Progress on the integration of sports2D & Real-time (#139)

* Renamed an internal variable move save_video from pose to project

* Rename of variables

* Start importing from sports2d

* setup_capture_directories import

* rename of display_detectiob

* Add deprecated warning message for display_detection

* Loop most import from sports2d

* Filed reorganized

* Fix variable initiation

* Move function to sports2d

* Fixed imports
TODO: fix file organisation

* update for webcam usage

* begin of parralelisation

* Advancement on parallel process

* Skeletons from sports2d

* Creation of the new process

* Combined display

* Forgot in commit

* Advancement on video connexion stabilisation

* Code simplified

* code simplififcation

* fixed multiple issues

* Progress on webcam connexion

* Update for thread managment

* Fix codec

* Progress on webcam connection

* fix display issues

* Optimisation attempt

* fix pose_tracker initiation

* blocking process while searching for webcam

* Common process

* Improve code stability

* try to fix video

* Code simplification and working on debug

* code simplifications

* fix return fonction issue

* Still try to fix issue of frames skipped

* Progress on new process

* Fix frame ixd number

* frame range fix

* move frame range
This commit is contained in:
Laizo 2024-11-15 17:30:43 +01:00 committed by GitHub
parent 38246aaac6
commit 3d6dbfc6d5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 542 additions and 939 deletions

View File

@ -29,11 +29,17 @@ frame_range = [] # For example [10,300], or [] for all frames.
## For example if you want to analyze from 0.1 to 2 seconds with a 60 fps frame rate, ## For example if you want to analyze from 0.1 to 2 seconds with a 60 fps frame rate,
## frame_range = [0.1, 2.0]*frame_rate = [6, 120] ## frame_range = [0.1, 2.0]*frame_rate = [6, 120]
save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images']
exclude_from_batch = [] # List of trials to be excluded from batch analysis, ['<participant_dir/trial_dir>', 'etc']. exclude_from_batch = [] # List of trials to be excluded from batch analysis, ['<participant_dir/trial_dir>', 'etc'].
# e.g. ['S00_P00_Participant/S00_P00_T00_StaticTrial', 'S00_P00_Participant/S00_P00_T01_BalancingTrial'] # e.g. ['S00_P00_Participant/S00_P00_T00_StaticTrial', 'S00_P00_Participant/S00_P00_T01_BalancingTrial']
[pose] [pose]
vid_img_extension = 'mp4' # any video or image extension # Webcam parameters
webcam_ids = 0 # your webcam id 0, or [0, 1, ...] (0 is default)
input_size = [1280, 720] # [W, H]. Lower resolution will be faster but less precise.
vid_img_extension = 'mp4' # any video or image extension # 'webcam' for webcam
pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body) pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body)
# /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
#With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file
@ -44,9 +50,8 @@ pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_1
mode = 'balanced' # 'lightweight', 'balanced', 'performance' mode = 'balanced' # 'lightweight', 'balanced', 'performance'
det_frequency = 100 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames). det_frequency = 100 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames).
# Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate. # Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate.
display_detection = false show_realtime_results = false
overwrite_pose = false # set to false if you don't want to recalculate pose estimation when it has already been done overwrite_pose = false # set to false if you don't want to recalculate pose estimation when it has already been done
save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images']
output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now

View File

@ -45,7 +45,7 @@
# det_frequency = 100 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames). # det_frequency = 100 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames).
# # Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate. # # Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate.
# # overwrite_pose = true # set to false if you don't want to recalculate pose estimation when it has already been done # # overwrite_pose = true # set to false if you don't want to recalculate pose estimation when it has already been done
# display_detection = true # show_realtime_results = true
# save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images'] # save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images']
# output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now # output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now

View File

@ -45,7 +45,7 @@ participant_mass = [70.0, 63.5] # kg # Only used for marker augmentation and sca
# det_frequency = 100 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames). # det_frequency = 100 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames).
# # Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate. # # Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate.
# # overwrite_pose = false # set to false if you don't want to recalculate pose estimation when it has already been done # # overwrite_pose = false # set to false if you don't want to recalculate pose estimation when it has already been done
# display_detection = true # show_realtime_results = true
# save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images'] # save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images']
# output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now # output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now

View File

@ -29,11 +29,17 @@ frame_range = [] # For example [10,300], or [] for all frames.
## For example if you want to analyze from 0.1 to 2 seconds with a 60 fps frame rate, ## For example if you want to analyze from 0.1 to 2 seconds with a 60 fps frame rate,
## frame_range = [0.1, 2.0]*frame_rate = [6, 120] ## frame_range = [0.1, 2.0]*frame_rate = [6, 120]
save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images']
exclude_from_batch = [] # List of trials to be excluded from batch analysis, ['<participant_dir/trial_dir>', 'etc']. exclude_from_batch = [] # List of trials to be excluded from batch analysis, ['<participant_dir/trial_dir>', 'etc'].
# e.g. ['S00_P00_Participant/S00_P00_T00_StaticTrial', 'S00_P00_Participant/S00_P00_T01_BalancingTrial'] # e.g. ['S00_P00_Participant/S00_P00_T00_StaticTrial', 'S00_P00_Participant/S00_P00_T01_BalancingTrial']
[pose] [pose]
vid_img_extension = 'mp4' # any video or image extension # Webcam parameters
webcam_ids = 0 # your webcam id 0, or [0, 1, ...] (0 is default)
input_size = [1280, 720] # [W, H]. Lower resolution will be faster but less precise.
vid_img_extension = 'mp4' # any video or image extension # 'webcam' for webcam
pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body) pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body)
# /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
#With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file
@ -44,9 +50,8 @@ pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_1
mode = 'balanced' # 'lightweight', 'balanced', 'performance' mode = 'balanced' # 'lightweight', 'balanced', 'performance'
det_frequency = 1 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames). det_frequency = 1 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames).
# Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate. # Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate.
display_detection = true show_realtime_results = true
overwrite_pose = false # set to false if you don't want to recalculate pose estimation when it has already been done overwrite_pose = false # set to false if you don't want to recalculate pose estimation when it has already been done
save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images']
output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now

View File

@ -22,18 +22,24 @@ multi_person = false # true for trials with multiple participants. If false, onl
participant_height = 1.72 # m # float if single person, list of float if multi-person (same order as the Static trials) # Only used for marker augmentation participant_height = 1.72 # m # float if single person, list of float if multi-person (same order as the Static trials) # Only used for marker augmentation
participant_mass = 70.0 # kg # Only used for marker augmentation and scaling participant_mass = 70.0 # kg # Only used for marker augmentation and scaling
frame_rate = 'auto' # fps # int or 'auto'. If 'auto', finds from video (or defaults to 60 fps if you work with images) frame_rate = 'auto' # fps # int or 'auto'. If 'auto', finds from video (or defaults to 60 fps if you work with images)
frame_range = [] # For example [10,300], or [] for all frames. frame_range = [] # For example [10,300], or [] for all frames.
## If cameras are not synchronized, designates the frame range of the camera with the shortest recording time ## If cameras are not synchronized, designates the frame range of the camera with the shortest recording time
## N.B.: If you want a time range instead, use frame_range = time_range * frame_rate ## N.B.: If you want a time range instead, use frame_range = time_range * frame_rate
## For example if you want to analyze from 0.1 to 2 seconds with a 60 fps frame rate, ## For example if you want to analyze from 0.1 to 2 seconds with a 60 fps frame rate,
## frame_range = [0.1, 2.0]*frame_rate = [6, 120] ## frame_range = [0.1, 2.0]*frame_rate = [6, 120]
save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images']
exclude_from_batch = [] # List of trials to be excluded from batch analysis, ['<participant_dir/trial_dir>', 'etc']. exclude_from_batch = [] # List of trials to be excluded from batch analysis, ['<participant_dir/trial_dir>', 'etc'].
# e.g. ['S00_P00_Participant/S00_P00_T00_StaticTrial', 'S00_P00_Participant/S00_P00_T01_BalancingTrial'] # e.g. ['S00_P00_Participant/S00_P00_T00_StaticTrial', 'S00_P00_Participant/S00_P00_T01_BalancingTrial']
[pose] [pose]
vid_img_extension = 'mp4' # any video or image extension # Webcam parameters
webcam_ids = 0 # your webcam id 0, or [0, 1, ...] (0 is default)
input_size = [1280, 720] # [W, H]. Lower resolution will be faster but less precise.
vid_img_extension = 'mp4' # any video or image extension # 'webcam' for webcam
pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body) pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body)
# /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
#With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file
@ -44,9 +50,8 @@ pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_1
mode = 'balanced' # 'lightweight', 'balanced', 'performance' mode = 'balanced' # 'lightweight', 'balanced', 'performance'
det_frequency = 1 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames). det_frequency = 1 # Run person detection only every N frames, and inbetween track previously detected bounding boxes (keypoint detection is still run on all frames).
# Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate. # Equal to or greater than 1, can be as high as you want in simple uncrowded cases. Much faster, but might be less accurate.
display_detection = true show_realtime_results = true
overwrite_pose = false # set to false if you don't want to recalculate pose estimation when it has already been done overwrite_pose = false # set to false if you don't want to recalculate pose estimation when it has already been done
save_video = 'to_video' # 'to_video' or 'to_images', 'none', or ['to_video', 'to_images']
output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a list of them # /!\ only 'openpose' is supported for now

View File

@ -52,6 +52,8 @@ from copy import deepcopy
import logging, logging.handlers import logging, logging.handlers
from datetime import datetime from datetime import datetime
from Sports2D.Utilities.config import setup_logging
## AUTHORSHIP INFORMATION ## AUTHORSHIP INFORMATION
__author__ = "David Pagnon" __author__ = "David Pagnon"
@ -65,15 +67,6 @@ __status__ = "Development"
## FUNCTIONS ## FUNCTIONS
def setup_logging(session_dir):
'''
Create logging file and stream handlers
'''
logging.basicConfig(format='%(message)s', level=logging.INFO,
handlers = [logging.handlers.TimedRotatingFileHandler(os.path.join(session_dir, 'logs.txt'), when='D', interval=7), logging.StreamHandler()])
def recursive_update(dict_to_update, dict_with_new_values): def recursive_update(dict_to_update, dict_with_new_values):
''' '''
Update nested dictionaries without overwriting existing keys in any level of nesting Update nested dictionaries without overwriting existing keys in any level of nesting

View File

@ -118,7 +118,7 @@ class TestWorkflow(unittest.TestCase):
os.chdir(project_dir) os.chdir(project_dir)
config_dict.get("project").update({"project_dir":project_dir}) config_dict.get("project").update({"project_dir":project_dir})
config_dict.get("pose").update({"mode":'lightweight'}) config_dict.get("pose").update({"mode":'lightweight'})
config_dict.get("pose").update({"display_detection":False}) config_dict.get("pose").update({"show_realtime_results":False})
config_dict.get("synchronization").update({"display_sync_plots":False}) config_dict.get("synchronization").update({"display_sync_plots":False})
config_dict['filtering']['display_figures'] = False config_dict['filtering']['display_figures'] = False
@ -145,7 +145,7 @@ class TestWorkflow(unittest.TestCase):
os.chdir(project_dir) os.chdir(project_dir)
config_dict.get("project").update({"project_dir":project_dir}) config_dict.get("project").update({"project_dir":project_dir})
config_dict.get("pose").update({"mode":'lightweight'}) config_dict.get("pose").update({"mode":'lightweight'})
config_dict.get("pose").update({"display_detection":False}) config_dict.get("pose").update({"show_realtime_results":False})
config_dict.get("synchronization").update({"display_sync_plots":False}) config_dict.get("synchronization").update({"display_sync_plots":False})
config_dict['filtering']['display_figures'] = False config_dict['filtering']['display_figures'] = False

View File

@ -45,7 +45,7 @@ from anytree import PreOrderIter
import opensim import opensim
from Pose2Sim.common import natural_sort_key, euclidean_distance, trimmed_mean from Pose2Sim.common import natural_sort_key, euclidean_distance, trimmed_mean
from Pose2Sim.skeletons import * from Sports2D.Utilities.skeletons import *
@ -123,15 +123,15 @@ def get_model_path(model_name, osim_setup_dir):
pose_model_file = 'Model_Pose2Sim_Body135.osim' pose_model_file = 'Model_Pose2Sim_Body135.osim'
elif model_name == 'BLAZEPOSE': elif model_name == 'BLAZEPOSE':
pose_model_file = 'Model_Pose2Sim_Blazepose.osim' pose_model_file = 'Model_Pose2Sim_Blazepose.osim'
elif model_name == 'HALPE_26': elif model_name in ('HALPE_26', 'BODY_WITH_FEET'):
pose_model_file = 'Model_Pose2Sim_Halpe26.osim' pose_model_file = 'Model_Pose2Sim_Halpe26.osim'
elif model_name == 'HALPE_68' or model_name == 'HALPE_136': elif model_name in ('HALPE_68', 'HALPE_136'):
pose_model_file = 'Model_Pose2Sim_Halpe68_136.osim' pose_model_file = 'Model_Pose2Sim_Halpe68_136.osim'
elif model_name == 'COCO_133': elif model_name in ('COCO_133', 'WHOLE_BODY'):
pose_model_file = 'Model_Pose2Sim_Coco133.osim' pose_model_file = 'Model_Pose2Sim_Coco133.osim'
# elif model_name == 'COCO' or model_name == 'MPII': # elif model_name == 'COCO' or model_name == 'MPII':
# pose_model_file = 'Model_Pose2Sim_Coco.osim' # pose_model_file = 'Model_Pose2Sim_Coco.osim'
elif model_name == 'COCO_17': elif model_name in ('COCO_17', 'BODY'):
pose_model_file = 'Model_Pose2Sim_Coco17.osim' pose_model_file = 'Model_Pose2Sim_Coco17.osim'
elif model_name == 'LSTM': elif model_name == 'LSTM':
pose_model_file = 'Model_Pose2Sim_LSTM.osim' pose_model_file = 'Model_Pose2Sim_LSTM.osim'
@ -163,15 +163,15 @@ def get_scaling_setup(model_name, osim_setup_dir):
scaling_setup_file = 'Scaling_Setup_Pose2Sim_Body135.xml' scaling_setup_file = 'Scaling_Setup_Pose2Sim_Body135.xml'
elif model_name == 'BLAZEPOSE': elif model_name == 'BLAZEPOSE':
scaling_setup_file = 'Scaling_Setup_Pose2Sim_Blazepose.xml' scaling_setup_file = 'Scaling_Setup_Pose2Sim_Blazepose.xml'
elif model_name == 'HALPE_26': elif model_name in ('HALPE_26', 'BODY_WITH_FEET'):
scaling_setup_file = 'Scaling_Setup_Pose2Sim_Halpe26.xml' scaling_setup_file = 'Scaling_Setup_Pose2Sim_Halpe26.xml'
elif model_name == 'HALPE_68' or model_name == 'HALPE_136': elif model_name in ('HALPE_68', 'HALPE_136'):
scaling_setup_file = 'Scaling_Setup_Pose2Sim_Halpe68_136.xml' scaling_setup_file = 'Scaling_Setup_Pose2Sim_Halpe68_136.xml'
elif model_name == 'COCO_133': elif model_name in ('COCO_133', 'WHOLE_BODY'):
scaling_setup_file = 'Scaling_Setup_Pose2Sim_Coco133.xml' scaling_setup_file = 'Scaling_Setup_Pose2Sim_Coco133.xml'
# elif model_name == 'COCO' or model_name == 'MPII': # elif model_name == 'COCO' or model_name == 'MPII':
# scaling_setup_file = 'Scaling_Setup_Pose2Sim_Coco.xml' # scaling_setup_file = 'Scaling_Setup_Pose2Sim_Coco.xml'
elif model_name == 'COCO_17': elif model_name in ('COCO_17', 'BODY'):
scaling_setup_file = 'Scaling_Setup_Pose2Sim_Coco17.xml' scaling_setup_file = 'Scaling_Setup_Pose2Sim_Coco17.xml'
elif model_name == 'LSTM': elif model_name == 'LSTM':
scaling_setup_file = 'Scaling_Setup_Pose2Sim_LSTM.xml' scaling_setup_file = 'Scaling_Setup_Pose2Sim_LSTM.xml'
@ -203,15 +203,15 @@ def get_IK_Setup(model_name, osim_setup_dir):
ik_setup_file = 'IK_Setup_Pose2Sim_Body135.xml' ik_setup_file = 'IK_Setup_Pose2Sim_Body135.xml'
elif model_name == 'BLAZEPOSE': elif model_name == 'BLAZEPOSE':
ik_setup_file = 'IK_Setup_Pose2Sim_Blazepose.xml' ik_setup_file = 'IK_Setup_Pose2Sim_Blazepose.xml'
elif model_name == 'HALPE_26': elif model_name in ('HALPE_26', 'BODY_WITH_FEET'):
ik_setup_file = 'IK_Setup_Pose2Sim_Halpe26.xml' ik_setup_file = 'IK_Setup_Pose2Sim_Halpe26.xml'
elif model_name == 'HALPE_68' or model_name == 'HALPE_136': elif model_name in ('HALPE_68', 'HALPE_136'):
ik_setup_file = 'IK_Setup_Pose2Sim_Halpe68_136.xml' ik_setup_file = 'IK_Setup_Pose2Sim_Halpe68_136.xml'
elif model_name == 'COCO_133': elif model_name in ('COCO_133', 'WHOLE_BODY'):
ik_setup_file = 'IK_Setup_Pose2Sim_Coco133.xml' ik_setup_file = 'IK_Setup_Pose2Sim_Coco133.xml'
# elif model_name == 'COCO' or model_name == 'MPII': # elif model_name == 'COCO' or model_name == 'MPII':
# ik_setup_file = 'IK_Setup_Pose2Sim_Coco.xml' # ik_setup_file = 'IK_Setup_Pose2Sim_Coco.xml'
elif model_name == 'COCO_17': elif model_name in ('COCO_17', 'BODY'):
ik_setup_file = 'IK_Setup_Pose2Sim_Coco17.xml' ik_setup_file = 'IK_Setup_Pose2Sim_Coco17.xml'
elif model_name == 'LSTM': elif model_name == 'LSTM':
ik_setup_file = 'IK_Setup_Pose2Sim_LSTM.xml' ik_setup_file = 'IK_Setup_Pose2Sim_LSTM.xml'

View File

@ -47,7 +47,7 @@ import logging
from Pose2Sim.common import retrieve_calib_params, computeP, weighted_triangulation, \ from Pose2Sim.common import retrieve_calib_params, computeP, weighted_triangulation, \
reprojection, euclidean_distance, sort_stringlist_by_last_number reprojection, euclidean_distance, sort_stringlist_by_last_number
from Pose2Sim.skeletons import * from Sports2D.Utilities.skeletons import *
## AUTHORSHIP INFORMATION ## AUTHORSHIP INFORMATION
@ -638,7 +638,7 @@ def associate_all(config_dict):
# if single trial # if single trial
session_dir = session_dir if 'Config.toml' in os.listdir(session_dir) else os.getcwd() session_dir = session_dir if 'Config.toml' in os.listdir(session_dir) else os.getcwd()
multi_person = config_dict.get('project').get('multi_person') multi_person = config_dict.get('project').get('multi_person')
pose_model = config_dict.get('pose').get('pose_model') pose_model = config_dict.get('pose').get('pose_model').upper()
tracked_keypoint = config_dict.get('personAssociation').get('single_person').get('tracked_keypoint') tracked_keypoint = config_dict.get('personAssociation').get('single_person').get('tracked_keypoint')
min_cameras_for_triangulation = config_dict.get('triangulation').get('min_cameras_for_triangulation') min_cameras_for_triangulation = config_dict.get('triangulation').get('min_cameras_for_triangulation')
reconstruction_error_threshold = config_dict.get('personAssociation').get('multi_person').get('reconstruction_error_threshold') reconstruction_error_threshold = config_dict.get('personAssociation').get('multi_person').get('reconstruction_error_threshold')

View File

@ -36,13 +36,19 @@ import os
import glob import glob
import json import json
import logging import logging
import itertools as it
from tqdm import tqdm
import numpy as np
import cv2 import cv2
import time
import threading
import queue
import numpy as np
from datetime import datetime
from pathlib import Path
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed
from rtmlib import PoseTracker, Body, Wholebody, BodyWithFeet, draw_skeleton from rtmlib import draw_skeleton
from Pose2Sim.common import natural_sort_key, min_with_single_indices, euclidean_distance from Sports2D.Utilities.config import setup_pose_tracker, setup_capture_directories
from Sports2D.Utilities.video_management import track_people
## AUTHORSHIP INFORMATION ## AUTHORSHIP INFORMATION
@ -57,6 +63,471 @@ __status__ = "Development"
## FUNCTIONS ## FUNCTIONS
def rtm_estimator(config_dict):
'''
Estimate pose from webcams, video files, or a folder of images, and write the results to JSON files, videos, and/or images.
Results can optionally be displayed in real-time.
Supported models: HALPE_26 (default, body and feet), COCO_133 (body, feet, hands), COCO_17 (body)
Supported modes: lightweight, balanced, performance (edit paths at rtmlib/tools/solutions if you need another detection or pose models)
Optionally gives consistent person ID across frames (slower but good for 2D analysis)
Optionally runs detection every n frames and in between tracks points (faster but less accurate).
If a valid CUDA installation is detected, uses the GPU with the ONNXRuntime backend. Otherwise, uses the CPU with the OpenVINO backend.
INPUTS:
- videos or image folders from the video directory
- a Config.toml file
OUTPUTS:
- JSON files with the detected keypoints and confidence scores in the OpenPose format
- Optionally, videos and/or image files with the detected keypoints
'''
# Read config
output_dir = config_dict['project']['project_dir']
source_dir = os.path.join(output_dir, 'videos')
pose_dir = os.path.join(output_dir, 'pose')
show_realtime_results = config_dict['pose'].get('show_realtime_results', False)
vid_img_extension = config_dict['pose']['vid_img_extension']
webcam_ids = config_dict['pose'].get('webcam_ids', [])
overwrite_pose = config_dict['pose'].get('overwrite_pose', False)
# Check if pose estimation has already been done
if os.path.exists(pose_dir) and not overwrite_pose:
logging.info('Skipping pose estimation as it has already been done. Set overwrite_pose to true in Config.toml if you want to run it again.')
return
elif overwrite_pose:
logging.info('Overwriting previous pose estimation.')
logging.info('Estimating pose...')
# Prepare list of sources (webcams, videos, image folders)
sources = []
if vid_img_extension == 'webcam':
sources.extend({'type': 'webcam', 'id': cam_id, 'path': cam_id} for cam_id in (webcam_ids if isinstance(webcam_ids, list) else [webcam_ids]))
else:
video_files = [str(f) for f in Path(source_dir).rglob('*' + vid_img_extension) if f.is_file()]
sources.extend({'type': 'video', 'id': idx, 'path': video_path} for idx, video_path in enumerate(video_files))
image_dirs = [str(f) for f in Path(source_dir).iterdir() if f.is_dir()]
sources.extend({'type': 'images', 'id': idx, 'path': folder} for idx, folder in enumerate(image_dirs, start=len(video_files)))
if not sources:
raise FileNotFoundError(f'No Webcams or no media files found in {source_dir}.')
process_functions = {}
for source in sources:
if source['type'] == 'webcam':
process_functions[source['id']] = process_single_frame
else:
process_functions[source['id']] = process_single_frame
logging.info(f'Processing sources: {sources}')
# Initialize pose trackers
pose_trackers = {source['id']: setup_pose_tracker(config_dict['pose']['det_frequency'], config_dict['pose']['mode'], config_dict['pose']['pose_model']) for source in sources}
# Create display queue
display_queue = queue.Queue()
# Initialize streams
stream_manager = StreamManager(sources, config_dict, pose_trackers, display_queue, output_dir, process_functions)
stream_manager.start()
# Start display thread only if show_realtime_results is True
display_thread = None
if show_realtime_results:
input_size = config_dict['pose'].get('input_size', (640, 480))
display_thread = CombinedDisplayThread(sources, input_size, display_queue)
display_thread.start()
try:
while not stream_manager.stopped:
if display_thread and display_thread.stopped:
break
time.sleep(0.1)
except KeyboardInterrupt:
logging.info("Processing interrupted by user.")
finally:
stream_manager.stop()
if display_thread:
display_thread.stop()
display_thread.join()
def process_single_frame(config_dict, frame, source_id, frame_idx, output_dirs, pose_tracker, multi_person, save_video, save_images, show_realtime_results, out_vid, output_format):
'''
Processes a single frame from a source.
Args:
config_dict (dict): Configuration dictionary.
frame (ndarray): Frame image.
source_id (int): Source ID.
frame_idx (int): Frame index.
output_dirs (tuple): Output directories.
pose_tracker: Pose tracker object.
multi_person (bool): Whether to track multiple persons.
output_format (str): Output format.
save_video (bool): Whether to save the output video.
save_images (bool): Whether to save output images.
show_realtime_results (bool): Whether to display results in real time.
out_vid (cv2.VideoWriter): Video writer object.
Returns:
tuple: (source_id, img_show, out_vid)
'''
output_dir, output_dir_name, img_output_dir, json_output_dir, output_video_path = output_dirs
# Perform pose estimation on the frame
keypoints, scores = pose_tracker(frame)
# Tracking people IDs across frames (if needed)
keypoints, scores, _ = track_people(
keypoints, scores, multi_person, None, None, pose_tracker
)
if 'openpose' in output_format:
json_file_path = os.path.join(json_output_dir, f'{output_dir_name}_{frame_idx:06d}.json')
save_to_openpose(json_file_path, keypoints, scores)
# Draw skeleton on the frame
img_show = draw_skeleton(frame.copy(), keypoints, scores, kpt_thr=0.1)
# Save video and images
if save_video and out_vid:
out_vid.write(img_show)
if save_images:
cv2.imwrite(os.path.join(img_output_dir, f'{output_dir_name}_{frame_idx:06d}.jpg'), img_show)
return source_id, img_show, out_vid
class CombinedDisplayThread(threading.Thread):
'''
Thread for displaying combined images to avoid thread-safety issues with OpenCV.
'''
def __init__(self, sources, input_size, display_queue):
super().__init__(daemon=True)
self.display_queue = display_queue
self.stopped = False
self.sources = sources
self.input_size = input_size
self.window_name = "Combined Feeds"
self.grid_size = self.calculate_grid_size(len(sources))
self.img_placeholder = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8)
self.frames = {source['id']: self.get_placeholder_frame(source['id'], 'Not Connected') for source in sources}
self.source_ids = [source['id'] for source in self.sources]
def run(self):
while not self.stopped:
try:
frames_dict = self.display_queue.get(timeout=0.1)
self.frames.update({source_id: frames_dict.get(source_id, self.frames[source_id]) for source_id in self.source_ids})
self.display_combined_image()
except queue.Empty:
continue
def display_combined_image(self):
combined_image = self.combine_frames()
if combined_image is not None:
cv2.imshow(self.window_name, combined_image)
if cv2.waitKey(1) & 0xFF in [ord('q'), 27]:
logging.info("Display window closed by user.")
self.stopped = True
def combine_frames(self):
resized_frames = [cv2.resize(frame, self.input_size) if frame.shape[:2] != self.input_size else frame
for frame in (self.frames.get(source_id, self.img_placeholder) for source_id in self.source_ids)]
rows = [np.hstack(resized_frames[i:i + self.grid_size[1]]) for i in range(0, len(resized_frames), self.grid_size[1])]
return np.vstack(rows)
def calculate_grid_size(self, num_sources):
cols = int(np.ceil(np.sqrt(num_sources)))
rows = int(np.ceil(num_sources / cols))
return (rows, cols)
def stop(self):
self.stopped = True
def get_placeholder_frame(self, source_id, message):
return cv2.putText(self.img_placeholder, f'Source {source_id}: {message}', (50, self.input_size[1] // 2),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)
def __del__(self):
cv2.destroyAllWindows()
class StreamManager:
def __init__(self, sources, config_dict, pose_trackers, display_queue, output_dir, process_functions):
self.sources = sources
self.config_dict = config_dict
self.pose_trackers = pose_trackers
self.display_queue = display_queue
self.output_dir = output_dir
self.process_functions = process_functions
self.executor = ThreadPoolExecutor(max_workers=len(sources) * 2)
self.active_streams = set()
self.streams, self.outputs, self.out_videos = {}, {}, {}
self.initialize_streams_and_outputs()
self.stopped = False
def initialize_streams_and_outputs(self):
for source in self.sources:
stream = GenericStream(source, self.config_dict)
self.streams[source['id']] = stream
self.outputs[source['id']] = setup_capture_directories(
source['path'], self.output_dir, 'to_images' in self.config_dict['project'].get('save_video', []))
self.out_videos[source['id']] = None
self.active_streams.add(source['id'])
def start(self):
for source in self.sources:
self.streams[source['id']].start()
threading.Thread(target=self.process_streams, daemon=True).start()
def process_streams(self):
logging.info("Début du traitement des flux")
while not self.stopped and any(stream.stopped is False for stream in self.streams.values()):
frames = {}
for source_id, stream in self.streams.items():
if not stream.stopped:
frame_idx, frame = stream.read()
if frame is not None:
frames[source_id] = (frame_idx, frame)
if frames:
futures = {self.executor.submit(self.process_frame, source_id, frame_idx, frame): source_id
for source_id, (frame_idx, frame) in frames.items()}
self.handle_future_results(futures)
else:
logging.info("Aucune frame disponible actuellement, attente...")
time.sleep(0.1)
def process_frame(self, source_id, frame_idx, frame):
logging.info(f"Processing frame {frame_idx} from source {source_id}")
process_function = self.process_functions.get(source_id)
return process_function(self.config_dict,
frame,
source_id,
frame_idx,
self.outputs[source_id],
self.pose_trackers[source_id],
self.config_dict['project'].get('multi_person'),
'to_video' in self.config_dict['project'].get('save_video', []),
'to_images' in self.config_dict['project'].get('save_video', []),
self.config_dict['pose'].get('show_realtime_results', False),
self.out_videos.get(source_id),
self.config_dict['pose'].get('output_format', 'openpose'))
def handle_future_results(self, futures):
for future in as_completed(futures):
source_id = futures[future]
try:
result = future.result()
source_id, processed_frame, out_vid = result
self.display_queue.put({source_id: processed_frame})
except Exception as e:
logging.error(f"Error processing frame from source {source_id}: {e}")
def initialize_video_writer(self, img_show, source_id):
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
H, W = img_show.shape[:2]
fps = self.config_dict['pose'].get('fps', 30)
output_video_path = f"{self.outputs[source_id]}/{source_id}_output.mp4"
return cv2.VideoWriter(output_video_path, fourcc, fps, (W, H))
def stop(self):
self.stopped = True
for stream in self.streams.values():
stream.stop()
self.executor.shutdown()
for out_vid in self.out_videos.values():
if out_vid is not None:
out_vid.release()
class GenericStream(threading.Thread):
def __init__(self, source, config_dict):
super().__init__(daemon=True)
self.source = source
self.input_size = config_dict['pose'].get('input_size', (640, 480))
self.image_extension = config_dict['pose']['vid_img_extension']
self.frame_ranges = self.parse_frame_ranges(config_dict['project'].get('frame_range', []))
self.stopped = False
self.frame_queue = queue.Queue()
self.lock = threading.Lock()
self.frame_idx = 0
self.total_frames = 0
self.cap = None
self.image_files = []
self.image_index = 0
self.pbar = None
def parse_frame_ranges(self, frame_ranges):
if len(frame_ranges) == 2 and all(isinstance(x, int) for x in frame_ranges):
start_frame, end_frame = frame_ranges
return set(range(start_frame, end_frame + 1))
elif len(frame_ranges) == 0:
return set(range(0, int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))))
else:
return set(frame_ranges)
def run(self):
if self.source['type'] == 'webcam':
self.setup_webcam()
elif self.source['type'] == 'video':
self.open_video()
elif self.source['type'] == 'images':
self.load_images()
else:
logging.error(f"Unknown source type: {self.source['type']}")
self.stopped = True
return
while not self.stopped:
frame = self.capture_frame()
if frame is not None:
frame = cv2.resize(frame, self.input_size)
self.frame_queue.put((self.frame_idx, frame))
if self.pbar:
self.pbar.update(1)
self.frame_idx += 1
else:
time.sleep(0.1)
def setup_webcam(self):
self.open_webcam()
time.sleep(1) # Give time for the webcam to initialize
def open_video(self):
self.cap = cv2.VideoCapture(self.source['path'])
if not self.cap.isOpened():
logging.error(f"Cannot open video file {self.source['path']}")
self.stopped = True
return
self.total_frames = len(self.frame_ranges)
self.setup_progress_bar()
def load_images(self):
path_pattern = os.path.join(self.source['path'], f'*{self.image_extension}')
self.image_files = sorted(glob.glob(path_pattern))
self.total_frames = len(self.image_files)
self.setup_progress_bar()
def capture_frame(self):
frame = None
if self.source['type'] == 'webcam':
frame = self.read_webcam_frame()
elif self.source['type'] == 'video':
if self.frame_ranges and self.frame_idx not in self.frame_ranges:
self.cap.set(cv2.CAP_PROP_POS_FRAMES, self.frame_idx + 1)
self.frame_idx += 1
return None
ret, frame = self.cap.read()
if not ret:
logging.info(f"End of video {self.source['path']}")
self.stopped = True
if self.pbar:
self.pbar.close()
return None
elif self.source['type'] == 'images' and self.image_index < len(self.image_files):
frame = cv2.imread(self.image_files[self.image_index])
self.image_index += 1
return frame
def open_webcam(self):
self.connected = False
try:
self.cap = cv2.VideoCapture(int(self.source['id']), cv2.CAP_DSHOW)
if self.cap.isOpened():
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, self.input_size[0])
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, self.input_size[1])
logging.info(f"Webcam {self.source['id']} opened.")
self.connected = True
else:
logging.error(f"Cannot open webcam {self.source['id']}.")
self.cap = None
except Exception as e:
logging.error(f"Exception occurred while opening webcam {self.source['id']}: {e}")
self.cap = None
def read_webcam_frame(self):
if self.cap is None or not self.cap.isOpened():
logging.warning(f"Webcam {self.source['id']} not opened. Attempting to open...")
self.open_webcam()
if self.cap is None or not self.cap.isOpened():
with self.lock:
self.frame = None
return None
ret, frame = self.cap.read()
if not ret or frame is None:
logging.warning(f"Failed to read frame from webcam {self.source['id']}.")
self.cap.release()
self.cap = None
with self.lock:
self.frame = None
return None
return frame
def read(self):
try:
return self.frame_queue.get(timeout=0.1)
except queue.Empty:
return None, None
def stop(self):
self.stopped = True
if self.cap:
self.cap.release()
if self.pbar:
self.pbar.close()
def setup_progress_bar(self):
self.pbar = tqdm(total=self.total_frames, desc=f'Processing {os.path.basename(str(self.source["path"]))}', position=self.source['id'])
def setup_capture_directories(source_path, output_dir, save_images):
'''
Set up output directories for saving images and JSON files.
Returns:
tuple: (output_dir, output_dir_name, img_output_dir, json_output_dir, output_video_path)
'''
if isinstance(source_path, int):
# Handle webcam source
current_date = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir_name = f'webcam{source_path}_{current_date}'
else:
output_dir_name = os.path.basename(os.path.splitext(str(source_path))[0])
# Define the full path for the output directory
output_dir_full = os.path.abspath(os.path.join(output_dir, "pose"))
# Create output directories if they do not exist
if not os.path.isdir(output_dir_full):
os.makedirs(output_dir_full)
# Prepare directories for images and JSON outputs
img_output_dir = os.path.join(output_dir_full, f'{output_dir_name}_img')
json_output_dir = os.path.join(output_dir_full, f'{output_dir_name}_json')
if save_images and not os.path.isdir(img_output_dir):
os.makedirs(img_output_dir)
if not os.path.isdir(json_output_dir):
os.makedirs(json_output_dir)
# Define the path for the output video file
output_video_path = os.path.join(output_dir_full, f'{output_dir_name}_pose.mp4')
return output_dir, output_dir_name, img_output_dir, json_output_dir, output_video_path
def save_to_openpose(json_file_path, keypoints, scores): def save_to_openpose(json_file_path, keypoints, scores):
''' '''
Save the keypoints and scores to a JSON file in the OpenPose format Save the keypoints and scores to a JSON file in the OpenPose format
@ -72,419 +543,26 @@ def save_to_openpose(json_file_path, keypoints, scores):
# Prepare keypoints with confidence scores for JSON output # Prepare keypoints with confidence scores for JSON output
nb_detections = len(keypoints) nb_detections = len(keypoints)
# print('results: ', keypoints, scores)
detections = [] detections = []
for i in range(nb_detections): # nb of detected people for i in range(nb_detections): # Number of detected people
keypoints_with_confidence_i = [] keypoints_with_confidence_i = []
for kp, score in zip(keypoints[i], scores[i]): for kp, score in zip(keypoints[i], scores[i]):
keypoints_with_confidence_i.extend([kp[0].item(), kp[1].item(), score.item()]) keypoints_with_confidence_i.extend([kp[0].item(), kp[1].item(), score.item()])
detections.append({ detections.append({
"person_id": [-1], "person_id": [-1],
"pose_keypoints_2d": keypoints_with_confidence_i, "pose_keypoints_2d": keypoints_with_confidence_i,
"face_keypoints_2d": [], "face_keypoints_2d": [],
"hand_left_keypoints_2d": [], "hand_left_keypoints_2d": [],
"hand_right_keypoints_2d": [], "hand_right_keypoints_2d": [],
"pose_keypoints_3d": [], "pose_keypoints_3d": [],
"face_keypoints_3d": [], "face_keypoints_3d": [],
"hand_left_keypoints_3d": [], "hand_left_keypoints_3d": [],
"hand_right_keypoints_3d": [] "hand_right_keypoints_3d": []
}) })
# Create JSON output structure # Create JSON output structure
json_output = {"version": 1.3, "people": detections} json_output = {"version": 1.3, "people": detections}
# Save JSON output for each frame # Save JSON output for each frame
json_output_dir = os.path.abspath(os.path.join(json_file_path, '..'))
if not os.path.isdir(json_output_dir): os.makedirs(json_output_dir)
with open(json_file_path, 'w') as json_file: with open(json_file_path, 'w') as json_file:
json.dump(json_output, json_file) json.dump(json_output, json_file)
def sort_people_sports2d(keyptpre, keypt, scores):
'''
Associate persons across frames (Pose2Sim method)
Persons' indices are sometimes swapped when changing frame
A person is associated to another in the next frame when they are at a small distance
N.B.: Requires min_with_single_indices and euclidian_distance function (see common.py)
INPUTS:
- keyptpre: array of shape K, L, M with K the number of detected persons,
L the number of detected keypoints, M their 2D coordinates
- keypt: idem keyptpre, for current frame
- score: array of shape K, L with K the number of detected persons,
L the confidence of detected keypoints
OUTPUTS:
- sorted_prev_keypoints: array with reordered persons with values of previous frame if current is empty
- sorted_keypoints: array with reordered persons
- sorted_scores: array with reordered scores
'''
# Generate possible person correspondences across frames
if len(keyptpre) < len(keypt):
keyptpre = np.concatenate((keyptpre, np.full((len(keypt)-len(keyptpre), keypt.shape[1], 2), np.nan)))
if len(keypt) < len(keyptpre):
keypt = np.concatenate((keypt, np.full((len(keyptpre)-len(keypt), keypt.shape[1], 2), np.nan)))
scores = np.concatenate((scores, np.full((len(keyptpre)-len(scores), scores.shape[1]), np.nan)))
personsIDs_comb = sorted(list(it.product(range(len(keyptpre)), range(len(keypt)))))
# Compute distance between persons from one frame to another
frame_by_frame_dist = []
for comb in personsIDs_comb:
frame_by_frame_dist += [euclidean_distance(keyptpre[comb[0]],keypt[comb[1]])]
frame_by_frame_dist = np.mean(frame_by_frame_dist, axis=1)
# Sort correspondences by distance
_, _, associated_tuples = min_with_single_indices(frame_by_frame_dist, personsIDs_comb)
# Associate points to same index across frames, nan if no correspondence
sorted_keypoints, sorted_scores = [], []
for i in range(len(keyptpre)):
id_in_old = associated_tuples[:,1][associated_tuples[:,0] == i].tolist()
if len(id_in_old) > 0:
sorted_keypoints += [keypt[id_in_old[0]]]
sorted_scores += [scores[id_in_old[0]]]
else:
sorted_keypoints += [keypt[i]]
sorted_scores += [scores[i]]
sorted_keypoints, sorted_scores = np.array(sorted_keypoints), np.array(sorted_scores)
# Keep track of previous values even when missing for more than one frame
sorted_prev_keypoints = np.where(np.isnan(sorted_keypoints) & ~np.isnan(keyptpre), keyptpre, sorted_keypoints)
return sorted_prev_keypoints, sorted_keypoints, sorted_scores
def process_video(video_path, pose_tracker, output_format, save_video, save_images, display_detection, frame_range, multi_person):
'''
Estimate pose from a video file
INPUTS:
- video_path: str. Path to the input video file
- pose_tracker: PoseTracker. Initialized pose tracker object from RTMLib
- output_format: str. Output format for the pose estimation results ('openpose', 'mmpose', 'deeplabcut')
- save_video: bool. Whether to save the output video
- save_images: bool. Whether to save the output images
- display_detection: bool. Whether to show real-time visualization
- frame_range: list. Range of frames to process
OUTPUTS:
- JSON files with the detected keypoints and confidence scores in the OpenPose format
- if save_video: Video file with the detected keypoints and confidence scores drawn on the frames
- if save_images: Image files with the detected keypoints and confidence scores drawn on the frames
'''
try:
cap = cv2.VideoCapture(video_path)
cap.read()
if cap.read()[0] == False:
raise
except:
raise NameError(f"{video_path} is not a video. Images must be put in one subdirectory per camera.")
pose_dir = os.path.abspath(os.path.join(video_path, '..', '..', 'pose'))
if not os.path.isdir(pose_dir): os.makedirs(pose_dir)
video_name_wo_ext = os.path.splitext(os.path.basename(video_path))[0]
json_output_dir = os.path.join(pose_dir, f'{video_name_wo_ext}_json')
output_video_path = os.path.join(pose_dir, f'{video_name_wo_ext}_pose.mp4')
img_output_dir = os.path.join(pose_dir, f'{video_name_wo_ext}_img')
if save_video: # Set up video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video
fps = cap.get(cv2.CAP_PROP_FPS) # Get the frame rate from the raw video
W, H = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Get the width and height from the raw video
out = cv2.VideoWriter(output_video_path, fourcc, fps, (W, H)) # Create the output video file
if display_detection:
cv2.namedWindow(f"Pose Estimation {os.path.basename(video_path)}", cv2.WINDOW_NORMAL + cv2.WINDOW_KEEPRATIO)
frame_idx = 0
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
f_range = [[total_frames] if frame_range==[] else frame_range][0]
with tqdm(total=total_frames, desc=f'Processing {os.path.basename(video_path)}') as pbar:
while cap.isOpened():
# print('\nFrame ', frame_idx)
success, frame = cap.read()
if not success:
break
if frame_idx in range(*f_range):
# Perform pose estimation on the frame
keypoints, scores = pose_tracker(frame)
# Tracking people IDs across frames
if multi_person:
if 'prev_keypoints' not in locals(): prev_keypoints = keypoints
prev_keypoints, keypoints, scores = sort_people_sports2d(prev_keypoints, keypoints, scores)
# Save to json
if 'openpose' in output_format:
json_file_path = os.path.join(json_output_dir, f'{video_name_wo_ext}_{frame_idx:06d}.json')
save_to_openpose(json_file_path, keypoints, scores)
# Draw skeleton on the frame
if display_detection or save_video or save_images:
img_show = frame.copy()
img_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.1) # maybe change this value if 0.1 is too low
if display_detection:
cv2.imshow(f"Pose Estimation {os.path.basename(video_path)}", img_show)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if save_video:
out.write(img_show)
if save_images:
if not os.path.isdir(img_output_dir): os.makedirs(img_output_dir)
cv2.imwrite(os.path.join(img_output_dir, f'{video_name_wo_ext}_{frame_idx:06d}.jpg'), img_show)
frame_idx += 1
pbar.update(1)
cap.release()
if save_video:
out.release()
logging.info(f"--> Output video saved to {output_video_path}.")
if save_images:
logging.info(f"--> Output images saved to {img_output_dir}.")
if display_detection:
cv2.destroyAllWindows()
def process_images(image_folder_path, vid_img_extension, pose_tracker, output_format, fps, save_video, save_images, display_detection, frame_range, multi_person):
'''
Estimate pose estimation from a folder of images
INPUTS:
- image_folder_path: str. Path to the input image folder
- vid_img_extension: str. Extension of the image files
- pose_tracker: PoseTracker. Initialized pose tracker object from RTMLib
- output_format: str. Output format for the pose estimation results ('openpose', 'mmpose', 'deeplabcut')
- save_video: bool. Whether to save the output video
- save_images: bool. Whether to save the output images
- display_detection: bool. Whether to show real-time visualization
- frame_range: list. Range of frames to process
OUTPUTS:
- JSON files with the detected keypoints and confidence scores in the OpenPose format
- if save_video: Video file with the detected keypoints and confidence scores drawn on the frames
- if save_images: Image files with the detected keypoints and confidence scores drawn on the frames
'''
pose_dir = os.path.abspath(os.path.join(image_folder_path, '..', '..', 'pose'))
if not os.path.isdir(pose_dir): os.makedirs(pose_dir)
json_output_dir = os.path.join(pose_dir, f'{os.path.basename(image_folder_path)}_json')
output_video_path = os.path.join(pose_dir, f'{os.path.basename(image_folder_path)}_pose.mp4')
img_output_dir = os.path.join(pose_dir, f'{os.path.basename(image_folder_path)}_img')
image_files = glob.glob(os.path.join(image_folder_path, '*'+vid_img_extension))
sorted(image_files, key=natural_sort_key)
if save_video: # Set up video writer
logging.warning('Using default framerate of 60 fps.')
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video
W, H = cv2.imread(image_files[0]).shape[:2][::-1] # Get the width and height from the first image (assuming all images have the same size)
out = cv2.VideoWriter(output_video_path, fourcc, fps, (W, H)) # Create the output video file
if display_detection:
cv2.namedWindow(f"Pose Estimation {os.path.basename(image_folder_path)}", cv2.WINDOW_NORMAL)
f_range = [[len(image_files)] if frame_range==[] else frame_range][0]
for frame_idx, image_file in enumerate(tqdm(image_files, desc=f'\nProcessing {os.path.basename(img_output_dir)}')):
if frame_idx in range(*f_range):
try:
frame = cv2.imread(image_file)
except:
raise NameError(f"{image_file} is not an image. Videos must be put in the video directory, not in subdirectories.")
# Perform pose estimation on the image
keypoints, scores = pose_tracker(frame)
# Tracking people IDs across frames
if multi_person:
if 'prev_keypoints' not in locals(): prev_keypoints = keypoints
prev_keypoints, keypoints, scores = sort_people_sports2d(prev_keypoints, keypoints, scores)
# Extract frame number from the filename
if 'openpose' in output_format:
json_file_path = os.path.join(json_output_dir, f"{os.path.splitext(os.path.basename(image_file))[0]}_{frame_idx:06d}.json")
save_to_openpose(json_file_path, keypoints, scores)
# Draw skeleton on the image
if display_detection or save_video or save_images:
img_show = frame.copy()
img_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.1) # maybe change this value if 0.1 is too low
if display_detection:
cv2.imshow(f"Pose Estimation {os.path.basename(image_folder_path)}", img_show)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if save_video:
out.write(img_show)
if save_images:
if not os.path.isdir(img_output_dir): os.makedirs(img_output_dir)
cv2.imwrite(os.path.join(img_output_dir, f'{os.path.splitext(os.path.basename(image_file))[0]}_{frame_idx:06d}.png'), img_show)
if save_video:
logging.info(f"--> Output video saved to {output_video_path}.")
if save_images:
logging.info(f"--> Output images saved to {img_output_dir}.")
if display_detection:
cv2.destroyAllWindows()
def rtm_estimator(config_dict):
'''
Estimate pose from a video file or a folder of images and
write the results to JSON files, videos, and/or images.
Results can optionally be displayed in real time.
Supported models: HALPE_26 (default, body and feet), COCO_133 (body, feet, hands), COCO_17 (body)
Supported modes: lightweight, balanced, performance (edit paths at rtmlib/tools/solutions if you
need nother detection or pose models)
Optionally gives consistent person ID across frames (slower but good for 2D analysis)
Optionally runs detection every n frames and inbetween tracks points (faster but less accurate).
If a valid cuda installation is detected, uses the GPU with the ONNXRuntime backend. Otherwise,
uses the CPU with the OpenVINO backend.
INPUTS:
- videos or image folders from the video directory
- a Config.toml file
OUTPUTS:
- JSON files with the detected keypoints and confidence scores in the OpenPose format
- Optionally, videos and/or image files with the detected keypoints
'''
# Read config
project_dir = config_dict['project']['project_dir']
# if batch
session_dir = os.path.realpath(os.path.join(project_dir, '..'))
# if single trial
session_dir = session_dir if 'Config.toml' in os.listdir(session_dir) else os.getcwd()
frame_range = config_dict.get('project').get('frame_range')
multi_person = config_dict.get('project').get('multi_person')
video_dir = os.path.join(project_dir, 'videos')
pose_dir = os.path.join(project_dir, 'pose')
pose_model = config_dict['pose']['pose_model']
mode = config_dict['pose']['mode'] # lightweight, balanced, performance
vid_img_extension = config_dict['pose']['vid_img_extension']
output_format = config_dict['pose']['output_format']
save_video = True if 'to_video' in config_dict['pose']['save_video'] else False
save_images = True if 'to_images' in config_dict['pose']['save_video'] else False
display_detection = config_dict['pose']['display_detection']
overwrite_pose = config_dict['pose']['overwrite_pose']
det_frequency = config_dict['pose']['det_frequency']
# Determine frame rate
video_files = glob.glob(os.path.join(video_dir, '*'+vid_img_extension))
frame_rate = config_dict.get('project').get('frame_rate')
if frame_rate == 'auto':
try:
cap = cv2.VideoCapture(video_files[0])
if not cap.isOpened():
raise FileNotFoundError(f'Error: Could not open {video_files[0]}. Check that the file exists.')
frame_rate = cap.get(cv2.CAP_PROP_FPS)
if frame_rate == 0:
frame_rate = 30
logging.warning(f'Error: Could not retrieve frame rate from {video_files[0]}. Defaulting to 30fps.')
except:
frame_rate = 30
# If CUDA is available, use it with ONNXRuntime backend; else use CPU with openvino
try:
import torch
import onnxruntime as ort
if torch.cuda.is_available() and 'CUDAExecutionProvider' in ort.get_available_providers():
device = 'cuda'
backend = 'onnxruntime'
logging.info(f"\nValid CUDA installation found: using ONNXRuntime backend with GPU.")
elif torch.cuda.is_available() == True and 'ROCMExecutionProvider' in ort.get_available_providers():
device = 'rocm'
backend = 'onnxruntime'
logging.info(f"\nValid ROCM installation found: using ONNXRuntime backend with GPU.")
else:
raise
except:
try:
import onnxruntime as ort
if 'MPSExecutionProvider' in ort.get_available_providers() or 'CoreMLExecutionProvider' in ort.get_available_providers():
device = 'mps'
backend = 'onnxruntime'
logging.info(f"\nValid MPS installation found: using ONNXRuntime backend with GPU.")
else:
raise
except:
device = 'cpu'
backend = 'openvino'
logging.info(f"\nNo valid CUDA installation found: using OpenVINO backend with CPU.")
if det_frequency>1:
logging.info(f'Inference run only every {det_frequency} frames. Inbetween, pose estimation tracks previously detected points.')
elif det_frequency==1:
logging.info(f'Inference run on every single frame.')
else:
raise ValueError(f"Invalid det_frequency: {det_frequency}. Must be an integer greater or equal to 1.")
# Select the appropriate model based on the model_type
if pose_model.upper() == 'HALPE_26':
ModelClass = BodyWithFeet
logging.info(f"Using HALPE_26 model (body and feet) for pose estimation.")
elif pose_model.upper() == 'COCO_133':
ModelClass = Wholebody
logging.info(f"Using COCO_133 model (body, feet, hands, and face) for pose estimation.")
elif pose_model.upper() == 'COCO_17':
ModelClass = Body # 26 keypoints(halpe26)
logging.info(f"Using COCO_17 model (body) for pose estimation.")
else:
raise ValueError(f"Invalid model_type: {pose_model}. Must be 'HALPE_26', 'COCO_133', or 'COCO_17'. Use another network (MMPose, DeepLabCut, OpenPose, AlphaPose, BlazePose...) and convert the output files if you need another model. See documentation.")
logging.info(f'Mode: {mode}.\n')
# Initialize the pose tracker
pose_tracker = PoseTracker(
ModelClass,
det_frequency=det_frequency,
mode=mode,
backend=backend,
device=device,
tracking=False,
to_openpose=False)
logging.info('\nEstimating pose...')
try:
pose_listdirs_names = next(os.walk(pose_dir))[1]
os.listdir(os.path.join(pose_dir, pose_listdirs_names[0]))[0]
if not overwrite_pose:
logging.info('Skipping pose estimation as it has already been done. Set overwrite_pose to true in Config.toml if you want to run it again.')
else:
logging.info('Overwriting previous pose estimation. Set overwrite_pose to false in Config.toml if you want to keep the previous results.')
raise
except:
video_files = glob.glob(os.path.join(video_dir, '*'+vid_img_extension))
if not len(video_files) == 0:
# Process video files
logging.info(f'Found video files with extension {vid_img_extension}.')
for video_path in video_files:
pose_tracker.reset()
process_video(video_path, pose_tracker, output_format, save_video, save_images, display_detection, frame_range, multi_person)
else:
# Process image folders
logging.info(f'Found image folders with extension {vid_img_extension}.')
image_folders = [f for f in os.listdir(video_dir) if os.path.isdir(os.path.join(video_dir, f))]
for image_folder in image_folders:
pose_tracker.reset()
image_folder_path = os.path.join(video_dir, image_folder)
process_images(image_folder_path, vid_img_extension, pose_tracker, output_format, frame_rate, save_video, save_images, display_detection, frame_range, multi_person)

View File

@ -1,484 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
###########################################################################
## SKELETONS DEFINITIONS ##
###########################################################################
The definition and hierarchy of the following skeletons are available:
- OpenPose BODY_25B, BODY_25, BODY_135, COCO, MPII
- Mediapipe BLAZEPOSE
- AlphaPose HALPE_26, HALPE_68, HALPE_136, COCO_133, COCO, MPII
(for COCO and MPII, AlphaPose must be run with the flag "--format cmu")
- DeepLabCut CUSTOM: the skeleton will be defined in Config.toml
N.B.: Not all face and hand keypoints are reported in the skeleton architecture,
since some are redundant for the orientation of some bodies.
N.B.: The corresponding OpenSim model files are provided in the "Pose2Sim/Empty project" folder.
If you wish to use any other, you will need to adjust the markerset in the .osim model file,
as well as in the scaling and IK setup files.
'''
## INIT
from anytree import Node
## AUTHORSHIP INFORMATION
__author__ = "David Pagnon"
__copyright__ = "Copyright 2021, Pose2Sim"
__credits__ = ["David Pagnon"]
__license__ = "BSD 3-Clause License"
__version__ = "0.9.4"
__maintainer__ = "David Pagnon"
__email__ = "contact@david-pagnon.com"
__status__ = "Development"
'''BODY_25B (full-body without hands, experimental, from OpenPose)
https://github.com/CMU-Perceptual-Computing-Lab/openpose_train/blob/master/experimental_models/README.md'''
BODY_25B = Node("CHip", id=None, children=[
Node("RHip", id=12, children=[
Node("RKnee", id=14, children=[
Node("RAnkle", id=16, children=[
Node("RBigToe", id=22, children=[
Node("RSmallToe", id=23),
]),
Node("RHeel", id=24),
]),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=15, children=[
Node("LBigToe", id=19, children=[
Node("LSmallToe", id=20),
]),
Node("LHeel", id=21),
]),
]),
]),
Node("Neck", id=17, children=[
Node("Head", id=18, children=[
Node("Nose", id=0),
]),
Node("RShoulder", id=6, children=[
Node("RElbow", id=8, children=[
Node("RWrist", id=10),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=7, children=[
Node("LWrist", id=9),
]),
]),
]),
])
'''BODY_25 (full-body without hands, standard, from OpenPose)
https://github.com/CMU-Perceptual-Computing-Lab/openpose/tree/master/models'''
BODY_25 = Node("CHip", id=8, children=[
Node("RHip", id=9, children=[
Node("RKnee", id=10, children=[
Node("RAnkle", id=11, children=[
Node("RBigToe", id=22, children=[
Node("RSmallToe", id=23),
]),
Node("RHeel", id=24),
]),
]),
]),
Node("LHip", id=12, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=14, children=[
Node("LBigToe", id=19, children=[
Node("LSmallToe", id=20),
]),
Node("LHeel", id=21),
]),
]),
]),
Node("Neck", id=1, children=[
Node("Nose", id=0),
Node("RShoulder", id=2, children=[
Node("RElbow", id=3, children=[
Node("RWrist", id=4),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=6, children=[
Node("LWrist", id=7),
]),
]),
]),
])
'''BODY_135 (full-body with hands and face, experimental, from OpenPose)
https://github.com/CMU-Perceptual-Computing-Lab/openpose_train/blob/master/experimental_models/README.md)'''
BODY_135 = Node("CHip", id=None, children=[
Node("RHip", id=12, children=[
Node("RKnee", id=14, children=[
Node("RAnkle", id=16, children=[
Node("RBigToe", id=22, children=[
Node("RSmallToe", id=23),
]),
Node("RHeel", id=24),
]),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=15, children=[
Node("LBigToe", id=19, children=[
Node("LSmallToe", id=20),
]),
Node("LHeel", id=21),
]),
]),
]),
Node("Neck", id=17, children=[
Node("Head", id=18, children=[
Node("Nose", id=0),
]),
Node("RShoulder", id=6, children=[
Node("RElbow", id=8, children=[
Node("RWrist", id=10, children=[
Node("RThumb", id=48),
Node("RIndex", id=51),
Node("RPinky", id=63),
]),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=7, children=[
Node("LWrist", id=9, children=[
Node("LThumb", id=27),
Node("LIndex", id=30),
Node("LPinky", id=42),
]),
]),
]),
]),
])
'''BLAZEPOSE (full-body with simplified hand and foot, from mediapipe)
https://google.github.io/mediapipe/solutions/pose'''
BLAZEPOSE = Node("root", id=None, children=[
Node("right_hip", id=24, children=[
Node("right_knee", id=26, children=[
Node("right_ankle", id=28, children=[
Node("right_heel", id=30),
Node("right_foot_index", id=32),
]),
]),
]),
Node("left_hip", id=23, children=[
Node("left_knee", id=25, children=[
Node("left_ankle", id=27, children=[
Node("left_heel", id=29),
Node("left_foot_index", id=31),
]),
]),
]),
Node("nose", id=0, children=[
Node("right_eye", id=5),
Node("left_eye", id=2),
]),
Node("right_shoulder", id=12, children=[
Node("right_elbow", id=14, children=[
Node("right_wrist", id=16, children=[
Node("right_pinky", id=18),
Node("right_index", id=20),
Node("right_thumb", id=22),
]),
]),
]),
Node("left_shoulder", id=11, children=[
Node("left_elbow", id=13, children=[
Node("left_wrist", id=15, children=[
Node("left_pinky", id=17),
Node("left_index", id=19),
Node("left_thumb", id=21),
]),
]),
]),
])
'''HALPE_26 (full-body without hands, from AlphaPose, MMPose, etc.)
https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md
https://github.com/open-mmlab/mmpose/tree/main/projects/rtmpose'''
HALPE_26 = Node("Hip", id=19, children=[
Node("RHip", id=12, children=[
Node("RKnee", id=14, children=[
Node("RAnkle", id=16, children=[
Node("RBigToe", id=21, children=[
Node("RSmallToe", id=23),
]),
Node("RHeel", id=25),
]),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=15, children=[
Node("LBigToe", id=20, children=[
Node("LSmallToe", id=22),
]),
Node("LHeel", id=24),
]),
]),
]),
Node("Neck", id=18, children=[
Node("Head", id=17, children=[
Node("Nose", id=0),
]),
Node("RShoulder", id=6, children=[
Node("RElbow", id=8, children=[
Node("RWrist", id=10),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=7, children=[
Node("LWrist", id=9),
]),
]),
]),
])
'''HALPE_68 (full-body with hands without face, from AlphaPose, MMPose, etc.)
https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md'''
HALPE_68 = Node("Hip", id=19, children=[
Node("RHip", id=12, children=[
Node("RKnee", id=14, children=[
Node("RAnkle", id=16, children=[
Node("RBigToe", id=21, children=[
Node("RSmallToe", id=23),
]),
Node("RHeel", id=25),
]),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=15, children=[
Node("LBigToe", id=20, children=[
Node("LSmallToe", id=22),
]),
Node("LHeel", id=24),
]),
]),
]),
Node("Neck", id=18, children=[
Node("Nose", id=0),
Node("RShoulder", id=6, children=[
Node("RElbow", id=8, children=[
Node("RWrist", id=10, children=[
Node("RThumb", id=49),
Node("RIndex", id=52),
Node("RPinky", id=64),
]),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=7, children=[
Node("LWrist", id=9, children=[
Node("LThumb", id=28),
Node("LIndex", id=31),
Node("LPinky", id=43),
])
]),
]),
]),
])
'''HALPE_136 (full-body with hands and face, from AlphaPose, MMPose, etc.)
https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md'''
HALPE_136 = Node("Hip", id=19, children=[
Node("RHip", id=12, children=[
Node("RKnee", id=14, children=[
Node("RAnkle", id=16, children=[
Node("RBigToe", id=21, children=[
Node("RSmallToe", id=23),
]),
Node("RHeel", id=25),
]),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=15, children=[
Node("LBigToe", id=20, children=[
Node("LSmallToe", id=22),
]),
Node("LHeel", id=24),
]),
]),
]),
Node("Neck", id=18, children=[
Node("Nose", id=0),
Node("RShoulder", id=6, children=[
Node("RElbow", id=8, children=[
Node("RWrist", id=10, children=[
Node("RThumb", id=117),
Node("RIndex", id=120),
Node("RPinky", id=132),
]),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=7, children=[
Node("LWrist", id=9, children=[
Node("LThumb", id=96),
Node("LIndex", id=99),
Node("LPinky", id=111),
])
]),
]),
]),
])
'''COCO_133 (full-body with hands and face, from AlphaPose, MMPose, etc.)
https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md
https://github.com/open-mmlab/mmpose/tree/main/projects/rtmpose'''
COCO_133 = Node("CHip", id=None, children=[
Node("RHip", id=12, children=[
Node("RKnee", id=14, children=[
Node("RAnkle", id=16, children=[
Node("RBigToe", id=20, children=[
Node("RSmallToe", id=21),
]),
Node("RHeel", id=22),
]),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=15, children=[
Node("LBigToe", id=17, children=[
Node("LSmallToe", id=18),
]),
Node("LHeel", id=19),
]),
]),
]),
Node("Neck", id=None, children=[
Node("Nose", id=0, children=[
Node("REye", id=2),
Node("LEye", id=1),
]),
Node("RShoulder", id=6, children=[
Node("RElbow", id=8, children=[
Node("RWrist", id=10, children=[
Node("RThumb", id=114),
Node("RIndex", id=117),
Node("RPinky", id=129),
]),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=7, children=[
Node("LWrist", id=9, children=[
Node("LThumb", id=93),
Node("LIndex", id=96),
Node("LPinky", id=108),
])
]),
]),
]),
])
'''COCO (full-body without hands and feet, from OpenPose, AlphaPose, OpenPifPaf, YOLO-pose, MMPose, etc.)
https://github.com/CMU-Perceptual-Computing-Lab/openpose/tree/master/models'''
COCO = Node("CHip", id=None, children=[
Node("RHip", id=8, children=[
Node("RKnee", id=9, children=[
Node("RAnkle", id=10),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=12, children=[
Node("LAnkle", id=13),
]),
]),
Node("Neck", id=1, children=[
Node("Nose", id=0),
Node("RShoulder", id=2, children=[
Node("RElbow", id=3, children=[
Node("RWrist", id=4),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=6, children=[
Node("LWrist", id=7),
]),
]),
]),
])
'''MPII (full-body without hands and feet, from OpenPose, AlphaPose, OpenPifPaf, YOLO-pose, MMPose, etc.)
https://github.com/CMU-Perceptual-Computing-Lab/openpose/tree/master/models'''
MPII = Node("CHip", id=14, children=[
Node("RHip", id=8, children=[
Node("RKnee", id=9, children=[
Node("RAnkle", id=10),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=12, children=[
Node("LAnkle", id=13),
]),
]),
Node("Neck", id=1, children=[
Node("Nose", id=0),
Node("RShoulder", id=2, children=[
Node("RElbow", id=3, children=[
Node("RWrist", id=4),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=6, children=[
Node("LWrist", id=7),
]),
]),
]),
])
'''COCO_17 (full-body without hands and feet, from OpenPose, AlphaPose, OpenPifPaf, YOLO-pose, MMPose, etc.)
https://github.com/open-mmlab/mmpose/tree/main/projects/rtmpose'''
COCO_17 = Node("CHip", id=None, children=[
Node("RHip", id=12, children=[
Node("RKnee", id=14, children=[
Node("RAnkle", id=16),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=15),
]),
]),
Node("Neck", id=None, children=[
Node("Nose", id=0),
Node("RShoulder", id=6, children=[
Node("RElbow", id=8, children=[
Node("RWrist", id=10),
]),
]),
Node("LShoulder", id=5, children=[
Node("LElbow", id=7, children=[
Node("LWrist", id=9),
]),
]),
]),
])

View File

@ -50,7 +50,7 @@ from anytree.importer import DictImporter
import logging import logging
from Pose2Sim.common import sort_stringlist_by_last_number, bounding_boxes from Pose2Sim.common import sort_stringlist_by_last_number, bounding_boxes
from Pose2Sim.skeletons import * from Sports2D.Utilities.skeletons import *
## AUTHORSHIP INFORMATION ## AUTHORSHIP INFORMATION
@ -586,7 +586,7 @@ def synchronize_cams_all(config_dict):
# Get parameters from Config.toml # Get parameters from Config.toml
project_dir = config_dict.get('project').get('project_dir') project_dir = config_dict.get('project').get('project_dir')
pose_dir = os.path.realpath(os.path.join(project_dir, 'pose')) pose_dir = os.path.realpath(os.path.join(project_dir, 'pose'))
pose_model = config_dict.get('pose').get('pose_model') pose_model = config_dict.get('pose').get('pose_model').upper()
multi_person = config_dict.get('project').get('multi_person') multi_person = config_dict.get('project').get('multi_person')
fps = config_dict.get('project').get('frame_rate') fps = config_dict.get('project').get('frame_rate')
frame_range = config_dict.get('project').get('frame_range') frame_range = config_dict.get('project').get('frame_range')
@ -756,4 +756,4 @@ def synchronize_cams_all(config_dict):
json_offset_name = ''.join(j_split) json_offset_name = ''.join(j_split)
shutil.copy(os.path.join(pose_dir, os.path.basename(j_dir), j_file), os.path.join(sync_dir, os.path.basename(j_dir), json_offset_name)) shutil.copy(os.path.join(pose_dir, os.path.basename(j_dir), j_file), os.path.join(sync_dir, os.path.basename(j_dir), json_offset_name))
logging.info(f'Synchronized json files saved in {sync_dir}.') logging.info(f'Synchronized json files saved in {sync_dir}.')

View File

@ -53,7 +53,7 @@ import logging
from Pose2Sim.common import retrieve_calib_params, computeP, weighted_triangulation, \ from Pose2Sim.common import retrieve_calib_params, computeP, weighted_triangulation, \
reprojection, euclidean_distance, sort_stringlist_by_last_number, \ reprojection, euclidean_distance, sort_stringlist_by_last_number, \
min_with_single_indices, zup2yup, convert_to_c3d min_with_single_indices, zup2yup, convert_to_c3d
from Pose2Sim.skeletons import * from Sports2D.Utilities.skeletons import *
## AUTHORSHIP INFORMATION ## AUTHORSHIP INFORMATION
@ -692,7 +692,7 @@ def triangulate_all(config_dict):
# if single trial # if single trial
session_dir = session_dir if 'Config.toml' in os.listdir(session_dir) else os.getcwd() session_dir = session_dir if 'Config.toml' in os.listdir(session_dir) else os.getcwd()
multi_person = config_dict.get('project').get('multi_person') multi_person = config_dict.get('project').get('multi_person')
pose_model = config_dict.get('pose').get('pose_model') pose_model = config_dict.get('pose').get('pose_model').upper()
frame_range = config_dict.get('project').get('frame_range') frame_range = config_dict.get('project').get('frame_range')
likelihood_threshold = config_dict.get('triangulation').get('likelihood_threshold_triangulation') likelihood_threshold = config_dict.get('triangulation').get('likelihood_threshold_triangulation')
interpolation_kind = config_dict.get('triangulation').get('interpolation') interpolation_kind = config_dict.get('triangulation').get('interpolation')

View File

@ -52,6 +52,7 @@ install_requires =
# onnxruntime # onnxruntime
openvino openvino
opencv-python opencv-python
sports2d
packages = find_namespace: packages = find_namespace:
[options.package_data] [options.package_data]