should work on cameras with distortions; still needs to be fully tested

This commit is contained in:
davidpagnon 2024-01-02 20:15:43 +01:00
parent 7e35ce2327
commit 76c39fcafd
20 changed files with 177 additions and 40 deletions

View File

@ -128,6 +128,7 @@ interpolation = 'cubic' #linear, slinear, quadratic, cubic, or none
interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -0,0 +1,39 @@
[cam_01]
name = "cam_01"
size = [ 1088.0, 1920.0]
matrix = [ [ 1681.244873046875, 0.0, 532.97369384375], [ 0.0, 1681.075439453125, 948.137390140625], [ 0.0, 0.0, 1.0]]
distortions = [ -0.000721609375, 0.002187234375, 9.5e-06, 1.078125e-05]
rotation = [ 1.6882754799999993, 1.0483220499999997, -0.41955852000000016]
translation = [ 0.3211048899999996, 0.9563320600000009, 2.8907130499999996]
fisheye = false
[cam_02]
name = "cam_02"
size = [ 1088.0, 1920.0]
matrix = [ [ 1673.729614265625, 0.0, 534.494567875], [ 0.0, 1673.79724121875, 963.225891109375], [ 0.0, 0.0, 1.0]]
distortions = [ -0.000747609375, 0.00213728125, 1.51875e-05, 4.546875e-06]
rotation = [ 1.34975875, 1.5963809099999993, -1.1983285799999999]
translation = [ -0.11152829000000017, 0.7766184800000001, 3.0675519599999994]
fisheye = false
[cam_03]
name = "cam_03"
size = [ 1088.0, 1920.0]
matrix = [ [ 1681.598388671875, 0.0, 513.20837403125], [ 0.0, 1681.509887703125, 955.005126953125], [ 0.0, 0.0, 1.0]]
distortions = [ -0.000729765625, 0.00215034375, -8.46875e-06, -8.078125e-06]
rotation = [ 0.8109654899999995, -2.1972129299999996, 1.3760277799999996]
translation = [ -0.7934803899999996, 0.32283594000000126, 4.353514870000001]
fisheye = false
[cam_04]
name = "cam_04"
size = [ 1088.0, 1920.0]
matrix = [ [ 1675.234985359375, 0.0, 540.106201171875], [ 0.0, 1675.204223640625, 964.0302734375], [ 0.0, 0.0, 1.0]]
distortions = [ -0.000744265625, 0.002104171875, 4.328125e-06, 3.109375e-06]
rotation = [ 1.4045571699999995, -1.3887412699999993, 0.42535743000000026]
translation = [ 0.5030217200000007, 0.04894934000000083, 4.406564460000002]
fisheye = false
[metadata]
adjusted = false
error = 0.0

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -5,12 +5,14 @@ def test_workflow():
from Pose2Sim import Pose2Sim
# Calibration
config_dict = toml.load('Config.toml')
config_dict.get("project").update({"project_dir":"."})
Pose2Sim.calibration(config_dict)
# # Static trial
# Static trial
project_dir = os.path.join("S00_P00_Participant","S00_P00_T00_StaticTrial")
config_dict.get("project").update({"project_dir":project_dir})
config_dict['filtering']['display_figures'] = False

View File

@ -128,6 +128,7 @@ interpolation = 'cubic' #linear, slinear, quadratic, cubic, or none
interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -129,6 +129,7 @@
# interp_if_gap_smaller_than = 10 # do not interpolate bigger gaps
# show_interp_indices = true # true or false (lowercase). For each keypoint, return the frames that need to be interpolated
# handle_LR_swap = true # Better if few cameras (eg less than 4) with risk of limb swapping (eg camera facing sagittal plane), otherwise slightly less accurate and slower
# undistort_points = true # Better if distorted image (parallel lines curvy on the edge or at least one param > 10^-2), but unnecessary (and slightly slower) if distortions are low
# make_c3d = false # save triangulated data in c3d format in addition to trc

View File

@ -92,12 +92,13 @@ BODY_25B = Node("CHip", id=None, children=[
## FUNCTIONS
def computeP(calib_file):
def computeP(calib_file, undistort=False):
'''
Compute projection matrices from toml calibration file.
INPUT:
- calib_file: calibration .toml file.
- undistort: boolean
OUTPUT:
- P: projection matrix as list of arrays
@ -109,7 +110,13 @@ def computeP(calib_file):
calib = toml.load(calib_file)
for cam in list(calib.keys()):
if cam != 'metadata':
S = np.array(calib[cam]['size'])
K = np.array(calib[cam]['matrix'])
if undistort:
dist = np.array(calib[cam]['distortions'])
optim_K = cv2.getOptimalNewCameraMatrix(K, dist, [int(s) for s in S], 1, [int(s) for s in S])[0]
Kh = np.block([optim_K, np.zeros(3).reshape(3,1)])
else:
Kh = np.block([K, np.zeros(3).reshape(3,1)])
R, _ = cv2.Rodrigues(np.array(calib[cam]['rotation']))
T = np.array(calib[cam]['translation'])
@ -120,6 +127,38 @@ def computeP(calib_file):
return P
def retrieve_calib_params(calib_file):
'''
Compute projection matrices from toml calibration file.
INPUT:
- calib_file: calibration .toml file.
OUTPUT:
- S: (h,w) vectors as list of 2x1 arrays
- K: intrinsic matrices as list of 3x3 arrays
- dist: distortion vectors as list of 4x1 arrays
- optim_K: intrinsic matrices for undistorting points as list of 3x3 arrays
- R: rotation rodrigue vectors as list of 3x1 arrays
- T: translation vectors as list of 3x1 arrays
'''
calib = toml.load(calib_file)
S, K, dist, optim_K, R, T = [], [], [], [], [], []
for c, cam in enumerate(calib.keys()):
if cam != 'metadata':
S.append(np.array(calib[cam]['size']))
K.append(np.array(calib[cam]['matrix']))
dist.append(np.array(calib[cam]['distortions']))
optim_K.append(cv2.getOptimalNewCameraMatrix(K[c], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0])
R.append(np.array(calib[cam]['rotation']))
T.append(np.array(calib[cam]['translation']))
calib_params = {'S': S, 'K': K, 'dist': dist, 'optim_K': optim_K, 'R': R, 'T': T}
return calib_params
def reprojection(P_all, Q):
'''
Reprojects 3D point on all cameras.
@ -231,7 +270,7 @@ def reproj_from_trc_calib_func(*args):
filename = os.path.splitext(os.path.basename(input_trc_file))[0]
# Extract data from calibration file
P_all = computeP(input_calib_file)
P_all = computeP(input_calib_file, undistort_points=True)
# Create camera folders
reproj_dir = os.path.realpath(output_file_root)

View File

@ -38,24 +38,62 @@ __status__ = "Development"
## FUNCTIONS
def computeP(calib_file):
def retrieve_calib_params(calib_file):
'''
Compute projection matrices from toml calibration file.
INPUT:
- calib_file: calibration .toml file.
OUTPUT:
- S: (h,w) vectors as list of 2x1 arrays
- K: intrinsic matrices as list of 3x3 arrays
- dist: distortion vectors as list of 4x1 arrays
- optim_K: intrinsic matrices for undistorting points as list of 3x3 arrays
- R: rotation rodrigue vectors as list of 3x1 arrays
- T: translation vectors as list of 3x1 arrays
'''
calib = toml.load(calib_file)
S, K, dist, optim_K, R, T = [], [], [], [], [], []
for c, cam in enumerate(calib.keys()):
if cam != 'metadata':
S.append(np.array(calib[cam]['size']))
K.append(np.array(calib[cam]['matrix']))
dist.append(np.array(calib[cam]['distortions']))
optim_K.append(cv2.getOptimalNewCameraMatrix(K[c], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0])
R.append(np.array(calib[cam]['rotation']))
T.append(np.array(calib[cam]['translation']))
calib_params = {'S': S, 'K': K, 'dist': dist, 'optim_K': optim_K, 'R': R, 'T': T}
return calib_params
def computeP(calib_file, undistort=False):
'''
Compute projection matrices from toml calibration file.
INPUT:
- calib_file: calibration .toml file.
- undistort: boolean
OUTPUT:
- P: projection matrix as list of arrays
'''
K, R, T, Kh, H = [], [], [], [], []
P = []
calib = toml.load(calib_file)
P = []
for cam in list(calib.keys()):
if cam != 'metadata':
S = np.array(calib[cam]['size'])
K = np.array(calib[cam]['matrix'])
if undistort:
dist = np.array(calib[cam]['distortions'])
optim_K = cv2.getOptimalNewCameraMatrix(K, dist, [int(s) for s in S], 1, [int(s) for s in S])[0]
Kh = np.block([optim_K, np.zeros(3).reshape(3,1)])
else:
Kh = np.block([K, np.zeros(3).reshape(3,1)])
R, _ = cv2.Rodrigues(np.array(calib[cam]['rotation']))
T = np.array(calib[cam]['translation'])

View File

@ -41,8 +41,8 @@ from anytree import RenderTree
from anytree.importer import DictImporter
import logging
from Pose2Sim.common import computeP, weighted_triangulation, reprojection, \
euclidean_distance, natural_sort
from Pose2Sim.common import retrieve_calib_params, computeP, weighted_triangulation, \
reprojection, euclidean_distance, natural_sort
from Pose2Sim.skeletons import *
@ -247,6 +247,7 @@ def track_2d_all(config):
pose_model = config.get('pose').get('pose_model')
tracked_keypoint = config.get('personAssociation').get('tracked_keypoint')
frame_range = config.get('project').get('frame_range')
tracked_keypoint = config.get('triangulation').get('undistort_points')
calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if ('Calib' or 'calib') in c][0]
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file
@ -254,7 +255,7 @@ def track_2d_all(config):
poseTracked_dir = os.path.join(project_dir, 'pose-associated')
# projection matrix from toml calibration file
P = computeP(calib_file)
P = computeP(calib_file, undistort=undistort_points)
# selection of tracked keypoint id
try: # from skeletons.py

View File

@ -48,8 +48,8 @@ from anytree import RenderTree
from anytree.importer import DictImporter
import logging
from Pose2Sim.common import computeP, weighted_triangulation, reprojection, \
euclidean_distance, natural_sort
from Pose2Sim.common import retrieve_calib_params, computeP, weighted_triangulation, \
reprojection, euclidean_distance, natural_sort
from Pose2Sim.skeletons import *
@ -206,6 +206,7 @@ def recap_triangulate(config, error, nb_cams_excluded, keypoints_names, cam_excl
likelihood_threshold = config.get('triangulation').get('likelihood_threshold')
show_interp_indices = config.get('triangulation').get('show_interp_indices')
interpolation_kind = config.get('triangulation').get('interpolation')
handle_LR_swap = config.get('triangulation').get('handle_LR_swap')
# Recap
calib_cam1 = calib[list(calib.keys())[0]]
@ -236,7 +237,7 @@ def recap_triangulate(config, error, nb_cams_excluded, keypoints_names, cam_excl
mean_cam_excluded = np.around(nb_cams_excluded['mean'].mean(), decimals=2)
logging.info(f'\n--> Mean reprojection error for all points on all frames is {mean_error_px} px, which roughly corresponds to {mean_error_mm} mm. ')
logging.info(f'Cameras were excluded if likelihood was below {likelihood_threshold} and if the reprojection error was above {error_threshold_triangulation} px.')
logging.info(f'Cameras were excluded if likelihood was below {likelihood_threshold} and if the reprojection error was above {error_threshold_triangulation} px. Limb swapping was {"handled" if handle_LR_swap else "not handled"}.')
logging.info(f'In average, {mean_cam_excluded} cameras had to be excluded to reach these thresholds.')
cam_excluded_count = {i: v for i, v in zip(cam_names, cam_excluded_count.values())}
str_cam_excluded_count = ''
@ -252,7 +253,7 @@ def recap_triangulate(config, error, nb_cams_excluded, keypoints_names, cam_excl
logging.info(f'\n3D coordinates are stored at {trc_path}.')
def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, projection_matrices):
def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, projection_matrices, *calib_params):
'''
Triangulates 2D keypoint coordinates. If reprojection error is above threshold,
tries swapping left and right sides. If still above, removes a camera until error
@ -281,6 +282,7 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
error_threshold_triangulation = config.get('triangulation').get('reproj_error_threshold_triangulation')
min_cameras_for_triangulation = config.get('triangulation').get('min_cameras_for_triangulation')
handle_LR_swap = config.get('triangulation').get('handle_LR_swap')
undistort_points = config.get('triangulation').get('undistort_points')
# Initialize
x_files, y_files, likelihood_files = coords_2D_kpt
@ -319,6 +321,9 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
Q_filt = [weighted_triangulation(projection_matrices_filt[i], x_files_filt[i], y_files_filt[i], likelihood_files_filt[i]) for i in range(len(id_cams_off))]
# Reprojection
if undistort_points:
coords_2D_kpt_calc_filt = [cv2.projectPoints(Q_filt[i], calib_params['R'][i], calib_params['T'][i], calib_params['K'][i], calib_params['dist'][i]) for i in range(len(id_cams_off))]
else:
coords_2D_kpt_calc_filt = [reprojection(projection_matrices_filt[i], Q_filt[i]) for i in range(len(id_cams_off))]
coords_2D_kpt_calc_filt = np.array(coords_2D_kpt_calc_filt, dtype=object)
x_calc_filt = coords_2D_kpt_calc_filt[:,0]
@ -359,6 +364,11 @@ def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped
for id_off in range(len(id_cams_off))] )
# Reprojection
if undistort_points:
coords_2D_kpt_calc_off_swap = np.array([[cv2.projectPoints(Q_filt[id_off, id_swapped], calib_params['R'][id_off], calib_params['T'][id_off], calib_params['K'][id_off], calib_params['dist'][id_off])
for id_swapped in range(len(id_cams_swapped))]
for id_off in range(len(id_cams_off))])
else:
coords_2D_kpt_calc_off_swap = np.array([[reprojection(projection_matrices_filt[id_off], Q_filt_off_swap[id_off, id_swapped])
for id_swapped in range(len(id_cams_swapped))]
for id_off in range(len(id_cams_off))])
@ -477,6 +487,7 @@ def triangulate_all(config):
interpolation_kind = config.get('triangulation').get('interpolation')
interp_gap_smaller_than = config.get('triangulation').get('interp_if_gap_smaller_than')
show_interp_indices = config.get('triangulation').get('show_interp_indices')
undistort_points = config.get('triangulation').get('undistort_points')
calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if ('Calib' or 'calib') in c][0]
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file
@ -484,7 +495,8 @@ def triangulate_all(config):
poseTracked_dir = os.path.join(project_dir, 'pose-associated')
# Projection matrix from toml calibration file
P = computeP(calib_file)
P = computeP(calib_file, undistort=undistort_points)
calib_params = retrieve_calib_params(calib_file)
# Retrieve keypoints from model
try: # from skeletons.py
@ -530,21 +542,13 @@ def triangulate_all(config):
json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)]
x_files, y_files, likelihood_files = extract_files_frame_f(json_tracked_files_f, keypoints_ids)
# # undistort points draft: start with
# points = [np.array(tuple(zip(x_files[i],y_files[i]))).reshape(-1, 1, 2) for i in range(n_cams)]
# # calculate optimal matrix optimal_mat cf https://stackoverflow.com/a/76635257/12196632
# undistorted_points = [cv2.undistortPoints(points[i], K[i], distortions[i], None, optimal_mat[i]) for i in range(n_cams)]
# # then put back into original shape of x_files, y_files
# # Points are undistorted and better triangulated, however reprojection error is not accurate if points are not distorted again prior to reprojection
# # This is good for slight distortion. For fishey camera, the model does not work anymore. See there for an example https://github.com/lambdaloop/aniposelib/blob/d03b485c4e178d7cff076e9fe1ac36837db49158/aniposelib/cameras.py#L301
# # undistort points draft: start with
# points = [np.array(tuple(zip(x_files[i],y_files[i]))).reshape(-1, 1, 2) for i in range(n_cams)]
# # calculate optimal matrix optimal_mat cf https://stackoverflow.com/a/76635257/12196632
# undistorted_points = [cv2.undistortPoints(points[i], K[i], distortions[i], None, optimal_mat[i]) for i in range(n_cams)]
# # then put back into original shape of x_files, y_files
# # Points are undistorted and better triangulated, however reprojection error is not accurate if points are not distorted again prior to reprojection
# # This is good for slight distortion. For fishey camera, the model does not work anymore. See there for an example https://github.com/lambdaloop/aniposelib/blob/d03b485c4e178d7cff076e9fe1ac36837db49158/aniposelib/cameras.py#L301
# undistort points
if undistort_points:
points = [np.array(tuple(zip(x_files[i],y_files[i]))).reshape(-1, 1, 2).astype('float32') for i in range(n_cams)]
undistorted_points = [cv2.undistortPoints(points[i], K[i], dist[i], None, optim_K[i]) for i in range(n_cams)]
x_files = np.array([[u[i][0][0] for i in range(len(u))] for u in undistorted_points])
y_files = np.array([[u[i][0][1] for i in range(len(u))] for u in undistorted_points])
# This is good for slight distortion. For fishey camera, the model does not work anymore. See there for an example https://github.com/lambdaloop/aniposelib/blob/d03b485c4e178d7cff076e9fe1ac36837db49158/aniposelib/cameras.py#L301
# Replace likelihood by 0 if under likelihood_threshold
with np.errstate(invalid='ignore'):
@ -554,9 +558,9 @@ def triangulate_all(config):
for keypoint_idx in keypoints_idx:
# Triangulate cameras with min reprojection error
coords_2D_kpt = np.array( (x_files[:, keypoint_idx], y_files[:, keypoint_idx], likelihood_files[:, keypoint_idx]) )
coords_2D_kpt_swapped = np.array(( x_files[:, keypoints_idx_swapped[keypoint_idx]], y_files[:, keypoints_idx_swapped[keypoint_idx]], likelihood_files[:, keypoints_idx_swapped[keypoint_idx]] ))# ADD coords_2D_kpt_swapped TO THE ARGUMENTS OF triangulation_from_best_cameras
coords_2D_kpt_swapped = np.array(( x_files[:, keypoints_idx_swapped[keypoint_idx]], y_files[:, keypoints_idx_swapped[keypoint_idx]], likelihood_files[:, keypoints_idx_swapped[keypoint_idx]] ))
Q_kpt, error_kpt, nb_cams_excluded_kpt, id_excluded_cams_kpt = triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, P)
Q_kpt, error_kpt, nb_cams_excluded_kpt, id_excluded_cams_kpt = triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, P, calib_params) # P has been modified if undistort_points=True
Q.append(Q_kpt)
error.append(error_kpt)

View File

@ -46,6 +46,7 @@ install_requires =
statsmodels
filterpy
ipython
c3d
packages = find_namespace:
[options.package_data]