#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ########################################################################### ## AUGMENT MARKER DATA ## ########################################################################### Augment trc 3D coordinates. Estimate the position of 43 additional markers. INPUTS: - a trc file - filtering parameters in Config.toml OUTPUT: - a filtered trc file ''' ## INIT import os import numpy as np from Pose2Sim.MarkerAugmenter import utilsDataman import copy import tensorflow as tf from Pose2Sim.MarkerAugmenter.utils import TRC2numpy import json import glob import logging ## AUTHORSHIP INFORMATION __author__ = "Antoine Falisse, adapted by HunMin Kim" __copyright__ = "Copyright 2022, OpenCap" __credits__ = ["Antoine Falisse", "HunMin Kim"] __license__ = "Apache-2.0 License" __version__ = '0.5' __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" ## FUNCTIONS # subject_height must be in meters def get_midhip_data(trc_file): try: # Find MidHip data midhip_data = trc_file.marker("CHip") if midhip_data is None or len(midhip_data) == 0: raise ValueError("MidHip data is empty") except (KeyError, ValueError): # If MidHip data is not found, calculate it from RHip and LHip rhip_data = trc_file.marker("RHip") lhip_data = trc_file.marker("LHip") midhip_data = (rhip_data + lhip_data) / 2 return midhip_data def augmentTRC(config_dict): # get parameters from Config.toml project_dir = config_dict.get('project').get('project_dir') session_dir = os.path.realpath(os.path.join(project_dir, '..', '..')) pathInputTRCFile = os.path.realpath(os.path.join(project_dir, 'pose-3d')) pathOutputTRCFile = os.path.realpath(os.path.join(project_dir, 'pose-3d')) pose_model = config_dict.get('pose').get('pose_model') subject_height = config_dict.get('markerAugmentation').get('participant_height') if subject_height is None or subject_height == 0 or subject_height==0: raise ValueError("Subject height is not set or invalid in the config file.") subject_mass = config_dict.get('markerAugmentation').get('participant_mass') if not type(subject_height) == list: subject_height = [subject_height] subject_mass = [subject_mass] augmenterDir = os.path.dirname(utilsDataman.__file__) augmenterModelName = 'LSTM' augmenter_model = 'v0.3' offset = True if pose_model not in ['BODY_25', 'BODY_25B']: raise ValueError('Marker augmentation is only supported with OpenPose BODY_25 and BODY_25B models.') # Apply all trc files trc_files = [f for f in glob.glob(os.path.join(pathInputTRCFile, '*.trc')) if 'filt' in f and '_LSTM' not in f] if len(trc_files) == 0: raise ValueError('No filtered trc files found.') for p, pathInputTRCFile in enumerate(trc_files): pathOutputTRCFile = os.path.splitext(pathInputTRCFile)[0] + '_LSTM.trc' # This is by default - might need to be adjusted in the future. featureHeight = True featureWeight = True # Augmenter types if augmenter_model == 'v0.3': # Lower body augmenterModelType_lower = '{}_lower'.format(augmenter_model) from Pose2Sim.MarkerAugmenter.utils import getOpenPoseMarkers_lowerExtremity2 feature_markers_lower, response_markers_lower = getOpenPoseMarkers_lowerExtremity2() # Upper body augmenterModelType_upper = '{}_upper'.format(augmenter_model) from Pose2Sim.MarkerAugmenter.utils import getMarkers_upperExtremity_noPelvis2 feature_markers_upper, response_markers_upper = getMarkers_upperExtremity_noPelvis2() augmenterModelType_all = [augmenterModelType_lower, augmenterModelType_upper] feature_markers_all = [feature_markers_lower, feature_markers_upper] response_markers_all = [response_markers_lower, response_markers_upper] else: raise ValueError('Augmenter models other than 0.3 are not supported.') logging.info('Using Stanford augmenter model: {}'.format(augmenter_model)) # %% Process data. # Import TRC file try: trc_file = utilsDataman.TRCFile(pathInputTRCFile) except: raise ValueError('Cannot read TRC file. You may need to enable interpolation in Config.toml while triangulating.') # Loop over augmenter types to handle separate augmenters for lower and # upper bodies. outputs_all = {} n_response_markers_all = 0 for idx_augm, augmenterModelType in enumerate(augmenterModelType_all): outputs_all[idx_augm] = {} feature_markers = feature_markers_all[idx_augm] response_markers = response_markers_all[idx_augm] augmenterModelDir = os.path.join(augmenterDir, augmenterModelName, augmenterModelType) # %% Pre-process inputs. # Step 1: import .trc file with OpenPose marker trajectories. trc_data = TRC2numpy(pathInputTRCFile, feature_markers) # Calculate the midHip marker as the average of RHip and LHip midhip_data = get_midhip_data(trc_file) trc_data_data = trc_data[:,1:] # Step 2: Normalize with reference marker position. with open(os.path.join(augmenterModelDir, "metadata.json"), 'r') as f: metadata = json.load(f) referenceMarker_data = midhip_data # instead of trc_file.marker(referenceMarker) # change by HunMin norm_trc_data_data = np.zeros((trc_data_data.shape[0], trc_data_data.shape[1])) for i in range(0,trc_data_data.shape[1],3): norm_trc_data_data[:,i:i+3] = (trc_data_data[:,i:i+3] - referenceMarker_data) # Step 3: Normalize with subject's height. norm2_trc_data_data = copy.deepcopy(norm_trc_data_data) norm2_trc_data_data = norm2_trc_data_data / subject_height[p] # Step 4: Add remaining features. inputs = copy.deepcopy(norm2_trc_data_data) if featureHeight: inputs = np.concatenate( (inputs, subject_height[p]*np.ones((inputs.shape[0],1))), axis=1) if featureWeight: inputs = np.concatenate( (inputs, subject_mass[p]*np.ones((inputs.shape[0],1))), axis=1) # Step 5: Pre-process data pathMean = os.path.join(augmenterModelDir, "mean.npy") pathSTD = os.path.join(augmenterModelDir, "std.npy") if os.path.isfile(pathMean): trainFeatures_mean = np.load(pathMean, allow_pickle=True) inputs -= trainFeatures_mean if os.path.isfile(pathSTD): trainFeatures_std = np.load(pathSTD, allow_pickle=True) inputs /= trainFeatures_std # Step 6: Reshape inputs if necessary (eg, LSTM) if augmenterModelName == "LSTM": inputs = np.reshape(inputs, (1, inputs.shape[0], inputs.shape[1])) # %% Load model and weights, and predict outputs. json_file = open(os.path.join(augmenterModelDir, "model.json"), 'r') pretrainedModel_json = json_file.read() json_file.close() model = tf.keras.models.model_from_json(pretrainedModel_json) model.load_weights(os.path.join(augmenterModelDir, "weights.h5")) outputs = model(inputs) tf.keras.backend.clear_session() # %% Post-process outputs. # Step 1: Reshape if necessary (eg, LSTM) if augmenterModelName == "LSTM": outputs = np.reshape(outputs, (outputs.shape[1], outputs.shape[2])) # Step 2: Un-normalize with subject's height. unnorm_outputs = outputs * subject_height[p] # Step 2: Un-normalize with reference marker position. unnorm2_outputs = np.zeros((unnorm_outputs.shape[0], unnorm_outputs.shape[1])) for i in range(0,unnorm_outputs.shape[1],3): unnorm2_outputs[:,i:i+3] = (unnorm_outputs[:,i:i+3] + referenceMarker_data) # %% Add markers to .trc file. for c, marker in enumerate(response_markers): x = unnorm2_outputs[:,c*3] y = unnorm2_outputs[:,c*3+1] z = unnorm2_outputs[:,c*3+2] trc_file.add_marker(marker, x, y, z) # %% Gather data for computing minimum y-position. outputs_all[idx_augm]['response_markers'] = response_markers outputs_all[idx_augm]['response_data'] = unnorm2_outputs n_response_markers_all += len(response_markers) # %% Extract minimum y-position across response markers. This is used # to align feet and floor when visualizing. responses_all_conc = np.zeros((unnorm2_outputs.shape[0], n_response_markers_all*3)) idx_acc_res = 0 for idx_augm in outputs_all: idx_acc_res_end = (idx_acc_res + (len(outputs_all[idx_augm]['response_markers']))*3) responses_all_conc[:,idx_acc_res:idx_acc_res_end] = ( outputs_all[idx_augm]['response_data']) idx_acc_res = idx_acc_res_end # Minimum y-position across response markers. min_y_pos = np.min(responses_all_conc[:,1::3]) # %% If offset if offset: trc_file.offset('y', -(min_y_pos-0.01)) # %% Return augmented .trc file trc_file.write(pathOutputTRCFile) logging.info(f'Augmented marker coordinates are stored at {pathOutputTRCFile}.\n') return min_y_pos