("RShoulder", id=6, children=[
Node("RElbow", id=8, children=[
Node("RWrist", id=10),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=7, children=[
Node("LWrist", id=9),
]),
]),
]),
])
## FUNCTIONS ## FUNCTIONS
def str_to_id(string):
'''
Convert a string to an integer id
'''
return ''.join([str(abs(ord(char) - 96)) for char in string])
def computeP(calib_file, undistort=False): def computeP(calib_file, undistort=False):
''' '''
Compute projection matrices from toml calibration file. Compute projection matrices from toml calibration file.
@ -252,38 +222,171 @@ def yup2zup(Q):
return Q return Q
def dataset_to_openpose(coords_df, openpose_path_root, marker_list=['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']):
'''
Write 2D labels to OpenPose format.
INPUTS:
- coords_df: pandas dataframe with 2D labels. E.g.: all_dfs = pd.read_csv(dlc_labels_path, header = [0,1,2,3], index_col=0)
- openpose_path_root: path to save the json files (frame number will be appended)
- marker_list: list of markers in the order provided by the dataset. E.g. for Halpeplus: ['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']
OUTPUTS:
- coordinates written in the openpose json format (one per frame)
'''
#prepare json files
json_dict = {'version':1.3, 'people':[]}
json_dict['people'] = [{'person_id':[-1],
'pose_keypoints_2d': np.zeros(len(marker_list)*3),
'face_keypoints_2d': [],
'hand_left_keypoints_2d':[],
'hand_right_keypoints_2d':[],
'pose_keypoints_3d':[],
'face_keypoints_3d':[],
'hand_left_keypoints_3d':[],
'hand_right_keypoints_3d':[]}]
# write one json file per camera and per frame
persons = list(set(['_'.join(item.split('_')[:5]) for item in coords_df.columns.levels[1]]))
for frame in range(len(coords_df)):
for person in persons:
json_dict_copy = deepcopy(json_dict)
coords = coords_df.iloc[frame, coords_df.columns.get_level_values(1)==person]
# store 2D keypoints and respect model keypoint order
coords_list = []
for marker in marker_list:
coords_mk = coords.loc[coords.index.get_level_values(2)==marker]
coords_list += [0.0, 0.0, 0] if np.isnan(coords_mk).any() else coords_mk.tolist()+[1]
json_dict_copy['people'][0]['pose_keypoints_2d'] = coords_list
# write json file
json_file = os.path.join(os.path.dirname(openpose_path_root), f'{os.path.splitext(os.path.basename(openpose_path_root))[0]}_{frame:04d}.json')
with open(json_file, 'w') as js_f:
js_f.write(json.dumps(json_dict_copy))
def dataset_to_mmpose2d(coords_df, mmpose_json_file, img_size, markerset='custom', marker_list=['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ank_l', 'ankle_r', 'THD', 'CY', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']):
'''
Export 2D labels to MMPose format.
INPUTS:
- coords_df: pandas dataframe with 2D labels. E.g.: all_dfs = pd.read_csv(dlc_labels_path, header = [0,1,2,3]), index_col=0)
- mmpose_json_file: path to save the json file
- img_size: image size [width, height]
- markerset: name of the markerset. E.g.: 'halpe26', 'halpeplus', 'biocvplus'
- marker_list: list of markers from inverse kinematics and/or SMPL mesh. E.g.: ['ankle_l', 'NOSB',]
OUTPUTS:
- labels2d_json: saved json file
'''
# transform first name in integer, and append other numbers from persons
persons = list(set(['_'.join(item.split('_')[:5]) for item in coords_df.columns.levels[1]]))
person_ids = [str_to_id(p.split('_')[1]) + ''.join(p.split('_')[3:]) if len(p.split('_'))>=3
else str_to_id(p.split('_')[0])
for p in persons]
labels2d_json_data = {}
labels2d_json_data['info'] = {'description': f'Bedlam Pose {markerset}',
'url': 'https://github.com/davidpagnon/bedlam_pose',
'version': '0.1',
'year': 2024,
'contributor': 'David Pagnon',
'date_created': '2024/08/14'}
labels2d_json_data['licenses'] = [{'url': 'https://bedlam.is.tue.mpg.de/license.html', 'id': 1, 'name': 'Non-commercial scientific research purposes'},
{'url': 'https://creativecommons.org/licenses/by/4.0/deed.en', 'id': 2, 'name': 'Attribution License'}]
labels2d_json_data['images'] = []
labels2d_json_data['annotations'] = []
labels2d_json_data['categories'] = [{'id': 1, 'name': 'person'}]
# for each image
for i in range(len(coords_df)):
file_name = coords_df.index[i]
w, h = img_size
# id from concatenation of numbers from path
file_id = ''.join(re.findall(r'\d+', str(file_name)))
labels2d_json_data['images'] += [{'file_name': file_name,
'height': str(h),
'width': str(w),
'id': file_id,
'license': 1}]
# for each person
for p, person in enumerate(persons):
# store 2D keypoints and respect model keypoint order
coords = coords_df.iloc[i, coords_df.columns.get_level_values(1)==person]
coords_list = []
for marker in marker_list:
# visibility: 2 visible, 1 occluded, 0 out of frame
coords_mk = coords.loc[coords.index.get_level_values(2)==marker]
coords_list += [0.0, 0.0, 0] if np.isnan(coords_mk).any() else coords_mk.tolist()+[2]
# bbox
min_x = np.nanmin(coords.loc[coords.index.get_level_values(3)=='x'])
min_y = np.nanmin(coords.loc[coords.index.get_level_values(3)=='y'])
max_x = np.nanmax(coords.loc[coords.index.get_level_values(3)=='x'])
max_y = np.nanmax(coords.loc[coords.index.get_level_values(3)=='y'])
bbox = [min_x, min_y, max_x, max_y]
# bbox_width = max_x - min_x
# bbox_height = max_y - min_y
# bbox = [min_x, min_y, bbox_width, bbox_height]
# num_keypoints, id, category_id
num_keypoints = len(marker_list)
id = person_ids[p]
category_id = 1
# segmentation and area not filled, and each annotation represents one single person
segmentation = []
area = 0
iscrowd = 0 # 1 if len(persons)>1 else 0
labels2d_json_data['annotations'] += [{ 'keypoints': coords_list,
'num_keypoints': num_keypoints,
'bbox': bbox,
'id': id,
'image_id': file_id,
'category_id': category_id,
'segmentation': segmentation,
'area': area,
'iscrowd': iscrowd}]
with open(mmpose_json_file, 'w') as f:
json.dump(labels2d_json_data, f)
def reproj_from_trc_calib_func(**args): def reproj_from_trc_calib_func(**args):
''' '''
Reproject 3D points from a trc file to the camera planes determined by a Reproject 3D points from a trc file to the camera planes determined by a
toml calibration file. toml calibration file, to the DeepLabCut (default), MMpose, or
OpenPose format.
The output 2D points can be chosen to follow the DeepLabCut (default) or The order or the markers depends on the markerset chosen markerset--it is the same as in the trc file if unspecified.
the OpenPose format. If OpenPose is chosen, the HALPE_26 model is used, You can change the marker order in CONSTANTS if you need to.
with ear and eye at coordinates (0,0) since they are not used by Pose2Sim.
You can change the MODEL tree to a different one if you need to reproject
in OpenPose format with a different model than HALPLE_26.
New: Moving cameras and zooming cameras are now supported. New: Moving cameras and zooming cameras are now supported.
Usage: Usage:
from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(input_trc_file = r'<input_trc_file>', input_calib_file = r'<input_calib_file>', openpose_output=True, deeplabcut_output=True, undistort_points=True, output_file_root = r'<output_file_root>') from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(r'<input_trc_file>', r'<input_calib_file>', '<output_format>', r'<output_file_root>')
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -o python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -odm
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file --openpose_output --deeplabcut_output --undistort_points --output_file_root output_file_root python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file --openpose --deeplabcut --mmpose --undistort
python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -o -O output_file_root python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -d -o output_file_root
''' '''
input_trc_file = os.path.realpath(args.get('input_trc_file')) # invoked with argparse input_trc_file = os.path.realpath(args.get('input_trc_file')) # invoked with argparse
input_calib_file = os.path.realpath(args.get('input_calib_file')) input_calib_file = os.path.realpath(args.get('input_calib_file'))
openpose_output = args.get('openpose_output') openpose_output = args.get('openpose')
deeplabcut_output = args.get('deeplabcut_output') deeplabcut_output = args.get('deeplabcut')
mmpose_output = args.get('mmpose')
markerset = args.get('markerset')
undistort_points = args.get('undistort_points') undistort_points = args.get('undistort_points')
output_file_root = args.get('output_file_root') output_file_root = args.get('output_file_root')
if output_file_root == None: if output_file_root == None:
output_file_root = input_trc_file.replace('.trc', '_reproj') output_file_root = input_trc_file.replace('.trc', '_reproj')
if os.path.exists(output_file_root): if os.path.exists(output_file_root):
os.makedirs(output_file_root, exist_ok=True) os.makedirs(output_file_root, exist_ok=True)
if not openpose_output and not deeplabcut_output: if not openpose_output and not deeplabcut_output and not mmpose_output:
raise ValueError('Output_format must be specified either "openpose_output" (-o) or "deeplabcut_output (-d)"') raise ValueError('Output_format must be specified either "openpose" (-o), "deeplabcut" (-d), or "mmpose" (-m)')
# Extract data from trc file # Extract data from trc file
header_trc, data_trc = df_from_trc(input_trc_file) header_trc, data_trc = df_from_trc(input_trc_file)
@ -342,60 +445,44 @@ def reproj_from_trc_calib_func(**args):
x_valid = data_proj[cam].iloc[:,::2] < calib_params_size[cam][0] x_valid = data_proj[cam].iloc[:,::2] < calib_params_size[cam][0]
y_valid = data_proj[cam].iloc[:,1::2] < calib_params_size[cam][1] y_valid = data_proj[cam].iloc[:,1::2] < calib_params_size[cam][1]
data_proj[cam].iloc[:, ::2] = data_proj[cam].iloc[:, ::2].where(x_valid, np.nan) data_proj[cam].iloc[:, ::2] = data_proj[cam].iloc[:, ::2].where(x_valid, np.nan)
data_proj[cam].iloc[:, 1::2] = data_proj[cam].iloc[:, ::2].where(x_valid, np.nan) data_proj[cam].iloc[:, ::2] = np.where(y_valid==False, np.nan, data_proj[cam].iloc[:, ::2])
data_proj[cam].iloc[:, ::2] = data_proj[cam].iloc[:, 1::2].where(y_valid, np.nan)
data_proj[cam].iloc[:, 1::2] = data_proj[cam].iloc[:, 1::2].where(y_valid, np.nan) data_proj[cam].iloc[:, 1::2] = data_proj[cam].iloc[:, 1::2].where(y_valid, np.nan)
data_proj[cam].iloc[:, 1::2] = np.where(x_valid==False, np.nan, data_proj[cam].iloc[:, 1::2])
# Marker list in the right order
if markerset == 'halpe26':
marker_list = halpe26_markers
elif markerset == 'halpeplus':
marker_list = halpeplus_markers
elif markerset == 'biocvplus':
marker_list = biocvplus_markers
else:
marker_list = list(dict.fromkeys(data_proj[cam].columns.get_level_values(2)[1:]))
# Save as h5 and csv if DeepLabCut format # Save as h5 and csv if DeepLabCut format
if deeplabcut_output: if deeplabcut_output:
# to h5 # to h5
h5_files = [os.path.join(cam_dir,f'{filename}_cam_{i+1:02d}.h5') for i,cam_dir in enumerate(cam_dirs)] h5_files = [os.path.join(cam_dir,f'{filename}_cam_{i+1:02d}_dlc.h5') for i,cam_dir in enumerate(cam_dirs)]
[data_proj[i].to_hdf(h5_files[i], index=True, key='reprojected_points') for i in range(len(P_all))] [data_proj[i].to_hdf(h5_files[i], index=True, key='reprojected_points') for i in range(len(P_all))]
# to csv # to csv
csv_files = [os.path.join(cam_dir,f'{filename}_cam_{i+1:02d}.csv') for i,cam_dir in enumerate(cam_dirs)] csv_files = [os.path.join(cam_dir,f'{filename}_cam_{i+1:02d}_dlc.csv') for i,cam_dir in enumerate(cam_dirs)]
[data_proj[i].to_csv(csv_files[i], sep=',', index=True, lineterminator='\n') for i in range(len(P_all))] [data_proj[i].to_csv(csv_files[i], sep=',', index=True, lineterminator='\n') for i in range(len(P_all))]
# Save as json if OpenPose format # Save as json if Coco/MMpose format
elif openpose_output: if mmpose_output:
# read model tree
model = MODEL
print('Keypoint hierarchy:')
for pre, _, node in RenderTree(model):
print(f'{pre}{node.name} id={node.id}')
bodyparts_ids = [[node.id for _, _, node in RenderTree(model) if node.name==b][0] for b in bodyparts]
nb_joints = len(bodyparts_ids)
#prepare json files
json_dict = {'version':1.3, 'people':[]}
json_dict['people'] = [{'person_id':[-1],
'pose_keypoints_2d': np.zeros(nb_joints*3),
'face_keypoints_2d': [],
'hand_left_keypoints_2d':[],
'hand_right_keypoints_2d':[],
'pose_keypoints_3d':[],
'face_keypoints_3d':[],
'hand_left_keypoints_3d':[],
'hand_right_keypoints_3d':[]}]
# write one json file per camera and per frame
for cam, cam_dir in enumerate(cam_dirs): for cam, cam_dir in enumerate(cam_dirs):
for frame in range(len(Q)): mmpose_json_file = os.path.join(cam_dir, f'{filename}_cam_{cam+1:02d}_mmpose.json')
json_dict_copy = deepcopy(json_dict) dataset_to_mmpose2d(data_proj[cam], mmpose_json_file, calib_params_size[cam], markerset=markerset, marker_list=marker_list)
data_proj_frame = data_proj[cam].iloc[frame]['DavidPagnon']['person0']
# store 2D keypoints and respect model keypoint order # Save as json if OpenPose format
for (i,b) in zip(bodyparts_ids, bodyparts): if openpose_output:
# visibility: 2 visible, 1 occluded, 0 out of frame for cam, cam_dir in enumerate(cam_dirs):
coords = data_proj_frame[b].values openpose_path_root = os.path.join(cam_dir, f'{filename}_cam{cam+1:02d}_openpose.json')
json_dict_copy['people'][0]['pose_keypoints_2d'][[i*3,i*3+1,i*3+2]] = np.array([0.0, 0.0, 0]) if np.isnan(coords).any() else np.append(coords, 2) dataset_to_openpose(data_proj[cam], openpose_path_root, marker_list=marker_list)
json_dict_copy['people'][0]['pose_keypoints_2d'] = json_dict_copy['people'][0]['pose_keypoints_2d'].tolist()
# write json file
json_file = os.path.join(cam_dir, f'{filename}_cam_{cam+1:02d}.{frame:05d}.json')
with open(json_file, 'w') as js_f:
js_f.write(json.dumps(json_dict_copy))
print('Camera #', cam, 'done.')
# Wrong format # Wrong format
else: if not openpose_output and not deeplabcut_output and not mmpose_output:
raise ValueError('output_format must be either "openpose" or "deeplabcut"') raise ValueError('output_format must be either "openpose" or "deeplabcut"')
print(f'Reprojected points saved at {output_file_root}.') print(f'Reprojected points saved at {output_file_root}.')
@ -405,8 +492,10 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-t', '--input_trc_file', required = True, help='trc 3D coordinates input file path') parser.add_argument('-t', '--input_trc_file', required = True, help='trc 3D coordinates input file path')
parser.add_argument('-c', '--input_calib_file', required = True, help='toml calibration input file path') parser.add_argument('-c', '--input_calib_file', required = True, help='toml calibration input file path')
parser.add_argument('-o', '--openpose_output', required=False, action='store_true', help='output format in the openpose json format') parser.add_argument('-o', '--openpose', required=False, action='store_true', help='output format in the openpose json format')
parser.add_argument('-d', '--deeplabcut_output', required=False, action='store_true', help='output format in the deeplabcut csv and json formats') parser.add_argument('-d', '--deeplabcut', required=False, action='store_true', help='output format in the deeplabcut csv and h5 formats')
parser.add_argument('-m', '--mmpose', required=False, action='store_true', help='output format in the Coco/MMpose json format')
parser.add_argument('-s', '--markerset', required=False, help='markerset name, e.g. halpe26, halpeplus, biocvplus')
parser.add_argument('-u', '--undistort_points', required=False, action='store_true', help='takes distortion into account if True') parser.add_argument('-u', '--undistort_points', required=False, action='store_true', help='takes distortion into account if True')
parser.add_argument('-O', '--output_file_root', required=False, help='output file root path, without extension') parser.add_argument('-O', '--output_file_root', required=False, help='output file root path, without extension')
args = vars(parser.parse_args()) args = vars(parser.parse_args())