works in cases where almost all cameras are bad - still disto to be tested
This commit is contained in:
parent
778b880bad
commit
6f26819827
@ -300,9 +300,11 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
|
||||
x_files_swapped, y_files_swapped, likelihood_files_swapped = coords_2D_kpt_swapped
|
||||
n_cams = len(x_files)
|
||||
error_min = np.inf
|
||||
nb_cams_off = 0 # cameras will be taken-off until reprojection error is under threshold
|
||||
|
||||
nb_cams_off = 0 # cameras will be taken-off until reprojection error is under threshold
|
||||
# print('\n')
|
||||
while error_min > error_threshold_triangulation and n_cams - nb_cams_off >= min_cameras_for_triangulation:
|
||||
# print("error min ", error_min, "thresh ", error_threshold_triangulation, 'nb_cams_off ', nb_cams_off)
|
||||
# Create subsets with "nb_cams_off" cameras excluded
|
||||
id_cams_off = np.array(list(it.combinations(range(n_cams), nb_cams_off)))
|
||||
|
||||
@ -331,9 +333,11 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
|
||||
id_cams_off_tot = [np.argwhere(np.isnan(x)).ravel() for x in likelihood_files_filt]
|
||||
nb_cams_excluded_filt = [np.count_nonzero(np.nan_to_num(x)==0) for x in likelihood_files_filt] # count nans and zeros
|
||||
nb_cams_off_tot = max(nb_cams_excluded_filt)
|
||||
# print('likelihood_files_filt ',likelihood_files_filt)
|
||||
# print('nb_cams_excluded_filt ', nb_cams_excluded_filt, 'nb_cams_off_tot ', nb_cams_off_tot)
|
||||
if nb_cams_off_tot > n_cams - min_cameras_for_triangulation:
|
||||
break
|
||||
|
||||
# print('still in loop')
|
||||
if undistort_points:
|
||||
calib_params_K_filt = [ [ c[i] for i in range(n_cams) if not np.isnan(likelihood_files_filt[j][i]) and not likelihood_files_filt[j][i]==0. ] for j, c in enumerate(calib_params_K_filt) ]
|
||||
calib_params_dist_filt = [ [ c[i] for i in range(n_cams) if not np.isnan(likelihood_files_filt[j][i]) and not likelihood_files_filt[j][i]==0. ] for j, c in enumerate(calib_params_dist_filt) ]
|
||||
@ -341,12 +345,22 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
|
||||
calib_params_T_filt = [ [ c[i] for i in range(n_cams) if not np.isnan(likelihood_files_filt[j][i]) and not likelihood_files_filt[j][i]==0. ] for j, c in enumerate(calib_params_T_filt) ]
|
||||
projection_matrices_filt = [ [ p[i] for i in range(n_cams) if not np.isnan(likelihood_files_filt[j][i]) and not likelihood_files_filt[j][i]==0. ] for j, p in enumerate(projection_matrices_filt) ]
|
||||
|
||||
# print('\nnb_cams_off', repr(nb_cams_off), 'nb_cams_excluded', repr(nb_cams_excluded_filt))
|
||||
# print('likelihood_files ', repr(likelihood_files))
|
||||
# print('y_files ', repr(y_files))
|
||||
# print('x_files ', repr(x_files))
|
||||
# print('x_files_swapped ', repr(x_files_swapped))
|
||||
# print('likelihood_files_filt ', repr(likelihood_files_filt))
|
||||
# print('x_files_filt ', repr(x_files_filt))
|
||||
# print('id_cams_off_tot ', id_cams_off_tot)
|
||||
|
||||
x_files_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(likelihood_files_filt[i][ii]) and not likelihood_files_filt[i][ii]==0. ]) for i,x in enumerate(x_files_filt) ]
|
||||
y_files_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(likelihood_files_filt[i][ii]) and not likelihood_files_filt[i][ii]==0. ]) for i,x in enumerate(y_files_filt) ]
|
||||
x_files_swapped_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(likelihood_files_filt[i][ii]) and not likelihood_files_filt[i][ii]==0. ]) for i,x in enumerate(x_files_swapped_filt) ]
|
||||
y_files_swapped_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(likelihood_files_filt[i][ii]) and not likelihood_files_filt[i][ii]==0. ]) for i,x in enumerate(y_files_swapped_filt) ]
|
||||
likelihood_files_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(xx) and not xx==0. ]) for x in likelihood_files_filt ]
|
||||
|
||||
# print('y_files_filt ', repr(y_files_filt))
|
||||
# print('x_files_filt ', repr(x_files_filt))
|
||||
# Triangulate 2D points
|
||||
Q_filt = [weighted_triangulation(projection_matrices_filt[i], x_files_filt[i], y_files_filt[i], likelihood_files_filt[i]) for i in range(len(id_cams_off))]
|
||||
|
||||
@ -360,6 +374,7 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
|
||||
coords_2D_kpt_calc_filt = [reprojection(projection_matrices_filt[i], Q_filt[i]) for i in range(len(id_cams_off))]
|
||||
coords_2D_kpt_calc_filt = np.array(coords_2D_kpt_calc_filt, dtype=object)
|
||||
x_calc_filt = coords_2D_kpt_calc_filt[:,0]
|
||||
# print('x_calc_filt ', x_calc_filt)
|
||||
y_calc_filt = coords_2D_kpt_calc_filt[:,1]
|
||||
|
||||
# Reprojection error
|
||||
@ -368,9 +383,11 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
|
||||
q_file = [(x_files_filt[config_off_id][i], y_files_filt[config_off_id][i]) for i in range(len(x_files_filt[config_off_id]))]
|
||||
q_calc = [(x_calc_filt[config_off_id][i], y_calc_filt[config_off_id][i]) for i in range(len(x_calc_filt[config_off_id]))]
|
||||
error.append( np.mean( [euclidean_distance(q_file[i], q_calc[i]) for i in range(len(q_file))] ) )
|
||||
# print('error ', error)
|
||||
|
||||
# Choosing best triangulation (with min reprojection error)
|
||||
error_min = np.nanmin(error)
|
||||
# print(error_min)
|
||||
best_cams = np.argmin(error)
|
||||
nb_cams_excluded = nb_cams_excluded_filt[best_cams]
|
||||
|
||||
@ -382,17 +399,22 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
|
||||
n_cams_swapped = 1
|
||||
error_off_swap_min = error_min
|
||||
while error_off_swap_min > error_threshold_triangulation and n_cams_swapped < (n_cams - nb_cams_off_tot) / 2: # more than half of the cameras switched: may triangulate twice the same side
|
||||
# print('SWAP: nb_cams_off ', nb_cams_off, 'n_cams_swapped ', n_cams_swapped, 'nb_cams_off_tot ', nb_cams_off_tot)
|
||||
# Create subsets
|
||||
id_cams_swapped = np.array(list(it.combinations(range(n_cams-nb_cams_off_tot), n_cams_swapped)))
|
||||
x_files_filt_off_swap = np.array([[x] * len(id_cams_swapped) for x in x_files_filt])
|
||||
y_files_filt_off_swap = np.array([[y] * len(id_cams_swapped) for y in y_files_filt])
|
||||
# print('id_cams_swapped ', id_cams_swapped)
|
||||
x_files_filt_off_swap = [[x] * len(id_cams_swapped) for x in x_files_filt]
|
||||
y_files_filt_off_swap = [[y] * len(id_cams_swapped) for y in y_files_filt]
|
||||
# print('x_files_filt_off_swap ', x_files_filt_off_swap)
|
||||
# print('y_files_filt_off_swap ', y_files_filt_off_swap)
|
||||
for id_off in range(len(id_cams_off)): # for each configuration with nb_cams_off_tot removed
|
||||
for id_swapped, config_swapped in enumerate(id_cams_swapped): # for each of these configurations, test all subconfigurations with with n_cams_swapped swapped
|
||||
x_files_filt_off_swap[id_off][id_swapped, config_swapped] = x_files_swapped_filt[id_off][config_swapped]
|
||||
y_files_filt_off_swap[id_off][id_swapped, config_swapped] = y_files_swapped_filt[id_off][config_swapped]
|
||||
# print('id_off ', id_off, 'id_swapped ', id_swapped, 'config_swapped ', config_swapped)
|
||||
x_files_filt_off_swap[id_off][id_swapped][config_swapped] = x_files_swapped_filt[id_off][config_swapped]
|
||||
y_files_filt_off_swap[id_off][id_swapped][config_swapped] = y_files_swapped_filt[id_off][config_swapped]
|
||||
|
||||
# Triangulate 2D points
|
||||
Q_filt_off_swap = np.array([[weighted_triangulation(projection_matrices_filt[id_off], x_files_filt_off_swap[id_off, id_swapped], y_files_filt_off_swap[id_off, id_swapped], likelihood_files_filt[id_off])
|
||||
Q_filt_off_swap = np.array([[weighted_triangulation(projection_matrices_filt[id_off], x_files_filt_off_swap[id_off][id_swapped], y_files_filt_off_swap[id_off][id_swapped], likelihood_files_filt[id_off])
|
||||
for id_swapped in range(len(id_cams_swapped))]
|
||||
for id_off in range(len(id_cams_off))] )
|
||||
|
||||
@ -413,15 +435,20 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
|
||||
y_calc_off_swap = coords_2D_kpt_calc_off_swap[:,:,1]
|
||||
|
||||
# Reprojection error
|
||||
# print('x_files_filt_off_swap ', x_files_filt_off_swap)
|
||||
# print('x_calc_off_swap ', x_calc_off_swap)
|
||||
error_off_swap = []
|
||||
for id_off in range(len(id_cams_off)):
|
||||
error_percam = []
|
||||
for id_swapped, config_swapped in enumerate(id_cams_swapped):
|
||||
q_file_off_swap = [(x_files_filt_off_swap[id_off,id_swapped,i], y_files_filt_off_swap[id_off,id_swapped,i]) for i in range(n_cams - nb_cams_off_tot)]
|
||||
q_calc_off_swap = [(x_calc_off_swap[id_off,id_swapped,i], y_calc_off_swap[id_off,id_swapped,i]) for i in range(n_cams - nb_cams_off_tot)]
|
||||
# print(id_off,id_swapped,n_cams,nb_cams_off)
|
||||
# print(repr(x_files_filt_off_swap))
|
||||
q_file_off_swap = [(x_files_filt_off_swap[id_off][id_swapped][i], y_files_filt_off_swap[id_off][id_swapped][i]) for i in range(n_cams - nb_cams_off_tot)]
|
||||
q_calc_off_swap = [(x_calc_off_swap[id_off][id_swapped][i], y_calc_off_swap[id_off][id_swapped][i]) for i in range(n_cams - nb_cams_off_tot)]
|
||||
error_percam.append( np.mean( [euclidean_distance(q_file_off_swap[i], q_calc_off_swap[i]) for i in range(len(q_file_off_swap))] ) )
|
||||
error_off_swap.append(error_percam)
|
||||
error_off_swap = np.array(error_off_swap)
|
||||
# print('error_off_swap ', error_off_swap)
|
||||
|
||||
# Choosing best triangulation (with min reprojection error)
|
||||
error_off_swap_min = np.min(error_off_swap)
|
||||
@ -438,10 +465,16 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
|
||||
best_cams = id_off_cams
|
||||
Q = Q_best
|
||||
|
||||
# print(error_min)
|
||||
nb_cams_off += 1
|
||||
|
||||
# Index of excluded cams for this keypoint
|
||||
id_excluded_cams = id_cams_off_tot[best_cams]
|
||||
if 'best_cams' in locals():
|
||||
id_excluded_cams = id_cams_off_tot[best_cams]
|
||||
else:
|
||||
id_excluded_cams = list(range(n_cams))
|
||||
nb_cams_excluded = n_cams
|
||||
# print('id_excluded_cams ', id_excluded_cams)
|
||||
|
||||
# If triangulation not successful, error = nan, and 3D coordinates as missing values
|
||||
if error_min > error_threshold_triangulation:
|
||||
@ -576,6 +609,7 @@ def triangulate_all(config):
|
||||
for f in tqdm(range(*f_range)):
|
||||
# Get x,y,likelihood values from files
|
||||
json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)]
|
||||
# print(json_tracked_files_f)
|
||||
x_files, y_files, likelihood_files = extract_files_frame_f(json_tracked_files_f, keypoints_ids)
|
||||
|
||||
# undistort points
|
||||
|
Loading…
Reference in New Issue
Block a user