#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ######################################################## ## Convert DeepLabCut h5 files to OpenPose json files ## ######################################################## Translates DeepLabCut (h5) 2D pose estimation files into OpenPose (json) files. You may need to install tables: 'pip install tables' or 'conda install pytables' Usage: python -m DLC_to_OpenPose -i input_h5_file -o output_json_folder OR python -m DLC_to_OpenPose -i input_h5_file OR from Pose2Sim.Utilities import DLC_to_OpenPose; DLC_to_OpenPose.DLC_to_OpenPose_func(r'input_h5_file', r'output_json_folder') ''' ## INIT import pandas as pd import numpy as np import os import json import re import argparse ## AUTHORSHIP INFORMATION __author__ = "David Pagnon" __copyright__ = "Copyright 2021, Pose2Sim" __credits__ = ["David Pagnon"] __license__ = "BSD 3-Clause License" __version__ = "0.9.4" __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" ## FUNCTIONS def DLC_to_OpenPose_func(*args): ''' Translates DeepLabCut (h5) 2D pose estimation files into OpenPose (json) files. Usage: DLC_to_OpenPose -i input_h5_file -o output_json_folder OR DLC_to_OpenPose -i input_h5_file OR import DLC_to_OpenPose; DLC_to_OpenPose.DLC_to_OpenPose_func(r'input_h5_file', r'output_json_folder') ''' try: h5_file_path = os.path.realpath(args[0]['input']) # invoked with argparse if args[0]['output'] == None: json_folder_path = os.path.splitext(h5_file_path)[0] else: json_folder_path = os.path.realpath(args[0]['output']) except: h5_file_path = os.path.realpath(args[0]) # invoked as a function try: json_folder_path = os.path.realpath(args[1]) except: json_folder_path = os.path.splitext(h5_file_path)[0] if not os.path.exists(json_folder_path): os.mkdir(json_folder_path) # json preparation json_dict = {'version':1.3, 'people':[]} json_dict['people'] = [{'person_id':[-1], 'pose_keypoints_2d': [], 'face_keypoints_2d': [], 'hand_left_keypoints_2d':[], 'hand_right_keypoints_2d':[], 'pose_keypoints_3d':[], 'face_keypoints_3d':[], 'hand_left_keypoints_3d':[], 'hand_right_keypoints_3d':[]}] # h5 reader h5_file = pd.read_hdf(h5_file_path).fillna(0) kpt_nb = int(len(h5_file.columns)//3) # write each h5 line in json file for f, frame in enumerate(h5_file.index): h5_line = np.array([[h5_file.iloc[f, 3*k], h5_file.iloc[f, 3*k+1], h5_file.iloc[f, 3*k+2]] for k in range(kpt_nb)]).flatten().tolist() json_dict['people'][0]['pose_keypoints_2d'] = h5_line json_file = os.path.join(json_folder_path, os.path.splitext(os.path.basename(str(frame).zfill(5)))[0]+'.json') with open(json_file, 'w') as js_f: js_f.write(json.dumps(json_dict)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', required = True, help='input 2D pose coordinates DeepLabCut h5 file') parser.add_argument('-o', '--output', required = False, help='output folder for 2D pose coordinates OpenPose json files') args = vars(parser.parse_args()) DLC_to_OpenPose_func(args)