#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ########################################################################### ## TRACKING OF PERSON OF INTEREST ## ########################################################################### Openpose detects all people in the field of view. Which is the one of interest? This module tries all possible triangulations of a chosen anatomical point. If "multi_person" mode is not used, it chooses the person for whom the reprojection error is smallest. Otherwise, it selects all persons with a reprojection error smaller than a threshold, and then associates them across time frames by minimizing the displacement speed. INPUTS: - a calibration file (.toml extension) - json files from each camera folders with several detected persons - a Config.toml file - a skeleton model OUTPUTS: - json files for each camera with only one person of interest ''' ## INIT import os import glob import fnmatch import numpy as np import json import itertools as it import toml from tqdm import tqdm import cv2 from anytree import RenderTree from anytree.importer import DictImporter import logging from Pose2Sim.common import retrieve_calib_params, computeP, weighted_triangulation, \ reprojection, euclidean_distance, natural_sort from Pose2Sim.skeletons import * ## AUTHORSHIP INFORMATION __author__ = "David Pagnon" __copyright__ = "Copyright 2021, Pose2Sim" __credits__ = ["David Pagnon"] __license__ = "BSD 3-Clause License" __version__ = '0.6' __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" ## FUNCTIONS def common_items_in_list(list1, list2): ''' Do two lists have any items in common at the same index? Returns True or False ''' for i, j in enumerate(list1): if j == list2[i]: return True return False def min_with_single_indices(L, T): ''' Let L be a list (size s) with T associated tuple indices (size s). Select the smallest values of L, considering that the next smallest value cannot have the same numbers in the associated tuple as any of the previous ones. Example: L = [ 20, 27, 51, 33, 43, 23, 37, 24, 4, 68, 84, 3 ] T = list(it.product(range(2),range(3))) = [(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3)] - 1st smallest value: 3 with tuple (2,3), index 11 - 2nd smallest value when excluding indices (2,.) and (.,3), i.e. [(0,0),(0,1),(0,2),X,(1,0),(1,1),(1,2),X,X,X,X,X]: 20 with tuple (0,0), index 0 - 3rd smallest value when excluding [X,X,X,X,X,(1,1),(1,2),X,X,X,X,X]: 23 with tuple (1,1), index 5 INPUTS: - L: list (size s) - T: T associated tuple indices (size s) OUTPUTS: - minL: list of smallest values of L, considering constraints on tuple indices - argminL: list of indices of smallest values of L - T_minL: list of tuples associated with smallest values of L ''' minL = [np.min(L)] argminL = [np.argmin(L)] T_minL = [T[argminL[0]]] mask_tokeep = np.array([True for t in T]) i=0 while mask_tokeep.any()==True: mask_tokeep = mask_tokeep & np.array([t[0]!=T_minL[i][0] and t[1]!=T_minL[i][1] for t in T]) if mask_tokeep.any()==True: indicesL_tokeep = np.where(mask_tokeep)[0] minL += [np.min(np.array(L)[indicesL_tokeep])] argminL += [indicesL_tokeep[np.argmin(np.array(L)[indicesL_tokeep])]] T_minL += (T[argminL[i+1]],) i+=1 return minL, argminL, T_minL def sort_people(Q_kpt_old, Q_kpt): ''' Associate persons across frames Persons' indices are sometimes swapped when changing frame A person is associated to another in the next frame when they are at a small distance INPUTS: - Q_kpt_old: list of arrays of 3D coordinates [X, Y, Z, 1.] for the previous frame - Q_kpt: idem Q_kpt_old, for current frame OUTPUT: - Q_kpt: array with reordered persons - personsIDs_sorted: index of reordered persons ''' # Generate possible person correspondences across frames if len(Q_kpt_old) < len(Q_kpt): Q_kpt_old = np.concatenate((Q_kpt_old, [[0., 0., 0., 1.]]*(len(Q_kpt)-len(Q_kpt_old)))) personsIDs_comb = sorted(list(it.product(range(len(Q_kpt_old)),range(len(Q_kpt))))) # Compute distance between persons from one frame to another frame_by_frame_dist = [] for comb in personsIDs_comb: frame_by_frame_dist += [euclidean_distance(Q_kpt_old[comb[0]][:3],Q_kpt[comb[1]][:3])] # sort correspondences by distance _, index_best_comb, _ = min_with_single_indices(frame_by_frame_dist, personsIDs_comb) index_best_comb.sort() personsIDs_sorted = np.array(personsIDs_comb)[index_best_comb][:,1] # rearrange persons Q_kpt = np.array(Q_kpt)[personsIDs_sorted] return Q_kpt, personsIDs_sorted def persons_combinations(json_files_framef): ''' Find all possible combinations of detected persons' ids. Person's id when no person detected is set to -1. INPUT: - json_files_framef: list of strings OUTPUT: - personsIDs_comb: array, list of lists of int ''' n_cams = len(json_files_framef) # amount of persons detected for each cam nb_persons_per_cam = [] for c in range(n_cams): with open(json_files_framef[c], 'r') as js: nb_persons_per_cam += [len(json.load(js)['people'])] # persons_combinations id_no_detect = [i for i, x in enumerate(nb_persons_per_cam) if x == 0] # ids of cameras that have not detected any person nb_persons_per_cam = [x if x != 0 else 1 for x in nb_persons_per_cam] # temporarily replace persons count by 1 when no detection range_persons_per_cam = [range(nb_persons_per_cam[c]) for c in range(n_cams)] personsIDs_comb = np.array(list(it.product(*range_persons_per_cam)), float) # all possible combinations of persons' ids personsIDs_comb[:,id_no_detect] = np.nan # -1 = persons' ids when no person detected return personsIDs_comb def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_combinations, projection_matrices, tracked_keypoint_id, calib_params): ''' - if multi_person: Choose all the combination of cameras that give a reprojection error below a threshold - else: Chooses the right person among the multiple ones found by OpenPose & excludes cameras with wrong 2d-pose estimation. 1. triangulate the tracked keypoint for all possible combinations of people, 2. compute difference between reprojection & original openpose detection, 3. take combination with smallest error OR all those below the error threshold If error is too big, take off one or several of the cameras until err is lower than "max_err_px". INPUTS: - a Config.toml file - json_files_framef: list of strings - personsIDs_combinations: array, list of lists of int - projection_matrices: list of arrays - tracked_keypoint_id: int OUTPUTS: - errors_below_thresh: list of float - comb_errors_below_thresh: list of arrays of ints ''' multi_person = config.get('project').get('multi_person') nb_persons_to_detect = config.get('project').get('nb_persons_to_detect') error_threshold_tracking = config.get('personAssociation').get('reproj_error_threshold_association') likelihood_threshold = config.get('personAssociation').get('likelihood_threshold_association') min_cameras_for_triangulation = config.get('triangulation').get('min_cameras_for_triangulation') undistort_points = config.get('triangulation').get('undistort_points') n_cams = len(json_files_framef) error_min = np.inf nb_cams_off = 0 # cameras will be taken-off until the reprojection error is under threshold errors_below_thresh = [] comb_errors_below_thresh = [] Q_kpt = [] while error_min > error_threshold_tracking and n_cams - nb_cams_off >= min_cameras_for_triangulation: # Try all persons combinations for combination in personsIDs_combinations: # Get x,y,likelihood values from files x_files, y_files,likelihood_files = [], [], [] for index_cam, person_nb in enumerate(combination): with open(json_files_framef[index_cam], 'r') as json_f: js = json.load(json_f) try: x_files.append( js['people'][int(person_nb)]['pose_keypoints_2d'][tracked_keypoint_id*3] ) y_files.append( js['people'][int(person_nb)]['pose_keypoints_2d'][tracked_keypoint_id*3+1] ) likelihood_files.append( js['people'][int(person_nb)]['pose_keypoints_2d'][tracked_keypoint_id*3+2] ) except: x_files.append(np.nan) y_files.append(np.nan) likelihood_files.append(np.nan) # undistort points if undistort_points: points = np.array(tuple(zip(x_files,y_files))).reshape(-1, 1, 2).astype('float32') undistorted_points = [cv2.undistortPoints(points[i], calib_params['K'][i], calib_params['dist'][i], None, calib_params['optim_K'][i]) for i in range(n_cams)] x_files = np.array([[u[i][0][0] for i in range(len(u))] for u in undistorted_points]).squeeze() y_files = np.array([[u[i][0][1] for i in range(len(u))] for u in undistorted_points]).squeeze() # Replace likelihood by 0. if under likelihood_threshold likelihood_files = [0. if lik < likelihood_threshold else lik for lik in likelihood_files] # For each persons combination, create subsets with "nb_cams_off" cameras excluded id_cams_off = list(it.combinations(range(len(combination)), nb_cams_off)) combinations_with_cams_off = np.array([combination.copy()]*len(id_cams_off)) for i, id in enumerate(id_cams_off): combinations_with_cams_off[i,id] = np.nan # Try all subsets error_comb = [] Q_comb = [] for comb in combinations_with_cams_off: # Filter x, y, likelihood, projection_matrices, with subset x_files_filt = [x_files[i] for i in range(len(comb)) if not np.isnan(comb[i])] y_files_filt = [y_files[i] for i in range(len(comb)) if not np.isnan(comb[i])] likelihood_files_filt = [likelihood_files[i] for i in range(len(comb)) if not np.isnan(comb[i])] projection_matrices_filt = [projection_matrices[i] for i in range(len(comb)) if not np.isnan(comb[i])] if undistort_points: calib_params_R_filt = [calib_params['R'][i] for i in range(len(comb)) if not np.isnan(comb[i])] calib_params_T_filt = [calib_params['T'][i] for i in range(len(comb)) if not np.isnan(comb[i])] calib_params_K_filt = [calib_params['K'][i] for i in range(len(comb)) if not np.isnan(comb[i])] calib_params_dist_filt = [calib_params['dist'][i] for i in range(len(comb)) if not np.isnan(comb[i])] # Triangulate 2D points Q_comb.append(weighted_triangulation(projection_matrices_filt, x_files_filt, y_files_filt, likelihood_files_filt)) # Reprojection if undistort_points: coords_2D_kpt_calc_filt = [cv2.projectPoints(np.array(Q_comb[-1][:-1]), calib_params_R_filt[i], calib_params_T_filt[i], calib_params_K_filt[i], calib_params_dist_filt[i])[0] for i in range(n_cams-nb_cams_off)] x_calc = [coords_2D_kpt_calc_filt[i][0,0,0] for i in range(n_cams-nb_cams_off)] y_calc = [coords_2D_kpt_calc_filt[i][0,0,1] for i in range(n_cams-nb_cams_off)] else: x_calc, y_calc = reprojection(projection_matrices_filt, Q_comb[-1]) # Reprojection error error_comb_per_cam = [] for cam in range(len(x_calc)): q_file = (x_files_filt[cam], y_files_filt[cam]) q_calc = (x_calc[cam], y_calc[cam]) error_comb_per_cam.append( euclidean_distance(q_file, q_calc) ) error_comb.append( np.mean(error_comb_per_cam) ) if multi_person: errors_below_thresh += [e for e in error_comb if e0: # sort combinations by error magnitude errors_below_thresh_sorted = sorted(errors_below_thresh) sorted_idx = np.array([errors_below_thresh.index(e) for e in errors_below_thresh_sorted]) comb_errors_below_thresh = np.array(comb_errors_below_thresh)[sorted_idx] Q_kpt = np.array(Q_kpt)[sorted_idx] # remove combinations with indices used several times for the same person comb_errors_below_thresh = [c.tolist() for c in comb_errors_below_thresh] comb = comb_errors_below_thresh.copy() comb_ok = np.array([comb[0]]) for i, c1 in enumerate(comb): idx_ok = np.array([not(common_items_in_list(c1, c2)) for c2 in comb[1:]]) try: comb = np.array(comb[1:])[idx_ok] comb_ok = np.concatenate((comb_ok, [comb[0]])) except: break sorted_pruned_idx = [i for i, x in enumerate(comb_errors_below_thresh) for c in comb_ok if np.array_equal(x,c,equal_nan=True)] errors_below_thresh = np.array(errors_below_thresh_sorted)[sorted_pruned_idx].tolist() comb_errors_below_thresh = np.array(comb_errors_below_thresh)[sorted_pruned_idx].tolist() Q_kpt = Q_kpt[sorted_pruned_idx].tolist() # Remove indices already used for a person personsIDs_combinations = np.array([personsIDs_combinations[i] for i in range(len(personsIDs_combinations)) if not np.array( [personsIDs_combinations[i,j]==comb[j] for comb in comb_errors_below_thresh for j in range(len(comb))] ).any()]) if len(errors_below_thresh) >= len(personsIDs_combinations) or len(errors_below_thresh) >= nb_persons_to_detect: errors_below_thresh = errors_below_thresh[:nb_persons_to_detect] comb_errors_below_thresh = comb_errors_below_thresh[:nb_persons_to_detect] Q_kpt = Q_kpt[:nb_persons_to_detect] break nb_cams_off += 1 return errors_below_thresh, comb_errors_below_thresh, Q_kpt def recap_tracking(config, error, nb_cams_excluded): ''' Print a message giving statistics on reprojection errors (in pixel and in m) as well as the number of cameras that had to be excluded to reach threshold conditions. Also stored in User/logs.txt. INPUT: - a Config.toml file - error: dataframe - nb_cams_excluded: dataframe OUTPUT: - Message in console ''' # Read config project_dir = config.get('project').get('project_dir') session_dir = os.path.realpath(os.path.join(project_dir, '..', '..')) tracked_keypoint = config.get('personAssociation').get('tracked_keypoint') error_threshold_tracking = config.get('personAssociation').get('reproj_error_threshold_association') poseTracked_dir = os.path.join(project_dir, 'pose-associated') calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if 'calib' in c.lower()][0] calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file # Error mean_error_px = np.around(np.mean(error), decimals=1) calib = toml.load(calib_file) calib_cam1 = calib[list(calib.keys())[0]] fm = calib_cam1['matrix'][0][0] Dm = euclidean_distance(calib_cam1['translation'], [0,0,0]) mean_error_mm = np.around(mean_error_px * Dm / fm * 1000, decimals=1) # Excluded cameras mean_cam_off_count = np.around(np.mean(nb_cams_excluded), decimals=2) # Recap logging.info(f'\n--> Mean reprojection error for {tracked_keypoint} point on all frames is {mean_error_px} px, which roughly corresponds to {mean_error_mm} mm. ') logging.info(f'--> In average, {mean_cam_off_count} cameras had to be excluded to reach the demanded {error_threshold_tracking} px error threshold.') logging.info(f'\nTracked json files are stored in {os.path.realpath(poseTracked_dir)}.') def track_2d_all(config): ''' For each frame, - Find all possible combinations of detected persons - Triangulate 'tracked_keypoint' for all combinations - Reproject the point on all cameras - Take combination with smallest reprojection error - Write json file with only one detected person Print recap message INPUTS: - a calibration file (.toml extension) - json files from each camera folders with several detected persons - a Config.toml file - a skeleton model OUTPUTS: - json files for each camera with only one person of interest ''' # Read config project_dir = config.get('project').get('project_dir') session_dir = os.path.realpath(os.path.join(project_dir, '..', '..')) multi_person = config.get('project').get('multi_person') pose_model = config.get('pose').get('pose_model') tracked_keypoint = config.get('personAssociation').get('tracked_keypoint') frame_range = config.get('project').get('frame_range') undistort_points = config.get('triangulation').get('undistort_points') calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if 'calib' in c.lower() ][0] try: calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file except: raise Exception(f'No .toml calibration file found in the {calib_dir}.') pose_dir = os.path.join(project_dir, 'pose') poseTracked_dir = os.path.join(project_dir, 'pose-associated') if multi_person: logging.info('\nMulti-person analysis selected. Note that you can set this option to false for faster runtime if you only need the main person in the scene.') else: logging.info('\nSingle-person analysis selected.') # projection matrix from toml calibration file P = computeP(calib_file, undistort=undistort_points) calib_params = retrieve_calib_params(calib_file) # selection of tracked keypoint id try: # from skeletons.py model = eval(pose_model) except: try: # from Config.toml model = DictImporter().import_(config.get('pose').get(pose_model)) if model.id == 'None': model.id = None except: raise NameError('Model not found in skeletons.py nor in Config.toml') tracked_keypoint_id = [node.id for _, _, node in RenderTree(model) if node.name==tracked_keypoint][0] # 2d-pose files selection pose_listdirs_names = next(os.walk(pose_dir))[1] pose_listdirs_names = natural_sort(pose_listdirs_names) json_dirs_names = [k for k in pose_listdirs_names if 'json' in k] json_files_names = [fnmatch.filter(os.listdir(os.path.join(pose_dir, js_dir)), '*.json') for js_dir in json_dirs_names] json_files_names = [natural_sort(j) for j in json_files_names] json_files = [[os.path.join(pose_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)] # 2d-pose-associated files creation if not os.path.exists(poseTracked_dir): os.mkdir(poseTracked_dir) try: [os.mkdir(os.path.join(poseTracked_dir,k)) for k in json_dirs_names] except: pass json_tracked_files = [[os.path.join(poseTracked_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)] # person's tracking f_range = [[min([len(j) for j in json_files])] if frame_range==[] else frame_range][0] n_cams = len(json_dirs_names) error_min_tot, cameras_off_tot = [], [] # Check that camera number is consistent between calibration file and pose folders if n_cams != len(P): raise Exception(f'Error: The number of cameras is not consistent:\ Found {len(P)} cameras in the calibration file,\ and {n_cams} cameras based on the number of pose folders.') Q_kpt = [np.array([0., 0., 0., 1.])] for f in tqdm(range(*f_range)): # print(f'\nFrame {f}:') json_files_f = [json_files[c][f] for c in range(n_cams)] json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)] # all possible combinations of persons personsIDs_comb = persons_combinations(json_files_f) # choose persons of interest and exclude cameras with bad pose estimation Q_kpt_old = Q_kpt errors_below_thresh, comb_errors_below_thresh, Q_kpt = best_persons_and_cameras_combination(config, json_files_f, personsIDs_comb, P, tracked_keypoint_id, calib_params) # reID persons across frames by checking the distance from one frame to another Q_kpt, personsIDs_sorted = sort_people(Q_kpt_old, Q_kpt) errors_below_thresh = np.array(errors_below_thresh)[personsIDs_sorted] comb_errors_below_thresh = np.array(comb_errors_below_thresh)[personsIDs_sorted] # rewrite json files with a single or multiple persons of interest error_min_tot.append(np.mean(errors_below_thresh)) cameras_off_count = np.count_nonzero([np.isnan(comb) for comb in comb_errors_below_thresh]) / len(comb_errors_below_thresh) cameras_off_tot.append(cameras_off_count) for cam in range(n_cams): with open(json_tracked_files_f[cam], 'w') as json_tracked_f: with open(json_files_f[cam], 'r') as json_f: js = json.load(json_f) js_new = js.copy() js_new['people'] = [] for new_comb in comb_errors_below_thresh: if not np.isnan(new_comb[cam]): js_new['people'] += [js['people'][int(new_comb[cam])]] else: js_new['people'] += [{}] json_tracked_f.write(json.dumps(js_new)) # recap message recap_tracking(config, error_min_tot, cameras_off_tot)