#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ########################################################################### ## CAMERAS CALIBRATION ## ########################################################################### Use this module to calibrate your cameras from checkerboard images and save results to a .toml file. Based on https://docs.opencv.org/3.4.15/dc/dbb/tutorial_py_calibration.html. /!\ Beware that corners must be detected on all frames, or else extrinsic parameters may be wrong. Set show_corner_detection to 1 to verify. Usage: python -m calib_from_checkerboard -d "calib_path" -v False -e jpg -n 6 9 -S 1000 OR python -m calib_from_checkerboard -d "calib_path" -v True -e mp4 -n 6 9 -S 1000 1000 -s 1 -O 0 -f 50 -o Test.toml OR from Pose2Sim.Utilities import calib_from_checkerboard; calib_from_checkerboard.calibrate_cams_func(calib_dir=r"calib_path", video=False, extension="jpg", corners_nb=(6,9), square_size=[1000]) ''' ## INIT import os import numpy as np import cv2 import glob import toml import argparse ## AUTHORSHIP INFORMATION __author__ = "David Pagnon" __copyright__ = "Copyright 2021, Pose2Sim" __credits__ = ["David Pagnon"] __license__ = "BSD 3-Clause License" __version__ = '0.4' __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" ## FUNCTIONS def euclidean_distance(q1, q2): ''' Euclidean distance between 2 points (N-dim). INPUTS: - q1: list of N_dimensional coordinates of point - q2: idem OUTPUTS: - euc_dist: float. Euclidian distance between q1 and q2 ''' q1 = np.array(q1) q2 = np.array(q2) dist = q2 - q1 euc_dist = np.sqrt(np.sum( [d**2 for d in dist] )) return euc_dist def rotate_cam(r, t, ang_x=np.pi, ang_y=0, ang_z=0): ''' Apply rotations around x, y, z in cameras coordinates ''' if r.shape == (3,3): rt_h = np.block([[r,t.reshape(3,1)], [np.zeros(3), 1 ]]) elif r.shape == (3,): rt_h = np.block([[cv2.Rodrigues(r)[0],t.reshape(3,1)], [np.zeros(3), 1 ]]) r_ax_x = np.array([1,0,0, 0,np.cos(ang_x),-np.sin(ang_x), 0,np.sin(ang_x),np.cos(ang_x)]).reshape(3,3) r_ax_y = np.array([np.cos(ang_y),0,np.sin(ang_y), 0,1,0, -np.sin(ang_y),0,np.cos(ang_y)]).reshape(3,3) r_ax_z = np.array([np.cos(ang_z),-np.sin(ang_z),0, np.sin(ang_z),np.cos(ang_z),0, 0,0,1]).reshape(3,3) r_ax = r_ax_z.dot(r_ax_y).dot(r_ax_x) r_ax_h = np.block([[r_ax,np.zeros(3).reshape(3,1)], [np.zeros(3), 1]]) r_ax_h__rt_h = r_ax_h.dot(rt_h) r = r_ax_h__rt_h[:3,:3] t = r_ax_h__rt_h[:3,3] return r, t def findCorners(img, corners_nb, criteria, show): ''' Find corners _of internal squares_ in the checkerboard INPUTS: - img: image read by opencv - corners_nb: [H, W] internal corners in checkerboard: list of two integers [9,6] - criteria: when to stop optimizing corners localization - show: choose whether to show corner detections OUTPUTS - imgp: 2d corner points in image plane ''' # Find corners gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, corners_nb, None) # Refine corners if ret == True: imgp = cv2.cornerSubPix(gray, corners, (11,11), (-1,-1), criteria) # Draw and display the corners if show: cv2.drawChessboardCorners(img, corners_nb, imgp, ret) print('Corners found.') cv2.imshow('img', img) cv2.waitKey(0) return imgp else: if show: print('Corners not found.') return def calib_checkerboard(criteria, **args): ''' Calibrates from images or videos of a checkerboard INPUTS: - criteria: (int, int, float): Type of criteria, max iterations, min error - calib_dir: string: directory of camera folders with checkerboard images - video: bool: True if video, False if images - extension: string: jpg, mpa, etc - corners_nb: (int, int): number of internal corners in the checkerboard (h, w) - square_size: (int) or (int, int): square or rectangle size in mm (h,w) - frame_for origin: int: checkerboard placed at world origin at frame N - vid_snapshot_every_N_frames: int: if video, calibrate on each N frame OUTPUTS: - ret: residual reprojection error in _px_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats (Rodrigues) - T: extrinsic translation: list of arrays of floats ''' calib_dir = args.get('calib_dir') cam_listdirs_names = next(os.walk(calib_dir))[1] video = True if args.get('video')==True or args.get('video')=='True' else False extension = args.get('extension') corners_nb = args.get('corners_nb') square_size = args.get('square_size') square_size = square_size*2 if len(square_size)==1 else square_size frame_for_origin = 0 if args.get('frame_for_origin')==None else args.get('frame_for_origin') if video: vid_snapshot_every_N_frames = args.get('vid_snapshot_every_N_frames') show = args.get('show_corner_detection') # Prepare object points objp = np.zeros((corners_nb[0]*corners_nb[1],3), np.float32) objp[:,:2] = np.mgrid[0:corners_nb[0],0:corners_nb[1]].T.reshape(-1,2) objp[:,0] = objp[:,0]*square_size[0] objp[:,1] = objp[:,1]*square_size[1] objpoints = [] # 3d points in world space imgpoints = [] # 2d points in image plane ret, C, S, D, K, R, T = [], [], [], [], [], [], [] for cam in cam_listdirs_names: # Find corners in vid if video: video = glob.glob(os.path.join(calib_dir, cam, '*.'+ extension))[0] cap = cv2.VideoCapture(video) ret_vid, img = cap.read() while ret_vid: count = int(round(cap.get(1))) ret_vid, img_vid = cap.read() if count % vid_snapshot_every_N_frames == 0: img = img_vid imgp = findCorners(img, corners_nb, criteria, show) if isinstance(imgp, np.ndarray): objpoints.append(objp) imgpoints.append(imgp) cap.release() # Find corners in images else: images = glob.glob(os.path.join(calib_dir, cam, '*.'+ extension)) for image_f in images: img = cv2.imread(image_f) imgp = findCorners(img, corners_nb, criteria, show) if isinstance(imgp, np.ndarray): objpoints.append(objp) imgpoints.append(imgp) # Calibration r, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[1::-1], None, None, flags=cv2.CALIB_FIX_K3) h, w = img.shape[:-1] ret.append(r) C.append(cam) S.append([w, h]) D.append(dist[0]) K.append(mtx) R.append(rvecs[frame_for_origin].squeeze()) T.append(tvecs[frame_for_origin].squeeze()) # Object view to camera view RT = [rotate_cam(r, t, ang_x=np.pi, ang_y=0, ang_z=0) for r, t in zip(R, T)] R = [rt[0] for rt in RT] T = [rt[1] for rt in RT] R = [np.array(cv2.Rodrigues(r)[0]).flatten() for r in R] T = np.array(T)/1000 return ret, C, S, D, K, R, T def toml_write(calib_path, C, S, D, K, R, T): ''' Writes calibration parameters to a .toml file INPUTS: - calib_path: path to the output calibration file: string - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats (Rodrigues) - T: extrinsic translation: list of arrays of floats OUTPUTS: - a .toml file cameras calibrations ''' with open(os.path.join(calib_path), 'w+') as cal_f: for c in range(len(C)): cam=f'[cam_{c+1}]\n' name = f'name = "{C[c]}"\n' size = f'size = [ {S[c][0]}, {S[c][1]},]\n' mat = f'matrix = [ [ {K[c][0,0]}, 0.0, {K[c][0,2]},], [ 0.0, {K[c][1,1]}, {K[c][1,2]},], [ 0.0, 0.0, 1.0,],]\n' dist = f'distortions = [ {D[c][0]}, {D[c][1]}, {D[c][2]}, {D[c][3]},]\n' rot = f'rotation = [ {R[c][0]}, {R[c][1]}, {R[c][2]},]\n' tran = f'translation = [ {T[c][0]}, {T[c][1]}, {T[c][2]},]\n' fish = f'fisheye = false\n\n' cal_f.write(cam + name + size + mat + dist + rot + tran + fish) meta = '[metadata]\nadjusted = false\nerror = 0.0\n' cal_f.write(meta) def recap_calibrate(ret, calib_path): ''' Print a log message giving filtering parameters. OUTPUT: - Message in console ''' calib = toml.load(calib_path) ret_m, ret_px = [], [] for c, cam in enumerate(calib.keys()): if cam != 'metadata': fm = calib[cam]['matrix'][0][0] Dm = euclidean_distance(calib[cam]['translation'], [0,0,0]) ret_px.append( np.around(ret[c], decimals=3) ) ret_m.append( np.around(ret[c]*1000 * Dm / fm, decimals=3) ) print(f'--> Residual (RMS) calibration errors for each camera are respectively {ret_px} px, which corresponds to {ret_m} mm.') print(f'Calibration file is stored at {calib_path}.') def calibrate_cams_func(**args): ''' Calibration from a checkerboard. Stores it in a .toml file Prints recap. Usage: calib_from_checkerboard -d "calib_path" -v False -e jpg -n 6 9 -s 1000 OR calib_from_checkerboard -d "calib_path" -v True -e mp4 -n 6 9 -s 1000 1000 -O 0 -f 50 -o Test.toml OR import calib_from_checkerboard; calib_from_checkerboard.calibrate_cams_func(calib_dir=r"calib_path", video=False, extension="jpg", corners_nb=(6,9), square_size=[1000]) ''' calib_dir = args.get('calib_dir') output_file = 'Calib.toml' if args.get('output_file')==None else args.get('output_file') calib_path = os.path.join(calib_dir, output_file) # Calibrate criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # stop refining after 30 iterations or if error less than 0.001px ret, C, S, D, K, R, T = calib_checkerboard(criteria, **args) # Write calibration file toml_write(calib_path, C, S, D, K, R, T) # Recap message recap_calibrate(ret, calib_path) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-d', '--calib_dir', required = True, help='Directory of checkerboard images or videos (one folder per camera)') parser.add_argument('-v', '--video', required = True, help='True if calibrate from videos, False if calibrate from images') parser.add_argument('-e', '--extension', required=True, help='Video or image files extension (jpg, png, mp4, etc)') parser.add_argument('-n', '--corners_nb', nargs=2, type=int, required=True, help='Number of (internal) square corners in the checkerboard: h,w') parser.add_argument('-S', '--square_size', nargs='*', type=int, required=True, help='Square or rectangle size in mm (int or int int)') parser.add_argument('-O', '--frame_for_origin', required=False, type=int, default=0, help='Checkerboard placed at world origin at frame N (-1 if last frame)') parser.add_argument('-f', '--vid_snapshot_every_N_frames', type=int, required=False, help='Calibrate on each N frame of the video (if applicable)') parser.add_argument('-s', '--show_corner_detection', type=int, required=False, default=0, help='Display corners detection overlayed on image') parser.add_argument('-o', '--output_file', required=False, default="Calib.toml", help='Output calibration file name') args = vars(parser.parse_args()) calibrate_cams_func(**args)