diff --git a/Pose2Sim/Utilities/reproj_from_trc_calib.py b/Pose2Sim/Utilities/reproj_from_trc_calib.py index 69fa834..24304b2 100644 --- a/Pose2Sim/Utilities/reproj_from_trc_calib.py +++ b/Pose2Sim/Utilities/reproj_from_trc_calib.py @@ -327,19 +327,18 @@ def dataset_to_mmpose2d(coords_df, mmpose_json_file, img_size, markerset='custom x_coords = coords.loc[coords.index.get_level_values(3)=='x'] y_coords = coords.loc[coords.index.get_level_values(3)=='y'] min_x, min_y, max_x, max_y = np.nanmin(x_coords), np.nanmin(y_coords), np.nanmax(x_coords), np.nanmax(y_coords) - bbox = [min_x, min_y, max_x, max_y] - # bbox_width = max_x - min_x - # bbox_height = max_y - min_y - # bbox = [min_x, min_y, bbox_width, bbox_height] - + bbox_width = max_x - min_x + bbox_height = max_y - min_y + # num_keypoints, id, category_id num_keypoints = len(marker_list) + # bbox = [min_x, min_y, max_x, max_y] + bbox = [min_x, min_y, bbox_width, bbox_height] # coco format id = person_ids[p] category_id = 1 - # segmentation and area not filled, and each annotation represents one single person - segmentation = [] - area = 0 - iscrowd = 0 # 1 if len(persons)>1 else 0 + segmentation = [] # no segmentation + area = bbox_width * bbox_height + iscrowd = 0 # each annotation represents one single person if not np.isnan(bbox).any(): labels2d_json_data['annotations'] += [{ 'keypoints': coords_list,