Moving cameras supported (to be added to the Pose2Sim main pipeline)

This commit is contained in:
davidpagnon 2024-07-26 16:50:51 +02:00
parent ac037e05ce
commit 7b58454712

View File

@ -11,10 +11,12 @@
toml calibration file.
The output 2D points can be chosen to follow the DeepLabCut (default) or
the OpenPose format. If OpenPose is chosen, the BODY_25B model is used,
the OpenPose format. If OpenPose is chosen, the HALPE_26 model is used,
with ear and eye at coordinates (0,0) since they are not used by Pose2Sim.
You can change the MODEL tree to a different one if you need to reproject
in OpenPose format with a different model than BODY_25B.
in OpenPose format with a different model than HALPLE_26.
New: Moving cameras and zooming cameras are now supported.
Usage:
from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(r'<input_trc_file>', r'<input_calib_file>', '<output_format>', r'<output_file_root>')
@ -48,33 +50,32 @@ __status__ = "Development"
## SKELETON
'''BODY_25B (full-body without hands, experimental, from OpenPose)
https://github.com/CMU-Perceptual-Computing-Lab/openpose_train/blob/master/experimental_models/README.md
Adjust it if you want to reproject in OpenPose format with a different model'''
nb_joints = 25
MODEL = Node("CHip", id=None, children=[
'''HALPE_26 (full-body without hands, from AlphaPose, MMPose, etc.)
https://github.com/MVIG-SJTU/AlphaPose/blob/master/docs/MODEL_ZOO.md
https://github.com/open-mmlab/mmpose/tree/main/projects/rtmpose'''
MODEL = Node("Hip", id=19, children=[
Node("RHip", id=12, children=[
Node("RKnee", id=14, children=[
Node("RAnkle", id=16, children=[
Node("RBigToe", id=22, children=[
Node("RBigToe", id=21, children=[
Node("RSmallToe", id=23),
]),
Node("RHeel", id=24),
Node("RHeel", id=25),
]),
]),
]),
Node("LHip", id=11, children=[
Node("LKnee", id=13, children=[
Node("LAnkle", id=15, children=[
Node("LBigToe", id=19, children=[
Node("LSmallToe", id=20),
Node("LBigToe", id=20, children=[
Node("LSmallToe", id=22),
]),
Node("LHeel", id=21),
Node("LHeel", id=24),
]),
]),
]),
Node("Neck", id=17, children=[
Node("Head", id=18, children=[
Node("Neck", id=18, children=[
Node("Head", id=17, children=[
Node("Nose", id=0),
]),
Node("RShoulder", id=6, children=[
@ -90,32 +91,12 @@ MODEL = Node("CHip", id=None, children=[
]),
])
# nb_joints = 17
# MODEL = Node("None", id=None, children=[
# Node("Origin", id=0),
# Node("Board1", id=1),
# Node("Board2", id=2),
# Node("Board3", id=3),
# Node("Board4", id=4),
# Node("Furniture5", id=5),
# Node("Furniture6", id=6),
# Node("Furniture7", id=7),
# Node("Screen8", id=8),
# Node("Screen9", id=9),
# Node("Furniture10", id=10),
# Node("Furniture11", id=11),
# Node("Furniture12", id=12),
# Node("Furniture13", id=13),
# Node("Furniture14", id=14),
# Node("Furniture15", id=15),
# Node("Table16", id=16)])
## FUNCTIONS
def computeP(calib_file, undistort=False):
'''
Compute projection matrices from toml calibration file.
Zooming or moving cameras are handled.
INPUT:
- calib_file: calibration .toml file.
@ -133,24 +114,47 @@ def computeP(calib_file, undistort=False):
if cam != 'metadata':
S = np.array(calib[cam]['size'])
K = np.array(calib[cam]['matrix'])
if undistort:
dist = np.array(calib[cam]['distortions'])
optim_K = cv2.getOptimalNewCameraMatrix(K, dist, [int(s) for s in S], 1, [int(s) for s in S])[0]
Kh = np.block([optim_K, np.zeros(3).reshape(3,1)])
else:
Kh = np.block([K, np.zeros(3).reshape(3,1)])
R, _ = cv2.Rodrigues(np.array(calib[cam]['rotation']))
if len(K.shape) == 2: # static camera
if undistort:
dist = np.array(calib[cam]['distortions'])
optim_K = cv2.getOptimalNewCameraMatrix(K, dist, [int(s) for s in S], 1, [int(s) for s in S])[0]
Kh = np.block([optim_K, np.zeros(3).reshape(3,1)])
else:
Kh = np.block([K, np.zeros(3).reshape(3,1)])
elif len(K.shape) == 3: # zooming camera
if undistort:
dist = np.array(calib[cam]['distortions'])
optim_K = [cv2.getOptimalNewCameraMatrix(K[f], dist, [int(s) for s in S], 1, [int(s) for s in S])[0] for f in range(len(K))]
Kh = [np.block([optim_K[f], np.zeros(3).reshape(3,1)]) for f in range(len(K))]
else:
Kh = [np.block([K[f], np.zeros(3).reshape(3,1)]) for f in range(len(K))]
R = np.array(calib[cam]['rotation'])
T = np.array(calib[cam]['translation'])
H = np.block([[R,T.reshape(3,1)], [np.zeros(3), 1 ]])
if len(R.shape) == 1: # static camera
R_mat, _ = cv2.Rodrigues(np.array(calib[cam]['rotation']))
H = np.block([[R_mat,T.reshape(3,1)], [np.zeros(3), 1 ]])
elif len(R.shape) == 2: # moving camera
R_mat = [cv2.Rodrigues(R[f])[0] for f in range(len(R))]
H = [np.block([[R_mat[f],T[f].reshape(3,1)], [np.zeros(3), 1 ]]) for f in range(len(R))]
P.append(Kh @ H)
if len(K.shape) == 2 and len(R.shape)==1: # static camera
P.append([Kh @ H])
elif len(K.shape) == 3 and len(R.shape)==1: # zooming camera
P.append([Kh[f] @ H for f in range(len(K))])
elif len(K.shape) == 2 and len(R.shape)==2: # moving camera
P.append([Kh @ H[f] for f in range(len(R))])
elif len(K.shape) == 3 and len(R.shape)==2: # zooming and moving camera
P.append([Kh[f] @ H[f] for f in range(len(K))])
return P
return np.array(P)
def retrieve_calib_params(calib_file):
'''
Compute projection matrices from toml calibration file.
Zooming or moving cameras are handled.
INPUT:
- calib_file: calibration .toml file.
@ -172,9 +176,15 @@ def retrieve_calib_params(calib_file):
S.append(np.array(calib[cam]['size']))
K.append(np.array(calib[cam]['matrix']))
dist.append(np.array(calib[cam]['distortions']))
optim_K.append(cv2.getOptimalNewCameraMatrix(K[c], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0])
if len(K[c].shape) == 2: # static camera
optim_K.append(cv2.getOptimalNewCameraMatrix(K[c], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0])
elif len(K[c].shape) == 3: # zooming camera
optim_K.append([cv2.getOptimalNewCameraMatrix(K[c][f], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0] for f in range(len(K[c]))])
R.append(np.array(calib[cam]['rotation']))
T.append(np.array(calib[cam]['translation']))
calib_params = {'S': S, 'K': K, 'dist': dist, 'optim_K': optim_K, 'R': R, 'T': T}
return calib_params
@ -248,10 +258,12 @@ def reproj_from_trc_calib_func(**args):
toml calibration file.
The output 2D points can be chosen to follow the DeepLabCut (default) or
the OpenPose format. If OpenPose is chosen, the BODY_25B model is used,
the OpenPose format. If OpenPose is chosen, the HALPE_26 model is used,
with ear and eye at coordinates (0,0) since they are not used by Pose2Sim.
You can change the MODEL tree to a different one if you need to reproject
in OpenPose format with a different model than BODY_25B.
in OpenPose format with a different model than HALPLE_26.
New: Moving cameras and zooming cameras are now supported.
Usage:
from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(input_trc_file = r'<input_trc_file>', input_calib_file = r'<input_calib_file>', openpose_output=True, deeplabcut_output=True, undistort_points=True, output_file_root = r'<output_file_root>')
@ -268,6 +280,8 @@ def reproj_from_trc_calib_func(**args):
output_file_root = args.get('output_file_root')
if output_file_root == None:
output_file_root = input_trc_file.replace('.trc', '_reproj')
if os.path.exists(output_file_root):
os.makedirs(output_file_root, exist_ok=True)
if not openpose_output and not deeplabcut_output:
raise ValueError('Output_format must be specified either "openpose_output" (-o) or "deeplabcut_output (-d)"')
@ -297,27 +311,29 @@ def reproj_from_trc_calib_func(**args):
pass
# header preparation
num_frames = min(P_all.shape[1], len(data_trc))
columns_iterables = [['DavidPagnon'], ['person0'], bodyparts, ['x','y']]
columns_h5 = pd.MultiIndex.from_product(columns_iterables, names=['scorer', 'individuals', 'bodyparts', 'coords'])
rows_iterables = [['labeled_data'], [filename], [f'img_{i:03d}.png' for i in range(len(data_trc))]]
rows_iterables = [[os.path.join(os.path.splitext(input_trc_file)[0],f'img_{i:03d}.png') for i in range(num_frames)]]
rows_h5 = pd.MultiIndex.from_product(rows_iterables)
data_h5 = pd.DataFrame(np.nan, index=rows_h5, columns=columns_h5)
# Reproject 3D points on all cameras
data_proj = [deepcopy(data_h5) for cam in range(len(P_all))] # copy data_h5 as many times as there are cameras
Q = data_trc_zup.iloc[:,2:]
for frame in range(len(Q)):
for frame in range(num_frames):
coords = [[] for cam in range(len(P_all))]
P_all_frame = [P_all[cam][frame] for cam in range(len(P_all))]
for keypoint in range(num_bodyparts):
q = np.append(Q.iloc[frame,3*keypoint:3*keypoint+3], 1)
if undistort_points:
coords_2D_all = [cv2.projectPoints(np.array(q[:-1]), calib_params_R_filt[i], calib_params_T_filt[i], calib_params_K_filt[i], calib_params_dist_filt[i])[0] for i in range(len(P_all))]
x_all = [coords_2D_all[i][0,0,0] for i in range(len(P_all))]
y_all = [coords_2D_all[i][0,0,1] for i in range(len(P_all))]
x_all = [coords_2D_all[i][0,0,0] for i in range(len(P_all_frame))]
y_all = [coords_2D_all[i][0,0,1] for i in range(len(P_all_frame))]
else:
x_all, y_all = reprojection(P_all, q)
[coords[cam].extend([x_all[cam], y_all[cam]]) for cam in range(len(P_all))]
for cam in range(len(P_all)):
x_all, y_all = reprojection(P_all_frame, q)
[coords[cam].extend([x_all[cam], y_all[cam]]) for cam in range(len(P_all_frame))]
for cam in range(len(P_all_frame)):
data_proj[cam].iloc[frame,:] = coords[cam]
# Save as h5 and csv if DeepLabCut format
@ -331,13 +347,14 @@ def reproj_from_trc_calib_func(**args):
[data_proj[i].to_csv(csv_files[i], sep=',', index=True, lineterminator='\n') for i in range(len(P_all))]
# Save as json if OpenPose format
if openpose_output:
elif openpose_output:
# read model tree
model = MODEL
print('Keypoint hierarchy:')
for pre, _, node in RenderTree(model):
print(f'{pre}{node.name} id={node.id}')
bodyparts_ids = [[node.id for _, _, node in RenderTree(model) if node.name==b][0] for b in bodyparts]
nb_joints = len(bodyparts_ids)
#prepare json files
json_dict = {'version':1.3, 'people':[]}
json_dict['people'] = [{'person_id':[-1],