beta: multi-person
This commit is contained in:
parent
b41bc933b7
commit
607865e3d4
@ -380,7 +380,7 @@ def triangulation(config=None):
|
|||||||
triangulate_all(config_dict)
|
triangulate_all(config_dict)
|
||||||
|
|
||||||
end = time.time()
|
end = time.time()
|
||||||
logging.info(f'Triangulation took {end-start:.2f} s.')
|
logging.info(f'\nTriangulation took {end-start:.2f} s.')
|
||||||
|
|
||||||
|
|
||||||
def filtering(config=None):
|
def filtering(config=None):
|
||||||
|
@ -91,12 +91,13 @@ def persons_combinations(json_files_framef):
|
|||||||
|
|
||||||
def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_combinations, projection_matrices, tracked_keypoint_id, calib_params):
|
def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_combinations, projection_matrices, tracked_keypoint_id, calib_params):
|
||||||
'''
|
'''
|
||||||
At the same time, chooses the right person among the multiple ones found by
|
- if single_person: Choose the right person among the multiple ones found by
|
||||||
OpenPose & excludes cameras with wrong 2d-pose estimation.
|
OpenPose & excludes cameras with wrong 2d-pose estimation.
|
||||||
|
- else: Choose all the combination of cameras that give a reprojection error below a threshold
|
||||||
|
|
||||||
1. triangulate the tracked keypoint for all possible combinations of people,
|
1. triangulate the tracked keypoint for all possible combinations of people,
|
||||||
2. compute difference between reprojection & original openpose detection,
|
2. compute difference between reprojection & original openpose detection,
|
||||||
3. take combination with smallest difference.
|
3. take combination with smallest error OR all those below the error threshold
|
||||||
If error is too big, take off one or several of the cameras until err is
|
If error is too big, take off one or several of the cameras until err is
|
||||||
lower than "max_err_px".
|
lower than "max_err_px".
|
||||||
|
|
||||||
@ -108,10 +109,11 @@ def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_c
|
|||||||
- tracked_keypoint_id: int
|
- tracked_keypoint_id: int
|
||||||
|
|
||||||
OUTPUTS:
|
OUTPUTS:
|
||||||
- error_min: float
|
- errors_below_thresh: list of float
|
||||||
- persons_and_cameras_combination: array of ints
|
- comb_errors_below_thresh: list of arrays of ints
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
single_person = config.get('project').get('single_person')
|
||||||
error_threshold_tracking = config.get('personAssociation').get('reproj_error_threshold_association')
|
error_threshold_tracking = config.get('personAssociation').get('reproj_error_threshold_association')
|
||||||
likelihood_threshold = config.get('personAssociation').get('likelihood_threshold_association')
|
likelihood_threshold = config.get('personAssociation').get('likelihood_threshold_association')
|
||||||
min_cameras_for_triangulation = config.get('triangulation').get('min_cameras_for_triangulation')
|
min_cameras_for_triangulation = config.get('triangulation').get('min_cameras_for_triangulation')
|
||||||
@ -121,6 +123,9 @@ def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_c
|
|||||||
error_min = np.inf
|
error_min = np.inf
|
||||||
nb_cams_off = 0 # cameras will be taken-off until the reprojection error is under threshold
|
nb_cams_off = 0 # cameras will be taken-off until the reprojection error is under threshold
|
||||||
|
|
||||||
|
errors_below_thresh = []
|
||||||
|
comb_errors_below_thresh = []
|
||||||
|
Q_kpt = []
|
||||||
while error_min > error_threshold_tracking and n_cams - nb_cams_off >= min_cameras_for_triangulation:
|
while error_min > error_threshold_tracking and n_cams - nb_cams_off >= min_cameras_for_triangulation:
|
||||||
# Try all persons combinations
|
# Try all persons combinations
|
||||||
for combination in personsIDs_combinations:
|
for combination in personsIDs_combinations:
|
||||||
@ -156,6 +161,7 @@ def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_c
|
|||||||
|
|
||||||
# Try all subsets
|
# Try all subsets
|
||||||
error_comb = []
|
error_comb = []
|
||||||
|
Q_comb = []
|
||||||
for comb in combinations_with_cams_off:
|
for comb in combinations_with_cams_off:
|
||||||
# Filter x, y, likelihood, projection_matrices, with subset
|
# Filter x, y, likelihood, projection_matrices, with subset
|
||||||
x_files_filt = [x_files[i] for i in range(len(comb)) if not np.isnan(comb[i])]
|
x_files_filt = [x_files[i] for i in range(len(comb)) if not np.isnan(comb[i])]
|
||||||
@ -169,15 +175,15 @@ def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_c
|
|||||||
calib_params_dist_filt = [calib_params['dist'][i] for i in range(len(comb)) if not np.isnan(comb[i])]
|
calib_params_dist_filt = [calib_params['dist'][i] for i in range(len(comb)) if not np.isnan(comb[i])]
|
||||||
|
|
||||||
# Triangulate 2D points
|
# Triangulate 2D points
|
||||||
Q_comb = weighted_triangulation(projection_matrices_filt, x_files_filt, y_files_filt, likelihood_files_filt)
|
Q_comb.append(weighted_triangulation(projection_matrices_filt, x_files_filt, y_files_filt, likelihood_files_filt))
|
||||||
|
|
||||||
# Reprojection
|
# Reprojection
|
||||||
if undistort_points:
|
if undistort_points:
|
||||||
coords_2D_kpt_calc_filt = [cv2.projectPoints(np.array(Q_comb[:-1]), calib_params_R_filt[i], calib_params_T_filt[i], calib_params_K_filt[i], calib_params_dist_filt[i])[0] for i in range(n_cams-nb_cams_off)]
|
coords_2D_kpt_calc_filt = [cv2.projectPoints(np.array(Q_comb[-1][:-1]), calib_params_R_filt[i], calib_params_T_filt[i], calib_params_K_filt[i], calib_params_dist_filt[i])[0] for i in range(n_cams-nb_cams_off)]
|
||||||
x_calc = [coords_2D_kpt_calc_filt[i][0,0,0] for i in range(n_cams-nb_cams_off)]
|
x_calc = [coords_2D_kpt_calc_filt[i][0,0,0] for i in range(n_cams-nb_cams_off)]
|
||||||
y_calc = [coords_2D_kpt_calc_filt[i][0,0,1] for i in range(n_cams-nb_cams_off)]
|
y_calc = [coords_2D_kpt_calc_filt[i][0,0,1] for i in range(n_cams-nb_cams_off)]
|
||||||
else:
|
else:
|
||||||
x_calc, y_calc = reprojection(projection_matrices_filt, Q_comb)
|
x_calc, y_calc = reprojection(projection_matrices_filt, Q_comb[-1])
|
||||||
|
|
||||||
# Reprojection error
|
# Reprojection error
|
||||||
error_comb_per_cam = []
|
error_comb_per_cam = []
|
||||||
@ -187,15 +193,34 @@ def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_c
|
|||||||
error_comb_per_cam.append( euclidean_distance(q_file, q_calc) )
|
error_comb_per_cam.append( euclidean_distance(q_file, q_calc) )
|
||||||
error_comb.append( np.mean(error_comb_per_cam) )
|
error_comb.append( np.mean(error_comb_per_cam) )
|
||||||
|
|
||||||
error_min = np.nanmin(error_comb)
|
if single_person:
|
||||||
persons_and_cameras_combination = combinations_with_cams_off[np.argmin(error_comb)]
|
error_min = np.nanmin(error_comb)
|
||||||
|
errors_below_thresh = [error_min]
|
||||||
|
comb_errors_below_thresh = [combinations_with_cams_off[np.argmin(error_comb)]]
|
||||||
|
Q_kpt = [Q_comb[np.argmin(error_comb)]]
|
||||||
|
if errors_below_thresh[0] < error_threshold_tracking:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
errors_below_thresh += [e for e in error_comb if e<error_threshold_tracking]
|
||||||
|
comb_errors_below_thresh += [combinations_with_cams_off[error_comb.index(e)] for e in error_comb if e<error_threshold_tracking]
|
||||||
|
Q_kpt += [Q_comb[error_comb.index(e)] for e in error_comb if e<error_threshold_tracking]
|
||||||
|
|
||||||
if error_min < error_threshold_tracking:
|
print('\n', personsIDs_combinations)
|
||||||
|
print(errors_below_thresh)
|
||||||
|
print(comb_errors_below_thresh)
|
||||||
|
print(Q_kpt)
|
||||||
|
if not single_person:
|
||||||
|
# Remove indices already used for a person
|
||||||
|
personsIDs_combinations = np.array([personsIDs_combinations[i] for i in range(len(personsIDs_combinations))
|
||||||
|
if not np.array(
|
||||||
|
[personsIDs_combinations[i,j]==comb[j] for comb in comb_errors_below_thresh for j in range(len(comb))]
|
||||||
|
).any()])
|
||||||
|
if len(personsIDs_combinations) < len(errors_below_thresh):
|
||||||
break
|
break
|
||||||
|
|
||||||
nb_cams_off += 1
|
nb_cams_off += 1
|
||||||
|
|
||||||
return error_min, persons_and_cameras_combination
|
return errors_below_thresh, comb_errors_below_thresh, Q_kpt
|
||||||
|
|
||||||
|
|
||||||
def recap_tracking(config, error, nb_cams_excluded):
|
def recap_tracking(config, error, nb_cams_excluded):
|
||||||
@ -315,32 +340,38 @@ def track_2d_all(config):
|
|||||||
and {n_cams} cameras based on the number of pose folders.')
|
and {n_cams} cameras based on the number of pose folders.')
|
||||||
|
|
||||||
for f in tqdm(range(*f_range)):
|
for f in tqdm(range(*f_range)):
|
||||||
|
print(f'\nFrame {f}:')
|
||||||
json_files_f = [json_files[c][f] for c in range(n_cams)]
|
json_files_f = [json_files[c][f] for c in range(n_cams)]
|
||||||
json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)]
|
json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)]
|
||||||
|
|
||||||
# all possible combinations of persons
|
# all possible combinations of persons
|
||||||
personsIDs_comb = persons_combinations(json_files_f)
|
personsIDs_comb = persons_combinations(json_files_f)
|
||||||
|
|
||||||
# choose person of interest and exclude cameras with bad pose estimation
|
# choose persons of interest and exclude cameras with bad pose estimation
|
||||||
error_min, persons_and_cameras_combination = best_persons_and_cameras_combination(config, json_files_f, personsIDs_comb, P, tracked_keypoint_id, calib_params)
|
errors_below_thresh, comb_errors_below_thresh, Q_kpt = best_persons_and_cameras_combination(config, json_files_f, personsIDs_comb, P, tracked_keypoint_id, calib_params)
|
||||||
error_min_tot.append(error_min)
|
|
||||||
cameras_off_count = np.count_nonzero(np.isnan(persons_and_cameras_combination))
|
# reID persons across frames by checking the distance from one frame to another
|
||||||
|
##### TO DO
|
||||||
|
|
||||||
|
error_min_tot.append(np.mean(errors_below_thresh))
|
||||||
|
cameras_off_count = np.count_nonzero([np.isnan(comb) for comb in comb_errors_below_thresh]) / len(comb_errors_below_thresh)
|
||||||
|
print(cameras_off_count)
|
||||||
cameras_off_tot.append(cameras_off_count)
|
cameras_off_tot.append(cameras_off_count)
|
||||||
|
|
||||||
# rewrite json files with only one person of interest
|
# rewrite json files with a single or multiple persons of interest
|
||||||
for cam_nb, person_id in enumerate(persons_and_cameras_combination):
|
for cam in range(n_cams):
|
||||||
with open(json_tracked_files_f[cam_nb], 'w') as json_tracked_f:
|
with open(json_tracked_files_f[cam], 'w') as json_tracked_f:
|
||||||
with open(json_files_f[cam_nb], 'r') as json_f:
|
with open(json_files_f[cam], 'r') as json_f:
|
||||||
js = json.load(json_f)
|
js = json.load(json_f)
|
||||||
if not np.isnan(person_id):
|
js_new = js.copy()
|
||||||
js['people'] = [js['people'][int(person_id)]]
|
js_new['people'] = []
|
||||||
else:
|
for new_comb in comb_errors_below_thresh:
|
||||||
js['people'] = []
|
if not np.isnan(new_comb[cam]):
|
||||||
json_tracked_f.write(json.dumps(js))
|
js_new['people'] += [js['people'][int(new_comb[cam])]]
|
||||||
|
else:
|
||||||
|
js_new['people'] += [{}]
|
||||||
|
json_tracked_f.write(json.dumps(js_new))
|
||||||
|
|
||||||
# recap message
|
# recap message
|
||||||
recap_tracking(config, error_min_tot, cameras_off_tot)
|
recap_tracking(config, error_min_tot, cameras_off_tot)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ import cv2
|
|||||||
import toml
|
import toml
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from scipy import interpolate
|
from scipy import interpolate
|
||||||
from collections import Counter
|
from collections import Counter, OrderedDict
|
||||||
from anytree import RenderTree
|
from anytree import RenderTree
|
||||||
from anytree.importer import DictImporter
|
from anytree.importer import DictImporter
|
||||||
import logging
|
import logging
|
||||||
@ -109,7 +109,7 @@ def interpolate_zeros_nans(col, *args):
|
|||||||
return col_interp
|
return col_interp
|
||||||
|
|
||||||
|
|
||||||
def make_trc(config, Q, keypoints_names, f_range):
|
def make_trc(config, Q, keypoints_names, f_range, id_person=-1):
|
||||||
'''
|
'''
|
||||||
Make Opensim compatible trc file from a dataframe with 3D coordinates
|
Make Opensim compatible trc file from a dataframe with 3D coordinates
|
||||||
|
|
||||||
@ -126,7 +126,10 @@ def make_trc(config, Q, keypoints_names, f_range):
|
|||||||
# Read config
|
# Read config
|
||||||
project_dir = config.get('project').get('project_dir')
|
project_dir = config.get('project').get('project_dir')
|
||||||
frame_rate = config.get('project').get('frame_rate')
|
frame_rate = config.get('project').get('frame_rate')
|
||||||
seq_name = os.path.basename(os.path.realpath(project_dir))
|
if id_person == -1:
|
||||||
|
seq_name = f'{os.path.basename(os.path.realpath(project_dir))}'
|
||||||
|
else:
|
||||||
|
seq_name = f'{os.path.basename(os.path.realpath(project_dir))}_Participant{id_person+1}'
|
||||||
pose3d_dir = os.path.join(project_dir, 'pose-3d')
|
pose3d_dir = os.path.join(project_dir, 'pose-3d')
|
||||||
|
|
||||||
trc_f = f'{seq_name}_{f_range[0]}-{f_range[1]}.trc'
|
trc_f = f'{seq_name}_{f_range[0]}-{f_range[1]}.trc'
|
||||||
@ -181,7 +184,7 @@ def recap_triangulate(config, error, nb_cams_excluded, keypoints_names, cam_excl
|
|||||||
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file
|
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file
|
||||||
calib = toml.load(calib_file)
|
calib = toml.load(calib_file)
|
||||||
cam_names = np.array([calib[c].get('name') for c in list(calib.keys())])
|
cam_names = np.array([calib[c].get('name') for c in list(calib.keys())])
|
||||||
cam_names = cam_names[list(cam_excluded_count.keys())]
|
cam_names = cam_names[list(cam_excluded_count[0].keys())]
|
||||||
error_threshold_triangulation = config.get('triangulation').get('reproj_error_threshold_triangulation')
|
error_threshold_triangulation = config.get('triangulation').get('reproj_error_threshold_triangulation')
|
||||||
likelihood_threshold = config.get('triangulation').get('likelihood_threshold_triangulation')
|
likelihood_threshold = config.get('triangulation').get('likelihood_threshold_triangulation')
|
||||||
show_interp_indices = config.get('triangulation').get('show_interp_indices')
|
show_interp_indices = config.get('triangulation').get('show_interp_indices')
|
||||||
@ -195,47 +198,53 @@ def recap_triangulate(config, error, nb_cams_excluded, keypoints_names, cam_excl
|
|||||||
Dm = euclidean_distance(calib_cam1['translation'], [0,0,0])
|
Dm = euclidean_distance(calib_cam1['translation'], [0,0,0])
|
||||||
|
|
||||||
logging.info('')
|
logging.info('')
|
||||||
for idx, name in enumerate(keypoints_names):
|
nb_persons_to_detect = len(error)
|
||||||
mean_error_keypoint_px = np.around(error.iloc[:,idx].mean(), decimals=1) # RMS à la place?
|
for n in range(nb_persons_to_detect):
|
||||||
mean_error_keypoint_m = np.around(mean_error_keypoint_px * Dm / fm, decimals=3)
|
if nb_persons_to_detect > 1:
|
||||||
mean_cam_excluded_keypoint = np.around(nb_cams_excluded.iloc[:,idx].mean(), decimals=2)
|
print(f'\n\nPARTICIPANT {n+1}\n')
|
||||||
logging.info(f'Mean reprojection error for {name} is {mean_error_keypoint_px} px (~ {mean_error_keypoint_m} m), reached with {mean_cam_excluded_keypoint} excluded cameras. ')
|
|
||||||
if show_interp_indices:
|
for idx, name in enumerate(keypoints_names):
|
||||||
if interpolation_kind != 'none':
|
mean_error_keypoint_px = np.around(error[n].iloc[:,idx].mean(), decimals=1) # RMS à la place?
|
||||||
if len(list(interp_frames[idx])) ==0:
|
mean_error_keypoint_m = np.around(mean_error_keypoint_px * Dm / fm, decimals=3)
|
||||||
logging.info(f' No frames needed to be interpolated.')
|
mean_cam_excluded_keypoint = np.around(nb_cams_excluded[n].iloc[:,idx].mean(), decimals=2)
|
||||||
|
logging.info(f'Mean reprojection error for {name} is {mean_error_keypoint_px} px (~ {mean_error_keypoint_m} m), reached with {mean_cam_excluded_keypoint} excluded cameras. ')
|
||||||
|
if show_interp_indices:
|
||||||
|
if interpolation_kind != 'none':
|
||||||
|
if len(list(interp_frames[n][idx])) ==0:
|
||||||
|
logging.info(f' No frames needed to be interpolated.')
|
||||||
|
else:
|
||||||
|
interp_str = str(interp_frames[n][idx]).replace(":", " to ").replace("'", "").replace("]", "").replace("[", "")
|
||||||
|
logging.info(f' Frames {interp_str} were interpolated.')
|
||||||
|
if len(list(non_interp_frames[n][idx]))>0:
|
||||||
|
noninterp_str = str(non_interp_frames[n][idx]).replace(":", " to ").replace("'", "").replace("]", "").replace("[", "")
|
||||||
|
logging.info(f' Frames {non_interp_frames[n][idx]} could not be interpolated: consider adjusting thresholds.')
|
||||||
else:
|
else:
|
||||||
interp_str = str(interp_frames[idx]).replace(":", " to ").replace("'", "").replace("]", "").replace("[", "")
|
logging.info(f' No frames were interpolated because \'interpolation_kind\' was set to none. ')
|
||||||
logging.info(f' Frames {interp_str} were interpolated.')
|
|
||||||
if len(list(non_interp_frames[idx]))>0:
|
mean_error_px = np.around(error[n]['mean'].mean(), decimals=1)
|
||||||
noninterp_str = str(non_interp_frames[idx]).replace(":", " to ").replace("'", "").replace("]", "").replace("[", "")
|
mean_error_mm = np.around(mean_error_px * Dm / fm *1000, decimals=1)
|
||||||
logging.info(f' Frames {non_interp_frames[idx]} could not be interpolated: consider adjusting thresholds.')
|
mean_cam_excluded = np.around(nb_cams_excluded[n]['mean'].mean(), decimals=2)
|
||||||
|
|
||||||
|
logging.info(f'\n--> Mean reprojection error for all points on all frames is {mean_error_px} px, which roughly corresponds to {mean_error_mm} mm. ')
|
||||||
|
logging.info(f'Cameras were excluded if likelihood was below {likelihood_threshold} and if the reprojection error was above {error_threshold_triangulation} px.')
|
||||||
|
logging.info(f'In average, {mean_cam_excluded} cameras had to be excluded to reach these thresholds.')
|
||||||
|
|
||||||
|
cam_excluded_count[n] = {i: v for i, v in zip(cam_names, cam_excluded_count[n].values())}
|
||||||
|
cam_excluded_count[n] = {i: cam_excluded_count[n][i] for i in sorted(cam_excluded_count[n].keys())}
|
||||||
|
str_cam_excluded_count = ''
|
||||||
|
for i, (k, v) in enumerate(cam_excluded_count[n].items()):
|
||||||
|
if i ==0:
|
||||||
|
str_cam_excluded_count += f'Camera {k} was excluded {int(np.round(v*100))}% of the time, '
|
||||||
|
elif i == len(cam_excluded_count[n])-1:
|
||||||
|
str_cam_excluded_count += f'and Camera {k}: {int(np.round(v*100))}%.'
|
||||||
else:
|
else:
|
||||||
logging.info(f' No frames were interpolated because \'interpolation_kind\' was set to none. ')
|
str_cam_excluded_count += f'Camera {k}: {int(np.round(v*100))}%, '
|
||||||
|
logging.info(str_cam_excluded_count)
|
||||||
|
logging.info(f'\n3D coordinates are stored at {trc_path[n]}.')
|
||||||
|
|
||||||
mean_error_px = np.around(error['mean'].mean(), decimals=1)
|
logging.info(f'\n\nLimb swapping was {"handled" if handle_LR_swap else "not handled"}.')
|
||||||
mean_error_mm = np.around(mean_error_px * Dm / fm *1000, decimals=1)
|
|
||||||
mean_cam_excluded = np.around(nb_cams_excluded['mean'].mean(), decimals=2)
|
|
||||||
|
|
||||||
logging.info(f'\n--> Mean reprojection error for all points on all frames is {mean_error_px} px, which roughly corresponds to {mean_error_mm} mm. ')
|
|
||||||
logging.info(f'Cameras were excluded if likelihood was below {likelihood_threshold} and if the reprojection error was above {error_threshold_triangulation} px.')
|
|
||||||
logging.info(f'In average, {mean_cam_excluded} cameras had to be excluded to reach these thresholds.')
|
|
||||||
cam_excluded_count = {i: v for i, v in zip(cam_names, cam_excluded_count.values())}
|
|
||||||
str_cam_excluded_count = ''
|
|
||||||
for i, (k, v) in enumerate(cam_excluded_count.items()):
|
|
||||||
if i ==0:
|
|
||||||
str_cam_excluded_count += f'Camera {k} was excluded {int(np.round(v*100))}% of the time, '
|
|
||||||
elif i == len(cam_excluded_count)-1:
|
|
||||||
str_cam_excluded_count += f'and Camera {k}: {int(np.round(v*100))}%.'
|
|
||||||
else:
|
|
||||||
str_cam_excluded_count += f'Camera {k}: {int(np.round(v*100))}%, '
|
|
||||||
logging.info(str_cam_excluded_count)
|
|
||||||
|
|
||||||
logging.info(f'Limb swapping was {"handled" if handle_LR_swap else "not handled"}.')
|
|
||||||
logging.info(f'Lens distortions were {"taken into account" if undistort_points else "not taken into account"}.')
|
logging.info(f'Lens distortions were {"taken into account" if undistort_points else "not taken into account"}.')
|
||||||
|
|
||||||
logging.info(f'\n3D coordinates are stored at {trc_path}.')
|
|
||||||
|
|
||||||
|
|
||||||
def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, projection_matrices, calib_params):
|
def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, projection_matrices, calib_params):
|
||||||
'''
|
'''
|
||||||
@ -481,7 +490,7 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
|
|||||||
return Q, error_min, nb_cams_excluded, id_excluded_cams
|
return Q, error_min, nb_cams_excluded, id_excluded_cams
|
||||||
|
|
||||||
|
|
||||||
def extract_files_frame_f(json_tracked_files_f, keypoints_ids):
|
def extract_files_frame_f(json_tracked_files_f, keypoints_ids, nb_persons_to_detect):
|
||||||
'''
|
'''
|
||||||
Extract data from json files for frame f,
|
Extract data from json files for frame f,
|
||||||
in the order of the body model hierarchy.
|
in the order of the body model hierarchy.
|
||||||
@ -489,32 +498,34 @@ def extract_files_frame_f(json_tracked_files_f, keypoints_ids):
|
|||||||
INPUTS:
|
INPUTS:
|
||||||
- json_tracked_files_f: list of str. Paths of json_files for frame f.
|
- json_tracked_files_f: list of str. Paths of json_files for frame f.
|
||||||
- keypoints_ids: list of int. Keypoints IDs in the order of the hierarchy.
|
- keypoints_ids: list of int. Keypoints IDs in the order of the hierarchy.
|
||||||
|
- nb_persons_to_detect: int
|
||||||
|
|
||||||
OUTPUTS:
|
OUTPUTS:
|
||||||
- x_files, y_files, likelihood_files: array:
|
- x_files, y_files, likelihood_files: [[[list of coordinates] * n_cams ] * nb_persons_to_detect]
|
||||||
n_cams lists of n_keypoints lists of coordinates.
|
|
||||||
'''
|
'''
|
||||||
|
|
||||||
n_cams = len(json_tracked_files_f)
|
n_cams = len(json_tracked_files_f)
|
||||||
|
|
||||||
x_files, y_files, likelihood_files = [], [], []
|
x_files = [[] for n in range(nb_persons_to_detect)]
|
||||||
for cam_nb in range(n_cams):
|
y_files = [[] for n in range(nb_persons_to_detect)]
|
||||||
x_files_cam, y_files_cam, likelihood_files_cam = [], [], []
|
likelihood_files = [[] for n in range(nb_persons_to_detect)]
|
||||||
with open(json_tracked_files_f[cam_nb], 'r') as json_f:
|
for n in range(nb_persons_to_detect):
|
||||||
js = json.load(json_f)
|
for cam_nb in range(n_cams):
|
||||||
for keypoint_id in keypoints_ids:
|
x_files_cam, y_files_cam, likelihood_files_cam = [], [], []
|
||||||
try:
|
with open(json_tracked_files_f[cam_nb], 'r') as json_f:
|
||||||
x_files_cam.append( js['people'][0]['pose_keypoints_2d'][keypoint_id*3] )
|
js = json.load(json_f)
|
||||||
y_files_cam.append( js['people'][0]['pose_keypoints_2d'][keypoint_id*3+1] )
|
for keypoint_id in keypoints_ids:
|
||||||
likelihood_files_cam.append( js['people'][0]['pose_keypoints_2d'][keypoint_id*3+2] )
|
try:
|
||||||
except:
|
x_files_cam.append( js['people'][n]['pose_keypoints_2d'][keypoint_id*3] )
|
||||||
x_files_cam.append( np.nan )
|
y_files_cam.append( js['people'][n]['pose_keypoints_2d'][keypoint_id*3+1] )
|
||||||
y_files_cam.append( np.nan )
|
likelihood_files_cam.append( js['people'][n]['pose_keypoints_2d'][keypoint_id*3+2] )
|
||||||
likelihood_files_cam.append( np.nan )
|
except:
|
||||||
|
x_files_cam.append( np.nan )
|
||||||
x_files.append(x_files_cam)
|
y_files_cam.append( np.nan )
|
||||||
y_files.append(y_files_cam)
|
likelihood_files_cam.append( np.nan )
|
||||||
likelihood_files.append(likelihood_files_cam)
|
x_files[n].append(x_files_cam)
|
||||||
|
y_files[n].append(y_files_cam)
|
||||||
|
likelihood_files[n].append(likelihood_files_cam)
|
||||||
|
|
||||||
x_files = np.array(x_files)
|
x_files = np.array(x_files)
|
||||||
y_files = np.array(y_files)
|
y_files = np.array(y_files)
|
||||||
@ -599,10 +610,12 @@ def triangulate_all(config):
|
|||||||
json_files_names = [natural_sort(j) for j in json_files_names]
|
json_files_names = [natural_sort(j) for j in json_files_names]
|
||||||
json_tracked_files = [[os.path.join(pose_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)]
|
json_tracked_files = [[os.path.join(pose_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)]
|
||||||
|
|
||||||
# Triangulation
|
# Prep triangulation
|
||||||
f_range = [[0,min([len(j) for j in json_files_names])] if frame_range==[] else frame_range][0]
|
f_range = [[0,min([len(j) for j in json_files_names])] if frame_range==[] else frame_range][0]
|
||||||
frames_nb = f_range[1]-f_range[0]
|
frames_nb = f_range[1]-f_range[0]
|
||||||
|
|
||||||
|
nb_persons_to_detect = max([len(json.load(open(json_fname))['people']) for json_fname in json_tracked_files[0]])
|
||||||
|
|
||||||
n_cams = len(json_dirs_names)
|
n_cams = len(json_dirs_names)
|
||||||
|
|
||||||
# Check that camera number is consistent between calibration file and pose folders
|
# Check that camera number is consistent between calibration file and pose folders
|
||||||
@ -611,78 +624,103 @@ def triangulate_all(config):
|
|||||||
Found {len(P)} cameras in the calibration file,\
|
Found {len(P)} cameras in the calibration file,\
|
||||||
and {n_cams} cameras based on the number of pose folders.')
|
and {n_cams} cameras based on the number of pose folders.')
|
||||||
|
|
||||||
|
# Triangulation
|
||||||
Q_tot, error_tot, nb_cams_excluded_tot,id_excluded_cams_tot = [], [], [], []
|
Q_tot, error_tot, nb_cams_excluded_tot,id_excluded_cams_tot = [], [], [], []
|
||||||
for f in tqdm(range(*f_range)):
|
for f in tqdm(range(*f_range)):
|
||||||
# Get x,y,likelihood values from files
|
# Get x,y,likelihood values from files
|
||||||
json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)]
|
json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)]
|
||||||
# print(json_tracked_files_f)
|
# print(json_tracked_files_f)
|
||||||
x_files, y_files, likelihood_files = extract_files_frame_f(json_tracked_files_f, keypoints_ids)
|
x_files, y_files, likelihood_files = extract_files_frame_f(json_tracked_files_f, keypoints_ids, nb_persons_to_detect)
|
||||||
|
# [[[list of coordinates] * n_cams ] * nb_persons_to_detect]
|
||||||
|
# vs. [[list of coordinates] * n_cams ]
|
||||||
|
|
||||||
# undistort points
|
# undistort points
|
||||||
if undistort_points:
|
if undistort_points:
|
||||||
points = [np.array(tuple(zip(x_files[i],y_files[i]))).reshape(-1, 1, 2).astype('float32') for i in range(n_cams)]
|
for n in range(nb_persons_to_detect):
|
||||||
undistorted_points = [cv2.undistortPoints(points[i], calib_params['K'][i], calib_params['dist'][i], None, calib_params['optim_K'][i]) for i in range(n_cams)]
|
points = [np.array(tuple(zip(x_files[n][i],y_files[n][i]))).reshape(-1, 1, 2).astype('float32') for i in range(n_cams)]
|
||||||
x_files = np.array([[u[i][0][0] for i in range(len(u))] for u in undistorted_points])
|
undistorted_points = [cv2.undistortPoints(points[i], calib_params['K'][i], calib_params['dist'][i], None, calib_params['optim_K'][i]) for i in range(n_cams)]
|
||||||
y_files = np.array([[u[i][0][1] for i in range(len(u))] for u in undistorted_points])
|
x_files[n] = np.array([[u[i][0][0] for i in range(len(u))] for u in undistorted_points])
|
||||||
# This is good for slight distortion. For fishey camera, the model does not work anymore. See there for an example https://github.com/lambdaloop/aniposelib/blob/d03b485c4e178d7cff076e9fe1ac36837db49158/aniposelib/cameras.py#L301
|
y_files[n] = np.array([[u[i][0][1] for i in range(len(u))] for u in undistorted_points])
|
||||||
|
# This is good for slight distortion. For fisheye camera, the model does not work anymore. See there for an example https://github.com/lambdaloop/aniposelib/blob/d03b485c4e178d7cff076e9fe1ac36837db49158/aniposelib/cameras.py#L301
|
||||||
|
|
||||||
# Replace likelihood by 0 if under likelihood_threshold
|
# Replace likelihood by 0 if under likelihood_threshold
|
||||||
with np.errstate(invalid='ignore'):
|
with np.errstate(invalid='ignore'):
|
||||||
x_files[likelihood_files<likelihood_threshold] = np.nan
|
for n in range(nb_persons_to_detect):
|
||||||
y_files[likelihood_files<likelihood_threshold] = np.nan
|
x_files[n][likelihood_files[n] < likelihood_threshold] = np.nan
|
||||||
likelihood_files[likelihood_files<likelihood_threshold] = np.nan
|
y_files[n][likelihood_files[n] < likelihood_threshold] = np.nan
|
||||||
|
likelihood_files[n][likelihood_files[n] < likelihood_threshold] = np.nan
|
||||||
|
|
||||||
Q, error, nb_cams_excluded, id_excluded_cams = [], [], [], []
|
Q = [[] for n in range(nb_persons_to_detect)]
|
||||||
for keypoint_idx in keypoints_idx:
|
error = [[] for n in range(nb_persons_to_detect)]
|
||||||
# Triangulate cameras with min reprojection error
|
nb_cams_excluded = [[] for n in range(nb_persons_to_detect)]
|
||||||
# print('\n', keypoints_names[keypoint_idx])
|
id_excluded_cams = [[] for n in range(nb_persons_to_detect)]
|
||||||
coords_2D_kpt = np.array( (x_files[:, keypoint_idx], y_files[:, keypoint_idx], likelihood_files[:, keypoint_idx]) )
|
for n in range(nb_persons_to_detect):
|
||||||
coords_2D_kpt_swapped = np.array(( x_files[:, keypoints_idx_swapped[keypoint_idx]], y_files[:, keypoints_idx_swapped[keypoint_idx]], likelihood_files[:, keypoints_idx_swapped[keypoint_idx]] ))
|
for keypoint_idx in keypoints_idx:
|
||||||
|
# Triangulate cameras with min reprojection error
|
||||||
|
# print('\n', keypoints_names[keypoint_idx])
|
||||||
|
coords_2D_kpt = np.array( (x_files[n][:, keypoint_idx], y_files[n][:, keypoint_idx], likelihood_files[n][:, keypoint_idx]) )
|
||||||
|
coords_2D_kpt_swapped = np.array(( x_files[n][:, keypoints_idx_swapped[keypoint_idx]], y_files[n][:, keypoints_idx_swapped[keypoint_idx]], likelihood_files[n][:, keypoints_idx_swapped[keypoint_idx]] ))
|
||||||
|
|
||||||
Q_kpt, error_kpt, nb_cams_excluded_kpt, id_excluded_cams_kpt = triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, P, calib_params) # P has been modified if undistort_points=True
|
Q_kpt, error_kpt, nb_cams_excluded_kpt, id_excluded_cams_kpt = triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, P, calib_params) # P has been modified if undistort_points=True
|
||||||
|
|
||||||
Q.append(Q_kpt)
|
Q[n].append(Q_kpt)
|
||||||
error.append(error_kpt)
|
error[n].append(error_kpt)
|
||||||
nb_cams_excluded.append(nb_cams_excluded_kpt)
|
nb_cams_excluded[n].append(nb_cams_excluded_kpt)
|
||||||
id_excluded_cams.append(id_excluded_cams_kpt)
|
id_excluded_cams[n].append(id_excluded_cams_kpt)
|
||||||
|
|
||||||
# Add triangulated points, errors and excluded cameras to pandas dataframes
|
# Add triangulated points, errors and excluded cameras to pandas dataframes
|
||||||
Q_tot.append(np.concatenate(Q))
|
Q_tot.append([np.concatenate(Q[n]) for n in range(nb_persons_to_detect)])
|
||||||
error_tot.append(error)
|
error_tot.append([error[n] for n in range(nb_persons_to_detect)])
|
||||||
nb_cams_excluded_tot.append(nb_cams_excluded)
|
nb_cams_excluded_tot.append([nb_cams_excluded[n] for n in range(nb_persons_to_detect)])
|
||||||
id_excluded_cams = [item for sublist in id_excluded_cams for item in sublist]
|
id_excluded_cams = [[id_excluded_cams[n][k] for k in range(keypoints_nb)] for n in range(nb_persons_to_detect)]
|
||||||
id_excluded_cams_tot.append(id_excluded_cams)
|
id_excluded_cams_tot.append(id_excluded_cams)
|
||||||
|
|
||||||
Q_tot = pd.DataFrame(Q_tot)
|
Q_tot = [pd.DataFrame([Q_tot[f][n] for f in range(*f_range)]) for n in range(nb_persons_to_detect)]
|
||||||
error_tot = pd.DataFrame(error_tot)
|
error_tot = [pd.DataFrame([error_tot[f][n] for f in range(*f_range)]) for n in range(nb_persons_to_detect)]
|
||||||
nb_cams_excluded_tot = pd.DataFrame(nb_cams_excluded_tot)
|
nb_cams_excluded_tot = [pd.DataFrame([nb_cams_excluded_tot[f][n] for f in range(*f_range)]) for n in range(nb_persons_to_detect)]
|
||||||
|
id_excluded_cams_tot = [pd.DataFrame([id_excluded_cams_tot[f][n] for f in range(*f_range)]) for n in range(nb_persons_to_detect)]
|
||||||
|
|
||||||
id_excluded_cams_tot = [item for sublist in id_excluded_cams_tot for item in sublist]
|
for n in range(nb_persons_to_detect):
|
||||||
cam_excluded_count = dict(Counter(id_excluded_cams_tot))
|
error_tot[n]['mean'] = error_tot[n].mean(axis = 1)
|
||||||
cam_excluded_count.update((x, y/keypoints_nb/frames_nb) for x, y in cam_excluded_count.items())
|
nb_cams_excluded_tot[n]['mean'] = nb_cams_excluded_tot[n].mean(axis = 1)
|
||||||
|
|
||||||
error_tot['mean'] = error_tot.mean(axis = 1)
|
# Delete participants with less than 4 valid triangulated frames
|
||||||
nb_cams_excluded_tot['mean'] = nb_cams_excluded_tot.mean(axis = 1)
|
# for each person, for each keypoint, frames to interpolate
|
||||||
|
zero_nan_frames = [np.where( Q_tot[n].iloc[:,::3].T.eq(0) | ~np.isfinite(Q_tot[n].iloc[:,::3].T) ) for n in range(nb_persons_to_detect)]
|
||||||
|
zero_nan_frames_per_kpt = [[zero_nan_frames[n][1][np.where(zero_nan_frames[n][0]==k)[0]] for k in range(keypoints_nb)] for n in range(nb_persons_to_detect)]
|
||||||
|
non_nan_nb_first_kpt = [frames_nb - len(zero_nan_frames_per_kpt[n][0]) for n in range(nb_persons_to_detect)]
|
||||||
|
deleted_person_id = [n for n in range(len(non_nan_nb_first_kpt)) if non_nan_nb_first_kpt[n]<4]
|
||||||
|
|
||||||
# Optionally, for each keypoint, show indices of frames that should be interpolated
|
Q_tot = [Q_tot[n] for n in range(len(Q_tot)) if n not in deleted_person_id]
|
||||||
|
error_tot = [error_tot[n] for n in range(len(error_tot)) if n not in deleted_person_id]
|
||||||
|
nb_cams_excluded_tot = [nb_cams_excluded_tot[n] for n in range(len(nb_cams_excluded_tot)) if n not in deleted_person_id]
|
||||||
|
id_excluded_cams_tot = [id_excluded_cams_tot[n] for n in range(len(id_excluded_cams_tot)) if n not in deleted_person_id]
|
||||||
|
nb_persons_to_detect = len(Q_tot)
|
||||||
|
|
||||||
|
# IDs of excluded cameras
|
||||||
|
# id_excluded_cams_tot = [np.concatenate([id_excluded_cams_tot[f][k] for f in range(frames_nb)]) for k in range(keypoints_nb)]
|
||||||
|
id_excluded_cams_tot = [np.hstack(np.hstack(np.array(id_excluded_cams_tot[n]))) for n in range(nb_persons_to_detect)]
|
||||||
|
cam_excluded_count = [dict(Counter(k)) for k in id_excluded_cams_tot]
|
||||||
|
[cam_excluded_count[n].update((x, y/frames_nb/keypoints_nb) for x, y in cam_excluded_count[n].items()) for n in range(nb_persons_to_detect)]
|
||||||
|
|
||||||
|
# Optionally, for each person, for each keypoint, show indices of frames that should be interpolated
|
||||||
if show_interp_indices:
|
if show_interp_indices:
|
||||||
zero_nan_frames = np.where( Q_tot.iloc[:,::3].T.eq(0) | ~np.isfinite(Q_tot.iloc[:,::3].T) )
|
gaps = [[np.where(np.diff(zero_nan_frames_per_kpt[n][k]) > 1)[0] + 1 for k in range(keypoints_nb)] for n in range(nb_persons_to_detect)]
|
||||||
zero_nan_frames_per_kpt = [zero_nan_frames[1][np.where(zero_nan_frames[0]==k)[0]] for k in range(keypoints_nb)]
|
sequences = [[np.split(zero_nan_frames_per_kpt[n][k], gaps[n][k]) for k in range(keypoints_nb)] for n in range(nb_persons_to_detect)]
|
||||||
gaps = [np.where(np.diff(zero_nan_frames_per_kpt[k]) > 1)[0] + 1 for k in range(keypoints_nb)]
|
interp_frames = [[[f'{seq[0]}:{seq[-1]}' for seq in seq_kpt if len(seq)<=interp_gap_smaller_than and len(seq)>0] for seq_kpt in sequences[n]] for n in range(nb_persons_to_detect)]
|
||||||
sequences = [np.split(zero_nan_frames_per_kpt[k], gaps[k]) for k in range(keypoints_nb)]
|
non_interp_frames = [[[f'{seq[0]}:{seq[-1]}' for seq in seq_kpt if len(seq)>interp_gap_smaller_than] for seq_kpt in sequences[n]] for n in range(nb_persons_to_detect)]
|
||||||
interp_frames = [[f'{seq[0]}:{seq[-1]+1}' for seq in seq_kpt if len(seq)<=interp_gap_smaller_than and len(seq)>0] for seq_kpt in sequences]
|
|
||||||
non_interp_frames = [[f'{seq[0]}:{seq[-1]+1}' for seq in seq_kpt if len(seq)>interp_gap_smaller_than] for seq_kpt in sequences]
|
|
||||||
else:
|
else:
|
||||||
interp_frames = None
|
interp_frames = None
|
||||||
non_interp_frames = []
|
non_interp_frames = []
|
||||||
|
|
||||||
# Interpolate missing values
|
# Interpolate missing values
|
||||||
if interpolation_kind != 'none':
|
if interpolation_kind != 'none':
|
||||||
Q_tot = Q_tot.apply(interpolate_zeros_nans, axis=0, args = [interp_gap_smaller_than, interpolation_kind])
|
for n in range(nb_persons_to_detect):
|
||||||
|
Q_tot[n].apply(interpolate_zeros_nans, axis=0, args = [interp_gap_smaller_than, interpolation_kind])
|
||||||
# Q_tot.replace(np.nan, 0, inplace=True)
|
# Q_tot.replace(np.nan, 0, inplace=True)
|
||||||
|
|
||||||
# Create TRC file
|
# Create TRC file
|
||||||
trc_path = make_trc(config, Q_tot, keypoints_names, f_range)
|
trc_paths = [make_trc(config, Q_tot[n], keypoints_names, f_range, id_person=n) for n in range(len(Q_tot))]
|
||||||
|
|
||||||
# Recap message
|
# Recap message
|
||||||
recap_triangulate(config, error_tot, nb_cams_excluded_tot, keypoints_names, cam_excluded_count, interp_frames, non_interp_frames, trc_path)
|
recap_triangulate(config, error_tot, nb_cams_excluded_tot, keypoints_names, cam_excluded_count, interp_frames, non_interp_frames, trc_paths)
|
||||||
|
Loading…
Reference in New Issue
Block a user