#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ########################################################################### ## TRACKING OF PERSON OF INTEREST ## ########################################################################### Openpose detects all people in the field of view. - multi_person = false: Triangulates the most prominent person - multi_person = true: Triangulates persons across views Tracking them across time frames is done in the triangulation stage. If multi_person = false, this module tries all possible triangulations of a chosen anatomical point, and chooses the person for whom the reprojection error is smallest. If multi_person = true, it computes the distance between epipolar lines (camera to keypoint lines) for all persons detected in all views, and selects the best correspondences. The computation of the affinity matrix from the distance is inspired from the EasyMocap approach. INPUTS: - a calibration file (.toml extension) - json files from each camera folders with several detected persons - a Config.toml file - a skeleton model OUTPUTS: - json files for each camera with only one person of interest ''' ## INIT import os import glob import fnmatch import re import numpy as np import json import itertools as it import toml from tqdm import tqdm import cv2 from anytree import RenderTree from anytree.importer import DictImporter import logging from Pose2Sim.common import retrieve_calib_params, computeP, weighted_triangulation, \ reprojection, euclidean_distance, sort_stringlist_by_last_number from Pose2Sim.skeletons import * ## AUTHORSHIP INFORMATION __author__ = "David Pagnon" __copyright__ = "Copyright 2021, Pose2Sim" __credits__ = ["David Pagnon"] __license__ = "BSD 3-Clause License" __version__ = "0.9.4" __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" ## FUNCTIONS def persons_combinations(json_files_framef): ''' Find all possible combinations of detected persons' ids. Person's id when no person detected is set to -1. INPUT: - json_files_framef: list of strings OUTPUT: - personsIDs_comb: array, list of lists of int ''' n_cams = len(json_files_framef) # amount of persons detected for each cam nb_persons_per_cam = [] for c in range(n_cams): try: with open(json_files_framef[c], 'r') as js: nb_persons_per_cam += [len(json.load(js)['people'])] except: nb_persons_per_cam += [0] # persons combinations id_no_detect = [i for i, x in enumerate(nb_persons_per_cam) if x == 0] # ids of cameras that have not detected any person nb_persons_per_cam = [x if x != 0 else 1 for x in nb_persons_per_cam] # temporarily replace persons count by 1 when no detection range_persons_per_cam = [range(nb_persons_per_cam[c]) for c in range(n_cams)] personsIDs_comb = np.array(list(it.product(*range_persons_per_cam)), float) # all possible combinations of persons' ids personsIDs_comb[:,id_no_detect] = np.nan # -1 = persons' ids when no person detected return personsIDs_comb def triangulate_comb(comb, coords, P_all, calib_params, config_dict): ''' Triangulate 2D points and compute reprojection error for a combination of cameras. INPUTS: - comb: list of ints: combination of persons' ids for each camera - coords: array: x, y, likelihood for each camera - P_all: list of arrays: projection matrices for each camera - calib_params: dict: calibration parameters - config_dict: dictionary from Config.toml file OUTPUTS: - error_comb: float: reprojection error - comb: list of ints: combination of persons' ids for each camera - Q_comb: array: 3D coordinates of the triangulated point ''' undistort_points = config_dict.get('triangulation').get('undistort_points') likelihood_threshold = config_dict.get('personAssociation').get('likelihood_threshold_association') # Replace likelihood by 0. if under likelihood_threshold coords[:,2][coords[:,2] < likelihood_threshold] = 0. comb[coords[:,2] == 0.] = np.nan # Filter coords and projection_matrices containing nans coords_filt = [coords[i] for i in range(len(comb)) if not np.isnan(comb[i])] projection_matrices_filt = [P_all[i] for i in range(len(comb)) if not np.isnan(comb[i])] if undistort_points: calib_params_R_filt = [calib_params['R'][i] for i in range(len(comb)) if not np.isnan(comb[i])] calib_params_T_filt = [calib_params['T'][i] for i in range(len(comb)) if not np.isnan(comb[i])] calib_params_K_filt = [calib_params['K'][i] for i in range(len(comb)) if not np.isnan(comb[i])] calib_params_dist_filt = [calib_params['dist'][i] for i in range(len(comb)) if not np.isnan(comb[i])] # Triangulate 2D points try: x_files_filt, y_files_filt, likelihood_files_filt = np.array(coords_filt).T Q_comb = weighted_triangulation(projection_matrices_filt, x_files_filt, y_files_filt, likelihood_files_filt) except: Q_comb = [np.nan, np.nan, np.nan, 1.] # Reprojection if undistort_points: coords_2D_kpt_calc_filt = [cv2.projectPoints(np.array(Q_comb[:-1]), calib_params_R_filt[i], calib_params_T_filt[i], calib_params_K_filt[i], calib_params_dist_filt[i])[0] for i in range(len(Q_comb))] x_calc = [coords_2D_kpt_calc_filt[i][0,0,0] for i in range(len(Q_comb))] y_calc = [coords_2D_kpt_calc_filt[i][0,0,1] for i in range(len(Q_comb))] else: x_calc, y_calc = reprojection(projection_matrices_filt, Q_comb) # Reprojection error error_comb_per_cam = [] for cam in range(len(x_calc)): q_file = (x_files_filt[cam], y_files_filt[cam]) q_calc = (x_calc[cam], y_calc[cam]) error_comb_per_cam.append( euclidean_distance(q_file, q_calc) ) error_comb = np.mean(error_comb_per_cam) return error_comb, comb, Q_comb def best_persons_and_cameras_combination(config_dict, json_files_framef, personsIDs_combinations, projection_matrices, tracked_keypoint_id, calib_params): ''' Chooses the right person among the multiple ones found by OpenPose & excludes cameras with wrong 2d-pose estimation. 1. triangulate the tracked keypoint for all possible combinations of people, 2. compute difference between reprojection & original openpose detection, 3. take combination with smallest error OR all those below the error threshold If error is too big, take off one or several of the cameras until err is lower than "max_err_px". INPUTS: - a Config.toml file - json_files_framef: list of strings - personsIDs_combinations: array, list of lists of int - projection_matrices: list of arrays - tracked_keypoint_id: int OUTPUTS: - errors_below_thresh: list of float - comb_errors_below_thresh: list of arrays of ints ''' error_threshold_tracking = config_dict.get('personAssociation').get('single_person').get('reproj_error_threshold_association') min_cameras_for_triangulation = config_dict.get('triangulation').get('min_cameras_for_triangulation') undistort_points = config_dict.get('triangulation').get('undistort_points') n_cams = len(json_files_framef) error_min = np.inf nb_cams_off = 0 # cameras will be taken-off until the reprojection error is under threshold Q_kpt = [] while error_min > error_threshold_tracking and n_cams - nb_cams_off >= min_cameras_for_triangulation: # Try all persons combinations for combination in personsIDs_combinations: # Get coords from files coords = [] for index_cam, person_nb in enumerate(combination): try: js = read_json(json_files_framef[index_cam]) coords.append(js[int(person_nb)][tracked_keypoint_id*3:tracked_keypoint_id*3+3]) except: coords.append([np.nan, np.nan, np.nan]) coords = np.array(coords) # undistort points if undistort_points: points = np.array(coords)[:,None,:2] undistorted_points = [cv2.undistortPoints(points[i], calib_params['K'][i], calib_params['dist'][i], None, calib_params['optim_K'][i]) for i in range(n_cams)] coords[:,0] = np.array([[u[i][0][0] for i in range(len(u))] for u in undistorted_points]).squeeze() coords[:,1] = np.array([[u[i][0][1] for i in range(len(u))] for u in undistorted_points]).squeeze() # For each persons combination, create subsets with "nb_cams_off" cameras excluded id_cams_off = list(it.combinations(range(len(combination)), nb_cams_off)) combinations_with_cams_off = np.array([combination.copy()]*len(id_cams_off)) for i, id in enumerate(id_cams_off): combinations_with_cams_off[i,id] = np.nan # Try all subsets error_comb_all, comb_all, Q_comb_all = [], [], [] for comb in combinations_with_cams_off: error_comb, comb, Q_comb = triangulate_comb(comb, coords, projection_matrices, calib_params, config_dict) error_comb_all.append(error_comb) comb_all.append(comb) Q_comb_all.append(Q_comb) error_min = np.nanmin(error_comb_all) comb_error_min = [comb_all[np.argmin(error_comb_all)]] Q_kpt = [Q_comb_all[np.argmin(error_comb_all)]] if error_min < error_threshold_tracking: break nb_cams_off += 1 return error_min, comb_error_min, Q_kpt def read_json(js_file): ''' Read OpenPose json file ''' try: with open(js_file, 'r') as json_f: js = json.load(json_f) json_data = [] for people in range(len(js['people'])): if len(js['people'][people]['pose_keypoints_2d']) < 3: continue else: json_data.append(js['people'][people]['pose_keypoints_2d']) except: json_data = [] return json_data def compute_rays(json_coord, calib_params, cam_id): ''' Plucker coordinates of rays from camera to each joint of a person Plucker coordinates: camera to keypoint line direction (size 3) moment: origin ^ line (size 3) additionally, confidence INPUTS: - json_coord: x, y, likelihood for a person seen from a camera (list of 3*joint_nb) - calib_params: calibration parameters from retrieve_calib_params('calib.toml') - cam_id: camera id (int) OUTPUT: - plucker: array. nb joints * (6 plucker coordinates + 1 likelihood) ''' x = json_coord[0::3] y = json_coord[1::3] likelihood = json_coord[2::3] inv_K = calib_params['inv_K'][cam_id] R_mat = calib_params['R_mat'][cam_id] T = calib_params['T'][cam_id] cam_center = -R_mat.T @ T plucker = [] for i in range(len(x)): q = np.array([x[i], y[i], 1]) norm_Q = R_mat.T @ (inv_K @ q -T) line = norm_Q - cam_center norm_line = line/np.linalg.norm(line) moment = np.cross(cam_center, norm_line) plucker.append(np.concatenate([norm_line, moment, [likelihood[i]]])) return np.array(plucker) def broadcast_line_to_line_distance(p0, p1): ''' Compute the distance between two lines in 3D space. see: https://faculty.sites.iastate.edu/jia/files/inline-files/plucker-coordinates.pdf p0 = (l0,m0), p1 = (l1,m1) dist = | (l0,m0) * (l1,m1) | / || l0 x l1 || (l0,m0) * (l1,m1) = l0 @ m1 + m0 @ l1 (reciprocal product) No need to divide by the norm of the cross product of the directions, since we don't need the actual distance but whether the lines are close to intersecting or not => dist = | (l0,m0) * (l1,m1) | INPUTS: - p0: array(nb_persons_detected * 1 * nb_joints * 7 coordinates) - p1: array(1 * nb_persons_detected * nb_joints * 7 coordinates) OUTPUT: - dist: distances between the two lines (not normalized). array(nb_persons_0 * nb_persons_1 * nb_joints) ''' product = np.sum(p0[..., :3] * p1[..., 3:6], axis=-1) + np.sum(p1[..., :3] * p0[..., 3:6], axis=-1) dist = np.abs(product) return dist def compute_affinity(all_json_data_f, calib_params, cum_persons_per_view, reconstruction_error_threshold=0.1): ''' Compute the affinity between all the people in the different views. The affinity is defined as 1 - distance/max_distance, with distance the distance between epipolar lines in each view (reciprocal product of Plucker coordinates). Another approach would be to project one epipolar line onto the other camera plane and compute the line to point distance, but it is more computationally intensive (simple dot product vs. projection and distance calculation). INPUTS: - all_json_data_f: list of json data. For frame f, nb_views*nb_persons*(x,y,likelihood)*nb_joints - calib_params: calibration parameters from retrieve_calib_params('calib.toml') - cum_persons_per_view: cumulative number of persons per view - reconstruction_error_threshold: maximum distance between epipolar lines to consider a match OUTPUT: - affinity: affinity matrix between all the people in the different views. (nb_views*nb_persons_per_view * nb_views*nb_persons_per_view) ''' # Compute plucker coordinates for all keypoints for each person in each view # pluckers_f: dims=(camera, person, joint, 7 coordinates) pluckers_f = [] for cam_id, json_cam in enumerate(all_json_data_f): pluckers = [] for json_coord in json_cam: plucker = compute_rays(json_coord, calib_params, cam_id) # LIMIT TO 15 JOINTS? json_coord[:15*3] pluckers.append(plucker) pluckers = np.array(pluckers) pluckers_f.append(pluckers) # Compute affinity matrix distance = np.zeros((cum_persons_per_view[-1], cum_persons_per_view[-1])) + 2*reconstruction_error_threshold for compared_cam0, compared_cam1 in it.combinations(range(len(all_json_data_f)), 2): # skip when no detection for a camera if cum_persons_per_view[compared_cam0] == cum_persons_per_view[compared_cam0+1] \ or cum_persons_per_view[compared_cam1] == cum_persons_per_view[compared_cam1 +1]: continue # compute distance p0 = pluckers_f[compared_cam0][:,None] # add coordinate on second dimension p1 = pluckers_f[compared_cam1][None,:] # add coordinate on first dimension dist = broadcast_line_to_line_distance(p0, p1) likelihood = np.sqrt(p0[..., -1] * p1[..., -1]) mean_weighted_dist = np.sum(dist*likelihood, axis=-1)/(1e-5 + likelihood.sum(axis=-1)) # array(nb_persons_0 * nb_persons_1) # populate distance matrix distance[cum_persons_per_view[compared_cam0]:cum_persons_per_view[compared_cam0+1], \ cum_persons_per_view[compared_cam1]:cum_persons_per_view[compared_cam1+1]] \ = mean_weighted_dist distance[cum_persons_per_view[compared_cam1]:cum_persons_per_view[compared_cam1+1], \ cum_persons_per_view[compared_cam0]:cum_persons_per_view[compared_cam0+1]] \ = mean_weighted_dist.T # compute affinity matrix and clamp it to zero when distance > reconstruction_error_threshold distance[distance > reconstruction_error_threshold] = reconstruction_error_threshold affinity = 1 - distance / reconstruction_error_threshold return affinity def circular_constraint(cum_persons_per_view): ''' A person can be matched only with themselves in the same view, and with any person from other views INPUT: - cum_persons_per_view: cumulative number of persons per view OUTPUT: - circ_constraint: circular constraint matrix ''' circ_constraint = np.identity(cum_persons_per_view[-1]) for i in range(len(cum_persons_per_view)-1): circ_constraint[cum_persons_per_view[i]:cum_persons_per_view[i+1], cum_persons_per_view[i+1]:cum_persons_per_view[-1]] = 1 circ_constraint[cum_persons_per_view[i+1]:cum_persons_per_view[-1], cum_persons_per_view[i]:cum_persons_per_view[i+1]] = 1 return circ_constraint def SVT(matrix, threshold): ''' Find a low-rank approximation of the matrix using Singular Value Thresholding. INPUTS: - matrix: matrix to decompose - threshold: threshold for singular values OUTPUT: - matrix_thresh: low-rank approximation of the matrix ''' U, s, Vt = np.linalg.svd(matrix) # decompose matrix s_thresh = np.maximum(s - threshold, 0) # set smallest singular values to zero matrix_thresh = U @ np.diag(s_thresh) @ Vt # recompose matrix return matrix_thresh def matchSVT(affinity, cum_persons_per_view, circ_constraint, max_iter = 20, w_rank = 50, tol = 1e-4, w_sparse=0.1): ''' Find low-rank approximation of 'affinity' while satisfying the circular constraint. INPUTS: - affinity: affinity matrix between all the people in the different views - cum_persons_per_view: cumulative number of persons per view - circ_constraint: circular constraint matrix - max_iter: maximum number of iterations - w_rank: threshold for singular values - tol: tolerance for convergence - w_sparse: regularization parameter OUTPUT: - new_aff: low-rank approximation of the affinity matrix ''' new_aff = affinity.copy() N = new_aff.shape[0] index_diag = np.arange(N) new_aff[index_diag, index_diag] = 0. # new_aff = (new_aff + new_aff.T)/2 # symmetric by construction Y = np.zeros_like(new_aff) # Initial deviation matrix / residual () W = w_sparse - new_aff # Initial sparse matrix / regularization (prevent overfitting) mu = 64 # initial step size for iter in range(max_iter): new_aff0 = new_aff.copy() Q = new_aff + Y*1.0/mu Q = SVT(Q,w_rank/mu) new_aff = Q - (W + Y)/mu # Project X onto dimGroups for i in range(len(cum_persons_per_view) - 1): ind1, ind2 = cum_persons_per_view[i], cum_persons_per_view[i + 1] new_aff[ind1:ind2, ind1:ind2] = 0 # Reset diagonal elements to one and ensure X is within valid range [0, 1] new_aff[index_diag, index_diag] = 1. new_aff[new_aff < 0] = 0 new_aff[new_aff > 1] = 1 # Enforce circular constraint new_aff = new_aff * circ_constraint new_aff = (new_aff + new_aff.T) / 2 # kept just in case X loses its symmetry during optimization Y = Y + mu * (new_aff - Q) # Compute convergence criteria: break if new_aff is close enough to Q and no evolution anymore pRes = np.linalg.norm(new_aff - Q) / N # primal residual (diff between new_aff and SVT result) dRes = mu * np.linalg.norm(new_aff - new_aff0) / N # dual residual (diff between new_aff and previous new_aff) if pRes < tol and dRes < tol: break if pRes > 10 * dRes: mu = 2 * mu elif dRes > 10 * pRes: mu = mu / 2 iter +=1 return new_aff def person_index_per_cam(affinity, cum_persons_per_view, min_cameras_for_triangulation): ''' For each detected person, gives their index for each camera INPUTS: - affinity: affinity matrix between all the people in the different views - min_cameras_for_triangulation: exclude proposals if less than N cameras see them OUTPUT: - proposals: 2D array: n_persons * n_cams ''' # index of the max affinity for each group (-1 if no detection) proposals = [] for row in range(affinity.shape[0]): proposal_row = [] for cam in range(len(cum_persons_per_view)-1): id_persons_per_view = affinity[row, cum_persons_per_view[cam]:cum_persons_per_view[cam+1]] proposal_row += [np.argmax(id_persons_per_view) if (len(id_persons_per_view)>0 and max(id_persons_per_view)>0) else -1] proposals.append(proposal_row) proposals = np.array(proposals, dtype=float) # remove duplicates and order proposals, nb_detections = np.unique(proposals, axis=0, return_counts=True) proposals = proposals[np.argsort(nb_detections)[::-1]] # remove row if any value is the same in previous rows at same index (nan!=nan so nan ignored) proposals[proposals==-1] = np.nan mask = np.ones(proposals.shape[0], dtype=bool) for i in range(1, len(proposals)): mask[i] = ~np.any(proposals[i] == proposals[:i], axis=0).any() proposals = proposals[mask] # remove identifications if less than N cameras see them nb_cams_per_person = [np.count_nonzero(~np.isnan(p)) for p in proposals] proposals = np.array([p for (n,p) in zip(nb_cams_per_person, proposals) if n >= min_cameras_for_triangulation]) return proposals def rewrite_json_files(json_tracked_files_f, json_files_f, proposals, n_cams): ''' Write new json files with correct association of people across cameras. INPUTS: - json_tracked_files_f: list of strings: json files to write - json_files_f: list of strings: json files to read - proposals: 2D array: n_persons * n_cams - n_cams: int: number of cameras OUTPUT: - json files with correct association of people across cameras ''' for cam in range(n_cams): try: with open(json_tracked_files_f[cam], 'w') as json_tracked_f: with open(json_files_f[cam], 'r') as json_f: js = json.load(json_f) js_new = js.copy() js_new['people'] = [] for new_comb in proposals: if not np.isnan(new_comb[cam]): js_new['people'] += [js['people'][int(new_comb[cam])]] else: js_new['people'] += [{}] json_tracked_f.write(json.dumps(js_new)) except: os.remove(json_tracked_files_f[cam]) def recap_tracking(config_dict, error=0, nb_cams_excluded=0): ''' Print a message giving statistics on reprojection errors (in pixel and in m) as well as the number of cameras that had to be excluded to reach threshold conditions. Also stored in User/logs.txt. INPUT: - a Config.toml file - error: dataframe - nb_cams_excluded: dataframe OUTPUT: - Message in console ''' # Read config_dict project_dir = config_dict.get('project').get('project_dir') # if batch session_dir = os.path.realpath(os.path.join(project_dir, '..')) # if single trial session_dir = session_dir if 'Config.toml' in os.listdir(session_dir) else os.getcwd() multi_person = config_dict.get('project').get('multi_person') likelihood_threshold_association = config_dict.get('personAssociation').get('likelihood_threshold_association') tracked_keypoint = config_dict.get('personAssociation').get('single_person').get('tracked_keypoint') error_threshold_tracking = config_dict.get('personAssociation').get('single_person').get('reproj_error_threshold_association') reconstruction_error_threshold = config_dict.get('personAssociation').get('multi_person').get('reconstruction_error_threshold') min_affinity = config_dict.get('personAssociation').get('multi_person').get('min_affinity') poseTracked_dir = os.path.join(project_dir, 'pose-associated') calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if os.path.isdir(os.path.join(session_dir, c)) and 'calib' in c.lower()][0] calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file if not multi_person: logging.info('\nSingle-person analysis selected.') # Error mean_error_px = np.around(np.nanmean(error), decimals=1) calib = toml.load(calib_file) calib_cam1 = calib[list(calib.keys())[0]] fm = calib_cam1['matrix'][0][0] Dm = euclidean_distance(calib_cam1['translation'], [0,0,0]) mean_error_mm = np.around(mean_error_px * Dm / fm * 1000, decimals=1) # Excluded cameras mean_cam_off_count = np.around(np.mean(nb_cams_excluded), decimals=2) # Recap logging.info(f'\n--> Mean reprojection error for {tracked_keypoint} point on all frames is {mean_error_px} px, which roughly corresponds to {mean_error_mm} mm. ') logging.info(f'--> In average, {mean_cam_off_count} cameras had to be excluded to reach the demanded {error_threshold_tracking} px error threshold after excluding points with likelihood below {likelihood_threshold_association}.') else: logging.info('\nMulti-person analysis selected.') logging.info(f'\n--> A person was reconstructed if the lines from cameras to their keypoints intersected within {reconstruction_error_threshold} m and if the calculated affinity stayed below {min_affinity} after excluding points with likelihood below {likelihood_threshold_association}.') logging.info(f'--> Beware that people were sorted across cameras, but not across frames. This will be done in the triangulation stage.') logging.info(f'\nTracked json files are stored in {os.path.realpath(poseTracked_dir)}.') def track_2d_all(config_dict): ''' For each frame, - Find all possible combinations of detected persons - Triangulate 'tracked_keypoint' for all combinations - Reproject the point on all cameras - Take combination with smallest reprojection error - Write json file with only one detected person Print recap message INPUTS: - a calibration file (.toml extension) - json files from each camera folders with several detected persons - a Config.toml file - a skeleton model OUTPUTS: - json files for each camera with only one person of interest ''' # Read config_dict project_dir = config_dict.get('project').get('project_dir') # if batch session_dir = os.path.realpath(os.path.join(project_dir, '..')) # if single trial session_dir = session_dir if 'Config.toml' in os.listdir(session_dir) else os.getcwd() multi_person = config_dict.get('project').get('multi_person') pose_model = config_dict.get('pose').get('pose_model') tracked_keypoint = config_dict.get('personAssociation').get('single_person').get('tracked_keypoint') min_cameras_for_triangulation = config_dict.get('triangulation').get('min_cameras_for_triangulation') reconstruction_error_threshold = config_dict.get('personAssociation').get('multi_person').get('reconstruction_error_threshold') min_affinity = config_dict.get('personAssociation').get('multi_person').get('min_affinity') frame_range = config_dict.get('project').get('frame_range') undistort_points = config_dict.get('triangulation').get('undistort_points') try: calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if os.path.isdir(os.path.join(session_dir, c)) and 'calib' in c.lower()][0] except: raise Exception(f'No .toml calibration direcctory found.') try: calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file except: raise Exception(f'No .toml calibration file found in the {calib_dir}.') pose_dir = os.path.join(project_dir, 'pose') poseSync_dir = os.path.join(project_dir, 'pose-sync') poseTracked_dir = os.path.join(project_dir, 'pose-associated') # projection matrix from toml calibration file P_all = computeP(calib_file, undistort=undistort_points) calib_params = retrieve_calib_params(calib_file) # selection of tracked keypoint id try: # from skeletons.py model = eval(pose_model) except: try: # from Config.toml model = DictImporter().import_(config_dict.get('pose').get(pose_model)) if model.id == 'None': model.id = None except: raise NameError('Model not found in skeletons.py nor in Config.toml') tracked_keypoint_id = [node.id for _, _, node in RenderTree(model) if node.name==tracked_keypoint][0] # 2d-pose files selection pose_listdirs_names = next(os.walk(pose_dir))[1] pose_listdirs_names = sort_stringlist_by_last_number(pose_listdirs_names) json_dirs_names = [k for k in pose_listdirs_names if 'json' in k] try: json_files_names = [fnmatch.filter(os.listdir(os.path.join(poseSync_dir, js_dir)), '*.json') for js_dir in json_dirs_names] except: json_files_names = [fnmatch.filter(os.listdir(os.path.join(pose_dir, js_dir)), '*.json') for js_dir in json_dirs_names] json_files_names = [sort_stringlist_by_last_number(j) for j in json_files_names] # 2d-pose-associated files creation if not os.path.exists(poseTracked_dir): os.mkdir(poseTracked_dir) try: [os.mkdir(os.path.join(poseTracked_dir,k)) for k in json_dirs_names] except: pass error_min_tot, cameras_off_tot = [], [] f_range = [[0,max([len(j) for j in json_files_names])] if frame_range==[] else frame_range][0] n_cams = len(json_dirs_names) # Check that camera number is consistent between calibration file and pose folders if n_cams != len(P_all): raise Exception(f'Error: The number of cameras is not consistent:\ Found {len(P_all)} cameras in the calibration file,\ and {n_cams} cameras based on the number of pose folders.') for f in tqdm(range(*f_range)): # print(f'\nFrame {f}:') json_files_names_f = [[j for j in json_files_names[c] if int(re.split(r'(\d+)',j)[-2])==f] for c in range(n_cams)] json_files_names_f = [j for j_list in json_files_names_f for j in (j_list or ['none'])] try: json_files_f = [os.path.join(poseSync_dir, json_dirs_names[c], json_files_names_f[c]) for c in range(n_cams)] with open(os.path.exist(json_files_f[0])) as json_exist_test: pass except: json_files_f = [os.path.join(pose_dir, json_dirs_names[c], json_files_names_f[c]) for c in range(n_cams)] json_tracked_files_f = [os.path.join(poseTracked_dir, json_dirs_names[c], json_files_names_f[c]) for c in range(n_cams)] if not multi_person: # all possible combinations of persons personsIDs_comb = persons_combinations(json_files_f) # choose persons of interest and exclude cameras with bad pose estimation error_proposals, proposals, Q_kpt = best_persons_and_cameras_combination(config_dict, json_files_f, personsIDs_comb, P_all, tracked_keypoint_id, calib_params) if not np.isinf(error_proposals): error_min_tot.append(np.nanmean(error_proposals)) cameras_off_count = np.count_nonzero([np.isnan(comb) for comb in proposals]) / len(proposals) cameras_off_tot.append(cameras_off_count) else: # read data all_json_data_f = [] for js_file in json_files_f: all_json_data_f.append(read_json(js_file)) #TODO: remove people with average likelihood < 0.3, no full torso, less than 12 joints... (cf filter2d in dataset/base.py L498) # obtain proposals after computing affinity between all the people in the different views persons_per_view = [0] + [len(j) for j in all_json_data_f] cum_persons_per_view = np.cumsum(persons_per_view) affinity = compute_affinity(all_json_data_f, calib_params, cum_persons_per_view, reconstruction_error_threshold=reconstruction_error_threshold) circ_constraint = circular_constraint(cum_persons_per_view) affinity = affinity * circ_constraint #TODO: affinity without hand, face, feet (cf ray.py L31) affinity = matchSVT(affinity, cum_persons_per_view, circ_constraint, max_iter = 20, w_rank = 50, tol = 1e-4, w_sparse=0.1) affinity[affinity