#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ################################################## ## Reproject 3D points on camera planes ## ################################################## Reproject 3D points from a trc file to the camera planes determined by a toml calibration file, to the DeepLabCut (default), MMpose, or OpenPose format. The order or the markers depends on the markerset chosen markerset--it is the same as in the trc file if unspecified. You can change the marker order in CONSTANTS if you need to. New: Moving cameras and zooming cameras are now supported. Usage: from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(r'', r'', '', r'') python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -odm python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -odm --markerset halpe26 python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file --openpose --deeplabcut --mmpose --undistort python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -d -o output_file_root ''' ## INIT import os import pandas as pd import numpy as np import toml import cv2 import json import re from anytree import Node, RenderTree from copy import deepcopy import argparse ## AUTHORSHIP INFORMATION __author__ = "David Pagnon" __copyright__ = "Copyright 2021, Pose2Sim" __credits__ = ["David Pagnon"] __license__ = "BSD 3-Clause License" __version__ = "0.9.4" __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" # CONSTANTS halpe26_markers = ['NOSB', 'LEYE', 'REYE', 'LEAR', 'REAR', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R'] halpeplus_markers = ['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R'] biocvplus_markers = ['ACROM_R', 'ACROM_L', 'C7', 'T10', 'CLAV', 'XIP_PROC', 'UA_R', 'ELB_LAT_R', 'ELB_MED_R', 'LA_R', 'WRI_LAT_R', 'WRI_MED_R', 'HAND_R', 'UA_L', 'ELB_LAT_L', 'ELB_MED_L', 'LA_L', 'WRI_LAT_L', 'WRI_MED_L', 'HAND_L', 'ASIS_R', 'ASIS_L', 'PSIS_R', 'PSIS_L', 'ILCREST_R', 'ILCREST_L', 'UL_R', 'KNEE_LAT_R', 'KNEE_MED_R', 'LL_R', 'MAL_LAT_R', 'MAL_MED_R', 'HEEL_R', 'MTP1_R', 'MTP5_R', 'TOE_R', 'UL_L', 'KNEE_LAT_L', 'KNEE_MED_L', 'LL_L', 'MAL_LAT_L', 'MAL_MED_L', 'HEEL_L', 'MTP1_L', 'MTP5_L', 'TOE_L', 'THD', 'NOSB'] ## FUNCTIONS def str_to_id(string): ''' Convert a string to an integer id ''' return ''.join([str(abs(ord(char) - 96)) for char in string]) def computeP(calib_file, undistort=False): ''' Compute projection matrices from toml calibration file. Zooming or moving cameras are handled. INPUT: - calib_file: calibration .toml file. - undistort: boolean OUTPUT: - P: projection matrix as list of arrays ''' K, R, T, Kh, H = [], [], [], [], [] P = [] calib = toml.load(calib_file) for cam in list(calib.keys()): if cam != 'metadata': S = np.array(calib[cam]['size']) K = np.array(calib[cam]['matrix']) if len(K.shape) == 2: # static camera if undistort: dist = np.array(calib[cam]['distortions']) optim_K = cv2.getOptimalNewCameraMatrix(K, dist, [int(s) for s in S], 1, [int(s) for s in S])[0] Kh = np.block([optim_K, np.zeros(3).reshape(3,1)]) else: Kh = np.block([K, np.zeros(3).reshape(3,1)]) elif len(K.shape) == 3: # zooming camera if undistort: dist = np.array(calib[cam]['distortions']) optim_K = [cv2.getOptimalNewCameraMatrix(K[f], dist, [int(s) for s in S], 1, [int(s) for s in S])[0] for f in range(len(K))] Kh = [np.block([optim_K[f], np.zeros(3).reshape(3,1)]) for f in range(len(K))] else: Kh = [np.block([K[f], np.zeros(3).reshape(3,1)]) for f in range(len(K))] R = np.array(calib[cam]['rotation']) T = np.array(calib[cam]['translation']) if len(R.shape) == 1: # static camera R_mat, _ = cv2.Rodrigues(np.array(calib[cam]['rotation'])) H = np.block([[R_mat,T.reshape(3,1)], [np.zeros(3), 1 ]]) elif len(R.shape) == 2: # moving camera R_mat = [cv2.Rodrigues(R[f])[0] for f in range(len(R))] H = [np.block([[R_mat[f],T[f].reshape(3,1)], [np.zeros(3), 1 ]]) for f in range(len(R))] if len(K.shape) == 2 and len(R.shape)==1: # static camera P.append([Kh @ H]) elif len(K.shape) == 3 and len(R.shape)==1: # zooming camera P.append([Kh[f] @ H for f in range(len(K))]) elif len(K.shape) == 2 and len(R.shape)==2: # moving camera P.append([Kh @ H[f] for f in range(len(R))]) elif len(K.shape) == 3 and len(R.shape)==2: # zooming and moving camera P.append([Kh[f] @ H[f] for f in range(len(K))]) return np.array(P) def retrieve_calib_params(calib_file): ''' Compute projection matrices from toml calibration file. Zooming or moving cameras are handled. INPUT: - calib_file: calibration .toml file. OUTPUT: - S: (h,w) vectors as list of 2x1 arrays - K: intrinsic matrices as list of 3x3 arrays - dist: distortion vectors as list of 4x1 arrays - optim_K: intrinsic matrices for undistorting points as list of 3x3 arrays - R: rotation rodrigue vectors as list of 3x1 arrays - T: translation vectors as list of 3x1 arrays ''' calib = toml.load(calib_file) S, K, dist, optim_K, R, T = [], [], [], [], [], [] for c, cam in enumerate(calib.keys()): if cam != 'metadata': S.append(np.array(calib[cam]['size'])) K.append(np.array(calib[cam]['matrix'])) dist.append(np.array(calib[cam]['distortions'])) if len(K[c].shape) == 2: # static camera optim_K.append(cv2.getOptimalNewCameraMatrix(K[c], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0]) elif len(K[c].shape) == 3: # zooming camera optim_K.append([cv2.getOptimalNewCameraMatrix(K[c][f], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0] for f in range(len(K[c]))]) R.append(np.array(calib[cam]['rotation'])) T.append(np.array(calib[cam]['translation'])) calib_params = {'S': S, 'K': K, 'dist': dist, 'optim_K': optim_K, 'R': R, 'T': T} return calib_params def reprojection(P_all, Q): ''' Reprojects 3D point on all cameras. INPUTS: - P_all: list of arrays. Projection matrix for all cameras - Q: array of triangulated point (x,y,z,1.) OUTPUTS: - x_calc, y_calc: list of coordinates of point reprojected on all cameras ''' x_calc, y_calc = [], [] for c in range(len(P_all)): P_cam = P_all[c] x_calc.append(P_cam[0] @ Q / (P_cam[2] @ Q)) y_calc.append(P_cam[1] @ Q / (P_cam[2] @ Q)) return x_calc, y_calc def df_from_trc(trc_path): ''' Retrieve header and data from trc path. ''' # DataRate CameraRate NumFrames NumMarkers Units OrigDataRate OrigDataStartFrame OrigNumFrames df_header = pd.read_csv(trc_path, sep="\t", skiprows=1, header=None, nrows=2, encoding="ISO-8859-1") header = dict(zip(df_header.iloc[0].tolist(), df_header.iloc[1].tolist())) # Label1_X Label1_Y Label1_Z Label2_X Label2_Y df_lab = pd.read_csv(trc_path, sep="\t", skiprows=3, nrows=1) labels = df_lab.columns.tolist()[2:-1:3] labels_XYZ = np.array([[labels[i]+'_X', labels[i]+'_Y', labels[i]+'_Z'] for i in range(len(labels))], dtype='object').flatten() labels_FTXYZ = np.concatenate((['Frame#','Time'], labels_XYZ)) data = pd.read_csv(trc_path, sep="\t", skiprows=5, index_col=False, header=None, names=labels_FTXYZ) return header, data def yup2zup(Q): ''' Turns Y-up system coordinates into Z-up coordinates INPUT: - Q: pandas dataframe N 3D points as columns, ie 3*N columns in Z-up system coordinates and frame number as rows OUTPUT: - Q: pandas dataframe with N 3D points in Y-up system coordinates ''' # X->Y, Y->Z, Z->X cols = list(Q.columns) cols = np.array([[cols[i*3+2],cols[i*3],cols[i*3+1]] for i in range(int(len(cols)/3))]).flatten() Q = Q[cols] return Q def dataset_to_openpose(coords_df, openpose_path_root, marker_list=['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']): ''' Write 2D labels to OpenPose format. INPUTS: - coords_df: pandas dataframe with 2D labels. E.g.: all_dfs = pd.read_csv(dlc_labels_path, header = [0,1,2,3], index_col=0) - openpose_path_root: path to save the json files (frame number will be appended) - marker_list: list of markers in the order provided by the dataset. E.g. for Halpeplus: ['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ankle_l', 'ankle_r', 'THD', 'C7', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R'] OUTPUTS: - coordinates written in the openpose json format (one per frame) ''' #prepare json files json_dict = {'version':1.3, 'people':[]} json_dict['people'] = [{'person_id':[-1], 'pose_keypoints_2d': np.zeros(len(marker_list)*3), 'face_keypoints_2d': [], 'hand_left_keypoints_2d':[], 'hand_right_keypoints_2d':[], 'pose_keypoints_3d':[], 'face_keypoints_3d':[], 'hand_left_keypoints_3d':[], 'hand_right_keypoints_3d':[]}] # write one json file per camera and per frame persons = list(set(['_'.join(item.split('_')[:5]) for item in coords_df.columns.levels[1]])) for frame in range(len(coords_df)): for person in persons: json_dict_copy = deepcopy(json_dict) coords = coords_df.iloc[frame, coords_df.columns.get_level_values(1)==person] # store 2D keypoints and respect model keypoint order coords_list = [] for marker in marker_list: coords_mk = coords.loc[coords.index.get_level_values(2)==marker] coords_list += [0.0, 0.0, 0] if np.isnan(coords_mk).any() else coords_mk.tolist()+[1] json_dict_copy['people'][0]['pose_keypoints_2d'] = coords_list # write json file json_file = os.path.join(os.path.dirname(openpose_path_root), f'{os.path.splitext(os.path.basename(openpose_path_root))[0]}_{frame:04d}.json') with open(json_file, 'w') as js_f: js_f.write(json.dumps(json_dict_copy)) def dataset_to_mmpose2d(coords_df, mmpose_json_file, img_size, markerset='custom', marker_list=['NOSB', 'shoulder_l', 'shoulder_r', 'elb_l', 'elb_r', 'wrist_l', 'wrist_r', 'hip_l', 'hip_r', 'knee_l', 'knee_r', 'ank_l', 'ankle_r', 'THD', 'CY', 'SACR', 'MTP1_L', 'MTP1_R', 'MTP5_L', 'MTP5_R', 'HEEL_L', 'HEEL_R', 'LHPE', 'RHPE', 'LHPI', 'RHPI', 'TOE_L', 'TOE_R', 'T10', 'UA_L', 'UA_R', 'LA_L', 'LA_R', 'UL_L', 'UL_R', 'LL_L', 'LL_R']): ''' Export 2D labels to MMPose format. INPUTS: - coords_df: pandas dataframe with 2D labels. E.g.: all_dfs = pd.read_csv(dlc_labels_path, header = [0,1,2,3]), index_col=0) - mmpose_json_file: path to save the json file - img_size: image size [width, height] - markerset: name of the markerset. E.g.: 'halpe26', 'halpeplus', 'biocvplus' - marker_list: list of markers from inverse kinematics and/or SMPL mesh. E.g.: ['ankle_l', 'NOSB',] OUTPUTS: - labels2d_json: saved json file ''' # transform first name in integer, and append other numbers from persons persons = list(set(['_'.join(item.split('_')[:5]) for item in coords_df.columns.levels[1]])) person_ids = [str_to_id(p.split('_')[1]) + ''.join(p.split('_')[3:]) if len(p.split('_'))>=3 else str_to_id(p.split('_')[0]) for p in persons] labels2d_json_data = {} labels2d_json_data['info'] = {'description': f'Bedlam Pose {markerset}', 'url': 'https://github.com/davidpagnon/bedlam_pose', 'version': '0.1', 'year': 2024, 'contributor': 'David Pagnon', 'date_created': '2024/08/14'} labels2d_json_data['licenses'] = [{'url': 'https://bedlam.is.tue.mpg.de/license.html', 'id': 1, 'name': 'Non-commercial scientific research purposes'}, {'url': 'https://creativecommons.org/licenses/by/4.0/deed.en', 'id': 2, 'name': 'Attribution License'}] labels2d_json_data['images'] = [] labels2d_json_data['annotations'] = [] labels2d_json_data['categories'] = [{'id': 1, 'name': 'person'}] # for each image for i in range(len(coords_df)): file_name = coords_df.index[i] w, h = img_size # id from concatenation of numbers from path file_id = int(''.join(re.findall(r'\d+', str(file_name)))) labels2d_json_data['images'] += [{'file_name': file_name, 'height': h, 'width': w, 'id': file_id, 'license': 1}] # for each person for p, person in enumerate(persons): # store 2D keypoints and respect model keypoint order coords = coords_df.iloc[i, coords_df.columns.get_level_values(1)==person] coords_list = [] for marker in marker_list: # visibility: 2 visible, 1 occluded, 0 out of frame coords_mk = coords.loc[coords.index.get_level_values(2)==marker] coords_list += coords_mk.tolist()+[2] if not np.isnan(coords_mk).any() else [0.0, 0.0, 0] num_keypoints = len(marker_list) # bbox x_coords = coords.loc[coords.index.get_level_values(3)=='x'] y_coords = coords.loc[coords.index.get_level_values(3)=='y'] min_x, min_y, max_x, max_y = np.nanmin(x_coords), np.nanmin(y_coords), np.nanmax(x_coords), np.nanmax(y_coords) bbox_width = np.round(max_x - min_x, decimals=1) bbox_height = np.round(max_y - min_y, decimals=1) # bbox = [min_x, min_y, max_x, max_y] bbox = [min_x, min_y, bbox_width, bbox_height] # coco format person_id = person_ids[p] category_id = 1 segmentation = [[min_x, min_y, min_x, max_y, max_x, max_y, max_x, min_y]] # no segmentation area = np.round(bbox_width * bbox_height, decimals=1) iscrowd = 0 # each annotation represents one single person if not np.isnan(bbox).any(): labels2d_json_data['annotations'] += [{ 'keypoints': coords_list, 'num_keypoints': num_keypoints, 'bbox': bbox, 'id': person_id, 'image_id': file_id, 'category_id': category_id, 'segmentation': segmentation, 'area': area, 'iscrowd': iscrowd}] with open(mmpose_json_file, 'w') as f: json.dump(labels2d_json_data, f) def reproj_from_trc_calib_func(**args): ''' Reproject 3D points from a trc file to the camera planes determined by a toml calibration file, to the DeepLabCut (default), MMpose, or OpenPose format. The order or the markers depends on the markerset chosen markerset--it is the same as in the trc file if unspecified. You can change the marker order in CONSTANTS if you need to. New: Moving cameras and zooming cameras are now supported. Usage: from Pose2Sim.Utilities import reproj_from_trc_calib; reproj_from_trc_calib.reproj_from_trc_calib_func(r'', r'', '', r'') python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -odm python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file --openpose --deeplabcut --mmpose --undistort python -m reproj_from_trc_calib -t input_trc_file -c input_calib_file -d -o output_file_root ''' input_trc_file = os.path.realpath(args.get('input_trc_file')) # invoked with argparse input_calib_file = os.path.realpath(args.get('input_calib_file')) openpose_output = args.get('openpose') deeplabcut_output = args.get('deeplabcut') mmpose_output = args.get('mmpose') markerset = args.get('markerset') undistort_points = args.get('undistort_points') output_file_root = args.get('output_file_root') if output_file_root == None: output_file_root = input_trc_file.replace('.trc', '_reproj') if os.path.exists(output_file_root): os.makedirs(output_file_root, exist_ok=True) if not openpose_output and not deeplabcut_output and not mmpose_output: raise ValueError('Output_format must be specified either "openpose" (-o), "deeplabcut" (-d), or "mmpose" (-m)') # Extract data from trc file header_trc, data_trc = df_from_trc(input_trc_file) data_trc_zup = pd.concat([data_trc.iloc[:,:2], yup2zup(data_trc.iloc[:,2:])], axis=1) # yup to zup system coordinates bodyparts = [d[:-2] for d in data_trc_zup.columns[2::3]] num_bodyparts = int(header_trc['NumMarkers']) filename = os.path.splitext(os.path.basename(input_trc_file))[0] # Extract data from calibration file P_all = computeP(input_calib_file, undistort=undistort_points) calib_params = retrieve_calib_params(input_calib_file) calib_params_size = [calib_params['S'][i] for i in range(len(P_all))] if undistort_points: calib_params_R_filt = [calib_params['R'][i] for i in range(len(P_all))] calib_params_T_filt = [calib_params['T'][i] for i in range(len(P_all))] calib_params_K_filt = [calib_params['K'][i] for i in range(len(P_all))] calib_params_dist_filt = [calib_params['dist'][i] for i in range(len(P_all))] # Create camera folders reproj_dir = os.path.realpath(output_file_root) cam_dirs = [os.path.join(reproj_dir, f'cam{cam+1:02d}_json') for cam in range(len(P_all))] if not os.path.exists(reproj_dir): os.mkdir(reproj_dir) try: [os.mkdir(cam_dir) for cam_dir in cam_dirs] except: pass # header preparation num_frames = [len(data_trc) if P_all.shape[1]==1 else min(P_all.shape[1], len(data_trc))][0] columns_iterables = [['DavidPagnon'], ['person0'], bodyparts, ['x','y']] columns_h5 = pd.MultiIndex.from_product(columns_iterables, names=['scorer', 'individuals', 'bodyparts', 'coords']) rows_iterables = [[os.path.join(os.path.splitext(input_trc_file)[0],f'img_{i:03d}.jpg') for i in range(num_frames)]] rows_h5 = pd.MultiIndex.from_product(rows_iterables) data_h5 = pd.DataFrame(np.nan, index=rows_h5, columns=columns_h5) # Reproject 3D points on all cameras data_proj = [deepcopy(data_h5) for cam in range(len(P_all))] # copy data_h5 as many times as there are cameras Q = data_trc_zup.iloc[:,2:] for frame in range(num_frames): coords = [[] for cam in range(len(P_all))] P_all_frame = [P_all[cam][0] if P_all.shape[1]==1 else P_all[cam][frame] for cam in range(len(P_all))] for keypoint in range(num_bodyparts): q = np.append(Q.iloc[frame,3*keypoint:3*keypoint+3], 1) if undistort_points: coords_2D_all = [cv2.projectPoints(np.array(q[:-1]), calib_params_R_filt[i], calib_params_T_filt[i], calib_params_K_filt[i], calib_params_dist_filt[i])[0] for i in range(len(P_all))] x_all = [coords_2D_all[i][0,0,0] for i in range(len(P_all_frame))] y_all = [coords_2D_all[i][0,0,1] for i in range(len(P_all_frame))] else: x_all, y_all = reprojection(P_all_frame, q) # Store with one single decimal x_all = np.round(np.array(x_all), decimals=1) y_all = np.round(np.array(y_all), decimals=1) [coords[cam].extend([x_all[cam], y_all[cam]]) for cam in range(len(P_all_frame))] for cam in range(len(P_all_frame)): data_proj[cam].iloc[frame,:] = coords[cam] # Replace by nan when reprojection out of image for cam in range(len(P_all_frame)): x_valid = (data_proj[cam].iloc[:, ::2] >= 0) & (data_proj[cam].iloc[:, ::2] < calib_params_size[cam][0]) y_valid = (data_proj[cam].iloc[:, 1::2] >= 0) & (data_proj[cam].iloc[:, 1::2] < calib_params_size[cam][1]) data_proj[cam].iloc[:, ::2] = data_proj[cam].iloc[:, ::2].where(x_valid, np.nan) data_proj[cam].iloc[:, ::2] = np.where(y_valid==False, np.nan, data_proj[cam].iloc[:, ::2]) data_proj[cam].iloc[:, 1::2] = data_proj[cam].iloc[:, 1::2].where(y_valid, np.nan) data_proj[cam].iloc[:, 1::2] = np.where(x_valid==False, np.nan, data_proj[cam].iloc[:, 1::2]) # Marker list in the right order if markerset == 'halpe26': marker_list = halpe26_markers elif markerset == 'halpeplus': marker_list = halpeplus_markers elif markerset == 'biocvplus': marker_list = biocvplus_markers else: marker_list = list(dict.fromkeys(data_proj[cam].columns.get_level_values(2)[1:])) # Save as h5 and csv if DeepLabCut format if deeplabcut_output: # to h5 h5_files = [os.path.join(cam_dir,f'{filename}_cam_{i+1:02d}_dlc.h5') for i,cam_dir in enumerate(cam_dirs)] [data_proj[i].to_hdf(h5_files[i], index=True, key='reprojected_points') for i in range(len(P_all))] # to csv csv_files = [os.path.join(cam_dir,f'{filename}_cam_{i+1:02d}_dlc.csv') for i,cam_dir in enumerate(cam_dirs)] [data_proj[i].to_csv(csv_files[i], sep=',', index=True, lineterminator='\n') for i in range(len(P_all))] # Save as json if Coco/MMpose format if mmpose_output: for cam, cam_dir in enumerate(cam_dirs): mmpose_json_file = os.path.join(cam_dir, f'{filename}_cam_{cam+1:02d}_mmpose.json') dataset_to_mmpose2d(data_proj[cam], mmpose_json_file, calib_params_size[cam], markerset=markerset, marker_list=marker_list) # Save as json if OpenPose format if openpose_output: for cam, cam_dir in enumerate(cam_dirs): openpose_path_root = os.path.join(cam_dir, f'{filename}_cam{cam+1:02d}_openpose.json') dataset_to_openpose(data_proj[cam], openpose_path_root, marker_list=marker_list) # Wrong format if not openpose_output and not deeplabcut_output and not mmpose_output: raise ValueError('output_format must be either "openpose" or "deeplabcut"') print(f'Reprojected points saved at {output_file_root}.') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-t', '--input_trc_file', required = True, help='trc 3D coordinates input file path') parser.add_argument('-c', '--input_calib_file', required = True, help='toml calibration input file path') parser.add_argument('-o', '--openpose', required=False, action='store_true', help='output format in the openpose json format') parser.add_argument('-d', '--deeplabcut', required=False, action='store_true', help='output format in the deeplabcut csv and h5 formats') parser.add_argument('-m', '--mmpose', required=False, action='store_true', help='output format in the Coco/MMpose json format') parser.add_argument('-s', '--markerset', required=False, help='markerset name, e.g. halpe26, halpeplus, biocvplus') parser.add_argument('-u', '--undistort_points', required=False, action='store_true', help='takes distortion into account if True') parser.add_argument('-O', '--output_file_root', required=False, help='output file root path, without extension') args = vars(parser.parse_args()) reproj_from_trc_calib_func(**args)