#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ################################################## ## GAIT EVENTS DETECTION ## ################################################## Determine gait events according to Zeni et al. (2008). Write them in gaitevents.txt (append results if file already exists). t_HeelStrike = max(XHeel - Xsacrum) t_ToeOff = min(XToe - XSacrum) Reference: “Two simple methods for determining gait events during treadmill and overground walking using kinematic data.” Gait & posture vol. 27,4 (2008): 710-4. doi:10.1016/j.gaitpost.2007.07.007 Usage: Replace constants with the appropriate marker names. If direction is negative, you need to include an equal sign in the argument, eg -d=-Z or --gait_direction=-Z from Pose2Sim.Utilities import trc_gaitevents; trc_gaitevents.trc_gaitevents_func(r'', '') OR python -m trc_gaitevents -i "" OR python -m trc_gaitevents -i "" --gait_direction=-Z ''' ## CONSTANTS R_SACRUM_MARKER = 'RHip' R_HEEL_MARKER = 'RHeel' R_TOE_MARKER = 'RBigToe' L_SACRUM_MARKER = 'LHip' L_HEEL_MARKER = 'LHeel' L_TOE_MARKER = 'LBigToe' ## INIT import os import argparse import pandas as pd import numpy as np from scipy import signal ## AUTHORSHIP INFORMATION __author__ = "David Pagnon" __copyright__ = "Copyright 2021, Pose2Sim" __credits__ = ["David Pagnon"] __license__ = "BSD 3-Clause License" __version__ = '0.4' __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" ## FUNCTIONS def df_from_trc(trc_path): ''' Retrieve header and data from trc path. ''' # DataRate CameraRate NumFrames NumMarkers Units OrigDataRate OrigDataStartFrame OrigNumFrames df_header = pd.read_csv(trc_path, sep="\t", skiprows=1, header=None, nrows=2, encoding="ISO-8859-1") header = dict(zip(df_header.iloc[0].tolist(), df_header.iloc[1].tolist())) # Label1_X Label1_Y Label1_Z Label2_X Label2_Y df_lab = pd.read_csv(trc_path, sep="\t", skiprows=3, nrows=1) labels = df_lab.columns.tolist()[2:-1:3] labels_XYZ = np.array([[labels[i]+'_X', labels[i]+'_Y', labels[i]+'_Z'] for i in range(len(labels))], dtype='object').flatten() labels_FTXYZ = np.concatenate((['Frame#','Time'], labels_XYZ)) data = pd.read_csv(trc_path, sep="\t", skiprows=5, index_col=False, header=None, names=labels_FTXYZ) return header, data def gait_events(trc_path, gait_direction): ''' Determine gait events according to Zeni et al. (2008). t_HellStrike = max(XHeel - Xsacrum) t_ToeOff = min(XToe - XSacrum) ''' # Read trc header, data = df_from_trc(trc_path) # In case of a sign in direction (eg -Z) sign = '' if any(x in gait_direction for x in ['-', '+']): sign = gait_direction[0] gait_direction = gait_direction[-1] # Retrieve data of interest XRSacrum = data['_'.join((R_SACRUM_MARKER, gait_direction))] XRHeel = data['_'.join((R_HEEL_MARKER, gait_direction))] XRToe = data['_'.join((R_TOE_MARKER, gait_direction))] XLSacrum = data['_'.join((L_SACRUM_MARKER, gait_direction))] XLHeel = data['_'.join((L_HEEL_MARKER, gait_direction))] XLToe = data['_'.join((L_TOE_MARKER, gait_direction))] # Prominence of the peaks unit = header['Units'] peak_prominence = .1 if unit=='m' else 1 if unit=='dm' else 10 if unit=='cm' else 100 if unit=='mm' else np.inf # Right and left heel strikes frame_RHS = signal.find_peaks(eval(sign+'(XRHeel-XRSacrum)'),prominence=peak_prominence)[0] t_RHS = data.loc[frame_RHS, 'Time'].tolist() frame_LHS = signal.find_peaks(eval(sign+'(XLHeel-XLSacrum)'),prominence=peak_prominence)[0] t_LHS = data.loc[frame_LHS, 'Time'].tolist() # Right and left toe offs frame_RTO = signal.find_peaks(eval(sign+'-(XRToe-XRSacrum)'),prominence=peak_prominence)[0] t_RTO = data.loc[frame_RTO, 'Time'].tolist() frame_LTO = signal.find_peaks(eval(sign+'-(XLToe-XLSacrum)'),prominence=peak_prominence)[0] t_LTO = data.loc[frame_LTO, 'Time'].tolist() return t_RHS, t_LHS, t_RTO, t_LTO def trc_gaitevents_func(*args): ''' Determine gait events according to Zeni et al. (2008). Write them in gaitevents.txt (append results if file already exists). t_HeelStrike = max(XHeel - Xsacrum) t_ToeOff = min(XToe - XSacrum) Reference: “Two simple methods for determining gait events during treadmill and overground walking using kinematic data.” Gait & posture vol. 27,4 (2008): 710-4. doi:10.1016/j.gaitpost.2007.07.007 Usage: Replace constants with the appropriate marker names in trc_gaitevents.py. If direction is negative, you need to include an equal sign in the argument, eg -d=-Z or --gait_direction=-Z import trc_gaitevents; trc_gaitevents.trc_gaitevents_func(r'', '') OR trc_gaitevents -i "" --gait_direction Z OR trc_gaitevents -i "" --gait_direction=-Z ''' try: trc_path = args[0].get('input_file') # invoked with argparse gait_direction = args[0]['gait_direction'] except: trc_path = args[0] # invoked as a function try: gait_direction = args[1] except: gait_direction = 'Z' trc_dir = os.path.dirname(trc_path) trc_name = os.path.basename(trc_path) t_RHS, t_LHS, t_RTO, t_LTO = gait_events(trc_path, gait_direction) with open(os.path.join(trc_dir, 'gaitevents.txt'), 'a') as gaitevents: L = trc_name + '\n' L += 'Right Heel strikes: ' + str(t_RHS) + '\n' L += 'Left Heel strikes: ' + str(t_LHS) + '\n' L += 'Right Toe off: ' + str(t_RTO) + '\n' L += 'Left Toe off: ' + str(t_LTO) + '\n\n' gaitevents.write(L) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_file', required = True, help='trc input file') parser.add_argument('-d', '--gait_direction', default = 'Z', required = False, help='direction of the gait. If negative, you need to include an equal sign in the argument, eg -d=-Z') args = vars(parser.parse_args()) trc_gaitevents_func(args)