Edits to hunmin's pull request (multi-person synchro)

This commit is contained in:
davidpagnon 2024-10-22 23:18:00 +02:00
parent 3a31bd05fd
commit 704d0a63b7
10 changed files with 392 additions and 55 deletions

BIN
Content/synchro_multi.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

View File

@ -34,7 +34,8 @@ exclude_from_batch = [] # List of trials to be excluded from batch analysis, ['<
[pose] [pose]
vid_img_extension = 'mp4' # any video or image extension vid_img_extension = 'mp4' # any video or image extension
pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands, face. Slower and slightly less accurate on body keypoints but required for wrist motion), COCO_17 (body) # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body)
# /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
#With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file
#With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII #With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII
#With mediapipe: BLAZEPOSE #With mediapipe: BLAZEPOSE

View File

@ -34,7 +34,8 @@
# [pose] # [pose]
# vid_img_extension = 'mp4' # any video or image extension # vid_img_extension = 'mp4' # any video or image extension
# pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands, face), COCO_17 (body) # # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed # pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body) # # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
# #/!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
# #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file # #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file
# #With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII # #With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII
# #With mediapipe: BLAZEPOSE # #With mediapipe: BLAZEPOSE

View File

@ -34,7 +34,8 @@ participant_mass = [70.0, 63.5] # kg # Only used for marker augmentation and sca
# [pose] # [pose]
# vid_img_extension = 'mp4' # any video or image extension # vid_img_extension = 'mp4' # any video or image extension
# pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands, face), COCO_17 (body) # # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed # pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body) # # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
# #/!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
# #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file # #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file
# #With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII # #With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII
# #With mediapipe: BLAZEPOSE # #With mediapipe: BLAZEPOSE

View File

@ -34,7 +34,8 @@ exclude_from_batch = [] # List of trials to be excluded from batch analysis, ['<
[pose] [pose]
vid_img_extension = 'mp4' # any video or image extension vid_img_extension = 'mp4' # any video or image extension
pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands, face. Slower and slightly less accurate on body keypoints but required for wrist motion), COCO_17 (body) # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body)
# /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
#With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file
#With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII #With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII
#With mediapipe: BLAZEPOSE #With mediapipe: BLAZEPOSE
@ -50,8 +51,8 @@ output_format = 'openpose' # 'openpose', 'mmpose', 'deeplabcut', 'none' or a lis
[synchronization] [synchronization]
display_sync_plots = false # true or false (lowercase) display_sync_plots = true # true or false (lowercase)
keypoints_to_consider = 'all' # 'all' if all points should be considered, for example if the participant did not perform any particicular sharp movement. In this case, the capture needs to be 5-10 seconds long at least keypoints_to_consider = ['RWrist'] # 'all' if all points should be considered, for example if the participant did not perform any particicular sharp movement. In this case, the capture needs to be 5-10 seconds long at least
# ['RWrist', 'RElbow'] list of keypoint names if you want to specify keypoints with a sharp vertical motion. # ['RWrist', 'RElbow'] list of keypoint names if you want to specify keypoints with a sharp vertical motion.
approx_time_maxspeed = 'auto' # 'auto' if you want to consider the whole capture (default, slower if long sequences) approx_time_maxspeed = 'auto' # 'auto' if you want to consider the whole capture (default, slower if long sequences)
# [10.0, 2.0, 8.0, 11.0] list of times (seconds) if you want to specify the approximate time of a clear vertical event for each camera # [10.0, 2.0, 8.0, 11.0] list of times (seconds) if you want to specify the approximate time of a clear vertical event for each camera

View File

@ -34,7 +34,8 @@ exclude_from_batch = [] # List of trials to be excluded from batch analysis, ['<
[pose] [pose]
vid_img_extension = 'mp4' # any video or image extension vid_img_extension = 'mp4' # any video or image extension
pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands, face. Slower and slightly less accurate on body keypoints but required for wrist motion), COCO_17 (body) # /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed pose_model = 'HALPE_26' #With RTMLib: HALPE_26 (body and feet, default), COCO_133 (body, feet, hands), COCO_17 (body)
# /!\ Only RTMPose is natively embeded in Pose2Sim. For all other pose estimation methods, you will have to run them yourself, and then refer to the documentation to convert the output files if needed
#With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file #With MMPose: HALPE_26, COCO_133, COCO_17, CUSTOM. See CUSTOM example at the end of the file
#With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII #With openpose: BODY_25B, BODY_25, BODY_135, COCO, MPII
#With mediapipe: BLAZEPOSE #With mediapipe: BLAZEPOSE

View File

@ -9,7 +9,7 @@
Filter trc 3D coordinates. Filter trc 3D coordinates.
Available filters: Butterworth, Butterworth on speed, Gaussian, LOESS, Median Available filters: Butterworth, Butterworth on speed, Gaussian, LOESS, Median, Kalman
Set your parameters in Config.toml Set your parameters in Config.toml
INPUTS: INPUTS:

View File

@ -11,7 +11,7 @@
write the results to JSON files, videos, and/or images. write the results to JSON files, videos, and/or images.
Results can optionally be displayed in real time. Results can optionally be displayed in real time.
Supported models: HALPE_26 (default, body and feet), COCO_133 (body, feet, hands, face), COCO_17 (body) Supported models: HALPE_26 (default, body and feet), COCO_133 (body, feet, hands), COCO_17 (body)
Supported modes: lightweight, balanced, performance (edit paths at rtmlib/tools/solutions if you Supported modes: lightweight, balanced, performance (edit paths at rtmlib/tools/solutions if you
need nother detection or pose models) need nother detection or pose models)
@ -239,7 +239,7 @@ def process_video(video_path, pose_tracker, output_format, save_video, save_imag
if save_images: if save_images:
if not os.path.isdir(img_output_dir): os.makedirs(img_output_dir) if not os.path.isdir(img_output_dir): os.makedirs(img_output_dir)
cv2.imwrite(os.path.join(img_output_dir, f'{video_name_wo_ext}_{frame_idx:06d}.png'), img_show) cv2.imwrite(os.path.join(img_output_dir, f'{video_name_wo_ext}_{frame_idx:06d}.jpg'), img_show)
frame_idx += 1 frame_idx += 1
pbar.update(1) pbar.update(1)
@ -295,7 +295,6 @@ def process_images(image_folder_path, vid_img_extension, pose_tracker, output_fo
f_range = [[len(image_files)] if frame_range==[] else frame_range][0] f_range = [[len(image_files)] if frame_range==[] else frame_range][0]
for frame_idx, image_file in enumerate(tqdm(image_files, desc=f'\nProcessing {os.path.basename(img_output_dir)}')): for frame_idx, image_file in enumerate(tqdm(image_files, desc=f'\nProcessing {os.path.basename(img_output_dir)}')):
if frame_idx in range(*f_range): if frame_idx in range(*f_range):
try: try:
frame = cv2.imread(image_file) frame = cv2.imread(image_file)
except: except:
@ -345,7 +344,7 @@ def rtm_estimator(config_dict):
write the results to JSON files, videos, and/or images. write the results to JSON files, videos, and/or images.
Results can optionally be displayed in real time. Results can optionally be displayed in real time.
Supported models: HALPE_26 (default, body and feet), COCO_133 (body, feet, hands, face), COCO_17 (body) Supported models: HALPE_26 (default, body and feet), COCO_133 (body, feet, hands), COCO_17 (body)
Supported modes: lightweight, balanced, performance (edit paths at rtmlib/tools/solutions if you Supported modes: lightweight, balanced, performance (edit paths at rtmlib/tools/solutions if you
need nother detection or pose models) need nother detection or pose models)
@ -390,13 +389,16 @@ def rtm_estimator(config_dict):
video_files = glob.glob(os.path.join(video_dir, '*'+vid_img_extension)) video_files = glob.glob(os.path.join(video_dir, '*'+vid_img_extension))
frame_rate = config_dict.get('project').get('frame_rate') frame_rate = config_dict.get('project').get('frame_rate')
if frame_rate == 'auto': if frame_rate == 'auto':
cap = cv2.VideoCapture(video_files[0]) try:
if not cap.isOpened(): cap = cv2.VideoCapture(video_files[0])
raise FileNotFoundError(f'Error: Could not open {video_files[0]}. Check that the file exists.') if not cap.isOpened():
frame_rate = cap.get(cv2.CAP_PROP_FPS) raise FileNotFoundError(f'Error: Could not open {video_files[0]}. Check that the file exists.')
if frame_rate == 0: frame_rate = cap.get(cv2.CAP_PROP_FPS)
if frame_rate == 0:
frame_rate = 30
logging.warning(f'Error: Could not retrieve frame rate from {video_files[0]}. Defaulting to 30fps.')
except:
frame_rate = 30 frame_rate = 30
logging.warning(f'Error: Could not retrieve frame rate from {video_files[0]}. Defaulting to 30fps.')
# If CUDA is available, use it with ONNXRuntime backend; else use CPU with openvino # If CUDA is available, use it with ONNXRuntime backend; else use CPU with openvino
try: try:
@ -435,7 +437,7 @@ def rtm_estimator(config_dict):
logging.info(f"Using HALPE_26 model (body and feet) for pose estimation.") logging.info(f"Using HALPE_26 model (body and feet) for pose estimation.")
elif pose_model.upper() == 'COCO_133': elif pose_model.upper() == 'COCO_133':
ModelClass = Wholebody ModelClass = Wholebody
logging.info(f"Using COCO_133 model (body, feet, hands, face, and face) for pose estimation.") logging.info(f"Using COCO_133 model (body, feet, hands, and face) for pose estimation.")
elif pose_model.upper() == 'COCO_17': elif pose_model.upper() == 'COCO_17':
ModelClass = Body # 26 keypoints(halpe26) ModelClass = Body # 26 keypoints(halpe26)
logging.info(f"Using COCO_17 model (body) for pose estimation.") logging.info(f"Using COCO_17 model (body) for pose estimation.")

View File

@ -30,12 +30,13 @@
- synchronized json files for each camera - synchronized json files for each camera
''' '''
## INIT ## INIT
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import cv2 import cv2
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
from matplotlib import patheffects
from scipy import signal from scipy import signal
from scipy import interpolate from scipy import interpolate
import json import json
@ -48,7 +49,7 @@ from anytree import RenderTree
from anytree.importer import DictImporter from anytree.importer import DictImporter
import logging import logging
from Pose2Sim.common import sort_stringlist_by_last_number from Pose2Sim.common import sort_stringlist_by_last_number, bounding_boxes
from Pose2Sim.skeletons import * from Pose2Sim.skeletons import *
@ -64,7 +65,328 @@ __status__ = "Development"
# FUNCTIONS # FUNCTIONS
def convert_json2pandas(json_files, likelihood_threshold=0.6, keypoints_ids=[]): def load_frame_and_bounding_boxes(cap, frame_number, frame_to_json, pose_dir, json_dir_name):
'''
Given a video capture object or a list of image files and a frame number,
load the frame (or image) and corresponding bounding boxes.
INPUTS:
- cap: cv2.VideoCapture object or list of image file paths.
- frame_number: int. The frame number to load.
- frame_to_json: dict. Mapping from frame numbers to JSON file names.
- pose_dir: str. Path to the directory containing pose data.
- json_dir_name: str. Name of the JSON directory for the current camera.
OUTPUTS:
- frame_rgb: The RGB image of the frame or image.
- bounding_boxes_list: List of bounding boxes for the frame/image.
'''
# Case 1: If input is a video file (cv2.VideoCapture object)
if isinstance(cap, cv2.VideoCapture):
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
if not ret:
return None, []
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Case 2: If input is a list of image file paths
elif isinstance(cap, list):
if frame_number >= len(cap):
return None, []
image_path = cap[frame_number]
frame = cv2.imread(image_path)
if frame is None:
return None, []
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
else:
raise ValueError("Input must be either a video capture object or a list of image file paths.")
# Get the corresponding JSON file for bounding boxes
json_file_name = frame_to_json.get(frame_number)
bounding_boxes_list = []
if json_file_name:
json_file_path = os.path.join(pose_dir, json_dir_name, json_file_name)
bounding_boxes_list.extend(bounding_boxes(json_file_path))
return frame_rgb, bounding_boxes_list
def draw_bounding_boxes_and_annotations(ax, bounding_boxes_list, rects, annotations):
'''
Draws the bounding boxes and annotations on the given axes.
INPUTS:
- ax: The axes object to draw on.
- bounding_boxes_list: list of tuples. Each tuple contains (x_min, y_min, x_max, y_max) of a bounding box.
- rects: List to store rectangle patches representing bounding boxes.
- annotations: List to store text annotations for each bounding box.
OUTPUTS:
- None. Modifies rects and annotations in place.
'''
# Clear existing rectangles and annotations
for items in [rects, annotations]:
for item in items:
item.remove()
items.clear()
# Draw bounding boxes and annotations
for idx, (x_min, y_min, x_max, y_max) in enumerate(bounding_boxes_list):
if not np.isfinite([x_min, y_min, x_max, y_max]).all():
continue # Skip invalid bounding boxes for solve issue(posx and posy should be finite values)
rect = plt.Rectangle(
(x_min, y_min), x_max - x_min, y_max - y_min,
linewidth=1, edgecolor='white', facecolor=(1, 1, 1, 0.1),
linestyle='-', path_effects=[patheffects.withSimplePatchShadow()], zorder=2
) # add shadow
ax.add_patch(rect)
rects.append(rect)
annotation = ax.text(
x_min, y_min - 10, f'Person {idx}', color='white', fontsize=7, fontweight='normal',
bbox=dict(facecolor='black', alpha=0.5, boxstyle='round,pad=0.3'), zorder=3
)
annotations.append(annotation)
def reset_styles(rects, annotations):
'''
Resets the styles of the rectangles and annotations to default.
INPUTS:
- rects: List of rectangle patches representing bounding boxes.
- annotations: List of text annotations for each bounding box.
OUTPUTS:
- None. Modifies rects and annotations in place.
'''
for rect, annotation in zip(rects, annotations):
rect.set_linewidth(1)
rect.set_edgecolor('white')
rect.set_facecolor((1, 1, 1, 0.1))
annotation.set_fontsize(7)
annotation.set_fontweight('normal')
def highlight_bounding_box(rect, annotation):
'''
Highlights a rectangle and its annotation.
INPUTS:
- rect: Rectangle patch to highlight.
- annotation: Text annotation to highlight.
OUTPUTS:
- None. Modifies rect and annotation in place.
'''
rect.set_linewidth(2)
rect.set_edgecolor('yellow')
rect.set_facecolor((1, 1, 0, 0.2))
annotation.set_fontsize(8)
annotation.set_fontweight('bold')
def on_hover(event, fig, rects, annotations, bounding_boxes_list):
'''
Highlights the bounding box and annotation when the mouse hovers over a person in the plot.
INPUTS:
- event: The hover event.
- fig: The figure object.
- rects: The rectangles representing bounding boxes.
- annotations: The annotations corresponding to each bounding box.
- bounding_boxes_list: List of tuples containing bounding box coordinates.
OUTPUTS:
- None. This function updates the plot in place.
'''
if event.xdata is None or event.ydata is None:
return
# Reset styles of all rectangles and annotations
reset_styles(rects, annotations)
# Find and highlight the bounding box under the mouse cursor
# remove NaN bounding boxes for make sure matching with rects
bounding_boxes_list = [bbox for bbox in bounding_boxes_list if np.all(np.isfinite(bbox)) and not np.any(np.isnan(bbox))]
for idx, (x_min, y_min, x_max, y_max) in enumerate(bounding_boxes_list):
if x_min <= event.xdata <= x_max and y_min <= event.ydata <= y_max:
highlight_bounding_box(rects[idx], annotations[idx])
break
fig.canvas.draw_idle()
def on_click(event, ax, bounding_boxes_list, selected_idx_container):
'''
Detects if a bounding box is clicked and records the index of the selected person.
INPUTS:
- event: The click event.
- ax: The axes object of the plot.
- bounding_boxes_list: List of tuples containing bounding box coordinates.
- selected_idx_container: List with one element to store the selected person's index.
OUTPUTS:
- None. Updates selected_idx_container[0] with the index of the selected person.
'''
if event.inaxes != ax or event.xdata is None or event.ydata is None:
return
for idx, (x_min, y_min, x_max, y_max) in enumerate(bounding_boxes_list):
if x_min <= event.xdata <= x_max and y_min <= event.ydata <= y_max:
selected_idx_container[0] = idx
plt.close()
break
def update_play(cap, image, slider, frame_to_json, pose_dir, json_dir_name, rects, annotations, bounding_boxes_list, ax, fig):
'''
Updates the plot when the slider value changes.
INPUTS:
- cap: cv2.VideoCapture. The video capture object.
- image: The image object in the plot.
- slider: The slider widget controlling the frame number.
- frame_to_json: dict. Mapping from frame numbers to JSON file names.
- pose_dir: str. Path to the directory containing pose data.
- json_dir_name: str. Name of the JSON directory for the current camera.
- rects: List of rectangle patches representing bounding boxes.
- annotations: List of text annotations for each bounding box.
- bounding_boxes_list: List of tuples to store bounding boxes for the current frame.
- ax: The axes object of the plot.
- fig: The figure object containing the plot.
OUTPUTS:
- None. Updates the plot with the new frame, bounding boxes, and annotations.
'''
frame_number = int(slider.val)
frame_rgb, bounding_boxes_list_new = load_frame_and_bounding_boxes(cap, frame_number, frame_to_json, pose_dir, json_dir_name)
if frame_rgb is None:
return
# Update frame image
image.set_data(frame_rgb)
# Update bounding boxes
bounding_boxes_list.clear()
bounding_boxes_list.extend(bounding_boxes_list_new)
# Draw bounding boxes and annotations
draw_bounding_boxes_and_annotations(ax, bounding_boxes_list, rects, annotations)
fig.canvas.draw_idle()
def get_selected_id_list(multi_person, vid_or_img_files, cam_names, cam_nb, json_files_names_range, search_around_frames, pose_dir, json_dirs_names):
'''
Allows the user to select a person from each camera by clicking on their bounding box in the video frames.
INPUTS:
- multi_person: bool. Indicates whether multiple people are present in the videos.
- vid_or_img_files: list of str. Paths to the video files for each camera or to the image directories for each camera.
- cam_names: list of str. Names of the cameras.
- cam_nb: int. Number of cameras.
- json_files_names_range: list of lists. Each sublist contains JSON file names for a camera.
- search_around_frames: list of tuples. Each tuple contains (start_frame, end_frame) for searching frames.
- pose_dir: str. Path to the directory containing pose data.
- json_dirs_names: list of str. Names of the JSON directories for each camera.
OUTPUTS:
- selected_id_list: list of int or None. List of the selected person indices for each camera.
'''
if not multi_person:
return [None] * cam_nb
else:
logging.info('Multi_person mode: selecting the person to synchronize on for each camera.')
selected_id_list = []
try: # video files
video_files_dict = {cam_name: file for cam_name in cam_names for file in vid_or_img_files if cam_name in os.path.basename(file)}
except: # image directories
video_files_dict = {cam_name: files for cam_name in cam_names for files in vid_or_img_files if cam_name in os.path.basename(files[0])}
for i, cam_name in enumerate(cam_names):
vid_or_img_files_cam = video_files_dict.get(cam_name)
if not vid_or_img_files_cam:
logging.warning(f'No video file nor image directory found for camera {cam_name}')
selected_id_list.append(None)
continue
try:
cap = cv2.VideoCapture(vid_or_img_files_cam)
if not cap.isOpened():
raise
except:
cap = vid_or_img_files_cam
frame_to_json = {int(re.split(r'(\d+)', name)[-2]): name for name in json_files_names_range[i]}
frame_number = search_around_frames[i][0]
frame_rgb, bounding_boxes_list = load_frame_and_bounding_boxes(cap, frame_number, frame_to_json, pose_dir, json_dirs_names[i])
if frame_rgb is None:
logging.warning(f'Cannot read frame {frame_number} from video {vid_or_img_files_cam}')
selected_id_list.append(None)
if isinstance(cap, cv2.VideoCapture):
cap.release()
continue
# Initialize plot
frame_height, frame_width = frame_rgb.shape[:2]
fig_width, fig_height = frame_width / 200, frame_height / 250
fig, ax = plt.subplots(figsize=(fig_width, fig_height))
ax.imshow(frame_rgb)
ax.set_title(f'{cam_name}: select the person to synchronize on', fontsize=10, color='black', pad=15)
ax.axis('off')
rects, annotations = [], []
draw_bounding_boxes_and_annotations(ax, bounding_boxes_list, rects, annotations)
selected_idx_container = [None]
# Event handling
fig.canvas.mpl_connect('motion_notify_event', lambda event: on_hover(event, fig, rects, annotations, bounding_boxes_list))
fig.canvas.mpl_connect('button_press_event', lambda event: on_click(event, ax, bounding_boxes_list, selected_idx_container))
# Add slider
ax_slider = plt.axes([ax.get_position().x0, 0.05, ax.get_position().width, 0.05])
slider = Slider(ax_slider, 'Frame ', search_around_frames[i][0], search_around_frames[i][1] - 1, valinit=frame_number, valfmt='%0.0f')
# Customize slider
slider.label.set_fontsize(10)
slider.poly.set_edgecolor((0, 0, 0, 0.5))
slider.poly.set_facecolor('lightblue')
slider.poly.set_linewidth(1)
# Connect the update function to the slider
slider.on_changed(lambda val: update_play(cap, ax.images[0], slider, frame_to_json, pose_dir, json_dirs_names[i], rects, annotations, bounding_boxes_list, ax, fig))
# Show the plot and handle events
plt.show()
cap.release()
if selected_idx_container[0] == None:
selected_idx_container[0] = 0
logging.warning(f'No person selected for camera {cam_name}: defaulting to person 0')
selected_id_list.append(selected_idx_container[0])
logging.info(f'--> Camera #{i}: selected person #{selected_idx_container[0]}')
logging.info('')
return selected_id_list
def convert_json2pandas(json_files, likelihood_threshold=0.6, keypoints_ids=[], multi_person=False, selected_id=None):
''' '''
Convert a list of JSON files to a pandas DataFrame. Convert a list of JSON files to a pandas DataFrame.
Only takes one person in the JSON file. Only takes one person in the JSON file.
@ -97,16 +419,24 @@ def convert_json2pandas(json_files, likelihood_threshold=0.6, keypoints_ids=[]):
# json_data = np.array([max_confidence_person['pose_keypoints_2d'][3*i:3*i+3] for i in keypoints_ids]) # json_data = np.array([max_confidence_person['pose_keypoints_2d'][3*i:3*i+3] for i in keypoints_ids])
# latest approach: uses person with largest bounding box # latest approach: uses person with largest bounding box
bbox_area = [ if not multi_person:
(keypoints[:, 0].max() - keypoints[:, 0].min()) * (keypoints[:, 1].max() - keypoints[:, 1].min()) bbox_area = [
if 'pose_keypoints_2d' in p else 0 (keypoints[:, 0].max() - keypoints[:, 0].min()) * (keypoints[:, 1].max() - keypoints[:, 1].min())
for p in json_data_all if 'pose_keypoints_2d' in p else 0
for keypoints in [np.array([p['pose_keypoints_2d'][3*i:3*i+3] for i in keypoints_ids])] for p in json_data_all
] for keypoints in [np.array([p['pose_keypoints_2d'][3*i:3*i+3] for i in keypoints_ids])]
max_area_person = json_data_all[np.argmax(bbox_area)] ]
json_data = np.array([max_area_person['pose_keypoints_2d'][3*i:3*i+3] for i in keypoints_ids]) max_area_person = json_data_all[np.argmax(bbox_area)]
json_data = np.array([max_area_person['pose_keypoints_2d'][3*i:3*i+3] for i in keypoints_ids])
# remove points with low confidence elif multi_person:
if selected_id is not None: # We can sfely assume that selected_id is always not greater than len(json_data_all) because padding with 0 was done in the previous step
selected_person = json_data_all[selected_id]
json_data = np.array([selected_person['pose_keypoints_2d'][3*i:3*i+3] for i in keypoints_ids])
else:
json_data = [np.nan] * nb_coords * 3
# Remove points with low confidence
json_data = np.array([j if j[2]>likelihood_threshold else [np.nan, np.nan, np.nan] for j in json_data]).ravel().tolist() json_data = np.array([j if j[2]>likelihood_threshold else [np.nan, np.nan, np.nan] for j in json_data]).ravel().tolist()
except: except:
# print(f'No person found in {os.path.basename(json_dir)}, frame {i}') # print(f'No person found in {os.path.basename(json_dir)}, frame {i}')
@ -274,10 +604,15 @@ def synchronize_cams_all(config_dict):
# Determine frame rate # Determine frame rate
video_dir = os.path.join(project_dir, 'videos') video_dir = os.path.join(project_dir, 'videos')
vid_img_extension = config_dict['pose']['vid_img_extension'] vid_img_extension = config_dict['pose']['vid_img_extension']
video_files = glob.glob(os.path.join(video_dir, '*'+vid_img_extension)) vid_or_img_files = glob.glob(os.path.join(video_dir, '*'+vid_img_extension))
if not vid_or_img_files: # video_files is then img_dirs
image_folders = [f for f in os.listdir(video_dir) if os.path.isdir(os.path.join(video_dir, f))]
for image_folder in image_folders:
vid_or_img_files.append(glob.glob(os.path.join(video_dir, image_folder, '*'+vid_img_extension)))
if fps == 'auto': if fps == 'auto':
try: try:
cap = cv2.VideoCapture(video_files[0]) cap = cv2.VideoCapture(vid_or_img_files[0])
cap.read() cap.read()
if cap.read()[0] == False: if cap.read()[0] == False:
raise raise
@ -286,17 +621,6 @@ def synchronize_cams_all(config_dict):
fps = 60 fps = 60
lag_range = time_range_around_maxspeed*fps # frames lag_range = time_range_around_maxspeed*fps # frames
# Warning if multi_person
if multi_person:
logging.warning('\nYou set your project as a multi-person one: make sure you set `approx_time_maxspeed` and `time_range_around_maxspeed` at times where one single person is in the scene, or you may get inaccurate results.')
do_synchro = input('Do you want to continue? (y/n)')
if do_synchro.lower() not in ["y","yes"]:
logging.warning('Synchronization cancelled.')
return
else:
logging.warning('Synchronization will be attempted.\n')
# Retrieve keypoints from model # Retrieve keypoints from model
try: # from skeletons.py try: # from skeletons.py
model = eval(pose_model) model = eval(pose_model)
@ -363,8 +687,11 @@ def synchronize_cams_all(config_dict):
if np.array([j==[] for j in json_files_names_range]).any(): if np.array([j==[] for j in json_files_names_range]).any():
raise ValueError(f'No json files found within the specified frame range ({frame_range}) at the times {approx_time_maxspeed} +/- {time_range_around_maxspeed} s.') raise ValueError(f'No json files found within the specified frame range ({frame_range}) at the times {approx_time_maxspeed} +/- {time_range_around_maxspeed} s.')
# Handle manual selection if multi person is True
selected_id_list = get_selected_id_list(multi_person, vid_or_img_files, cam_names, cam_nb, json_files_names_range, search_around_frames, pose_dir, json_dirs_names)
for i in range(cam_nb): for i in range(cam_nb):
df_coords.append(convert_json2pandas(json_files_range[i], likelihood_threshold=likelihood_threshold, keypoints_ids=keypoints_ids)) df_coords.append(convert_json2pandas(json_files_range[i], likelihood_threshold=likelihood_threshold, keypoints_ids=keypoints_ids, multi_person=multi_person, selected_id=selected_id_list[i]))
df_coords[i] = drop_col(df_coords[i],3) # drop likelihood df_coords[i] = drop_col(df_coords[i],3) # drop likelihood
if keypoints_to_consider == 'right': if keypoints_to_consider == 'right':
kpt_indices = [i for i in range(len(keypoints_ids)) if keypoints_names[i].startswith('R') or keypoints_names[i].startswith('right')] kpt_indices = [i for i in range(len(keypoints_ids)) if keypoints_names[i].startswith('R') or keypoints_names[i].startswith('right')]

View File

@ -537,7 +537,9 @@ If you already have a calibration file, set `calibration_type` type to `convert`
### Synchronization ### Synchronization
> _**2D points can be triangulated only if they represent the same body position across all cameras: therefore, views need to be synchronized.**_\ > _**2D points can be triangulated only if they represent the same body position across all cameras: therefore, views need to be synchronized.**_\
***N.B.:** Skip this step if your cameras are natively synchronized.* For each camera, this computes mean vertical speed for the chosen keypoints, and finds the time offset for which their correlation is highest.
>***N.B.:** Skip this step if your cameras are natively synchronized.*
Open an Anaconda prompt or a terminal in a `Session` or `Trial` folder.\ Open an Anaconda prompt or a terminal in a `Session` or `Trial` folder.\
Type `ipython`. Type `ipython`.
@ -551,21 +553,22 @@ Pose2Sim.synchronization()
</br> </br>
For each camera, this computes mean vertical speed for the chosen keypoints, and finds the time offset for which their correlation is highest.\ In `multi_person` mode, a video will pop up to let the user choose on which person to synchronize.\
All keypoints can be taken into account, or a subset of them. The user can also specify a time for each camera when the participant is roughly horizontally static but with a clear vertical motion (set `approx_time_maxspeed` and `time_range_around_maxspeed` accordingly). All keypoints can be taken into account, or a subset of them.\
The whole capture can be used for synchronization, or you can choose a time range when the participant is roughly horizontally static but with a clear vertical motion (set `approx_time_maxspeed` and `time_range_around_maxspeed` accordingly).
<img src="Content/synchro_multi.jpg" width="380">
<img src="Content/synchro.jpg" width="760"> <img src="Content/synchro.jpg" width="760">
*N.B.:* Works best when: *N.B.:* Works best when:
- only one participant is in the scene
- the participant does not move towards or away from the cameras - the participant does not move towards or away from the cameras
- they perform a clear vertical movement - they perform a clear vertical movement
- the capture lasts at least 5 seconds long, so that there is enough data to synchronize on - the capture lasts at least 5 seconds long, so that there is enough data to synchronize on
- the capture lasts a few minutes maximum, so that camera are less likely to [drift with time](https://github.com/mprib/caliscope/discussions/496) - the capture lasts a few minutes maximum, so that cameras are less likely to [drift with time](https://github.com/mprib/caliscope/discussions/496)
*N.B.:* Alternatively, synchronize cameras using a flashlight, a clap, or a clear event. GoPro cameras can also be synchronized with a timecode, by GPS (outdoors), or with their app (slightly less reliable). *N.B.:* Alternatively, synchronize cameras using a flashlight, a clap, or a clear event. GoPro cameras can also be synchronized with a timecode, by GPS (outdoors), or with their app (slightly less reliable).
</br> </br>
### Associate persons across cameras ### Associate persons across cameras
@ -614,7 +617,7 @@ If your triangulation is not satisfying, try and release the constraints in the
### Filtering 3D coordinates ### Filtering 3D coordinates
> _**Filter your 3D coordinates.**_\ > _**Filter your 3D coordinates.**_\
> Numerous filter types are provided, and can be tuned accordingly. > Butterworth, Kalman, Butterworth on speed, Gaussian, LOESS, Median filters are available and can be tuned accordingly.
Open an Anaconda prompt or a terminal in a `Session` or `Trial` folder.\ Open an Anaconda prompt or a terminal in a `Session` or `Trial` folder.\
Type `ipython`. Type `ipython`.