#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ########################################################################### ## FILTER 3D COORDINATES ## ########################################################################### Filter trc 3D coordinates. Available filters: Butterworth, Butterworth on speed, Gaussian, LOESS, Median Set your parameters in Config.toml INPUTS: - a trc file - filtering parameters in Config.toml OUTPUT: - a filtered trc file ''' ## INIT import os import glob import fnmatch import numpy as np import pandas as pd import matplotlib.pyplot as plt import logging from scipy import signal from scipy.ndimage import gaussian_filter1d from statsmodels.nonparametric.smoothers_lowess import lowess from filterpy.kalman import KalmanFilter, rts_smoother from filterpy.common import Q_discrete_white_noise from Pose2Sim.common import plotWindow ## AUTHORSHIP INFORMATION __author__ = "David Pagnon" __copyright__ = "Copyright 2021, Pose2Sim" __credits__ = ["David Pagnon"] __license__ = "BSD 3-Clause License" __version__ = '0.6' __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" ## FUNCTIONS def kalman_filter(coords, frame_rate, measurement_noise, process_noise, nb_dimensions=3, nb_derivatives=3, smooth=True): ''' Filters coordinates with a Kalman filter or a Kalman smoother INPUTS: - coords: array of shape (nframes, ndims) - frame_rate: integer - measurement_noise: integer - process_noise: integer - nb_dimensions: integer, number of dimensions (3 if 3D coordinates) - nb_derivatives: integer, number of derivatives (3 if constant acceleration model) - smooth: boolean. True if souble pass (recommended), False if single pass (if real-time) OUTPUTS: - kpt_coords_filt: filtered coords ''' # Variables dim_x = nb_dimensions * nb_derivatives # 9 state variables dt = 1/frame_rate # Filter definition f = KalmanFilter(dim_x=dim_x, dim_z=nb_dimensions) # States: initial position, velocity, accel, in 3D def derivate_array(arr, dt=1): return np.diff(arr, axis=0)/dt def repeat(func, arg_func, nb_reps): for i in range(nb_reps): arg_func = func(arg_func) return arg_func x_init = [] for n_der in range(nb_derivatives): x_init += [repeat(derivate_array, coords, n_der)[0]] # pose*3D, vel*3D, accel*3D f.x = np.array(x_init).reshape(nb_dimensions,nb_derivatives).T.flatten() # pose, vel, accel *3D # State transition matrix F_per_coord = np.zeros((int(dim_x/nb_dimensions), int(dim_x/nb_dimensions))) for i in range(nb_derivatives): for j in range(min(i+1, nb_derivatives)): F_per_coord[j,i] = dt**(i-j) / np.math.factorial(i - j) f.F = np.kron(np.eye(nb_dimensions),F_per_coord) # F_per_coord= [[1, dt, dt**2/2], # [ 0, 1, dt ], # [ 0, 0, 1 ]]) # No control input f.B = None # Measurement matrix (only positions) H = np.zeros((nb_dimensions, dim_x)) for i in range(min(nb_dimensions,dim_x)): H[i, int(i*(dim_x/nb_dimensions))] = 1 f.H = H # H = [[1., 0., 0., 0., 0., 0., 0., 0., 0.], # [0., 0., 0., 1., 0., 0., 0., 0., 0.], # [0., 0., 0., 0., 0., 0., 1., 0., 0.]] # Covariance matrix f.P *= measurement_noise # Measurement noise f.R = np.diag([measurement_noise**2]*nb_dimensions) # Process noise f.Q = Q_discrete_white_noise(nb_derivatives, dt=dt, var=process_noise**2, block_size=nb_dimensions) # Run filter: predict and update for each frame mu, cov, _, _ = f.batch_filter(coords) # equivalent to below # mu = [] # for kpt_coord_frame in coords: # f.predict() # f.update(kpt_coord_frame) # mu.append(f.x.copy()) ind_of_position = [int(d*(dim_x/nb_dimensions)) for d in range(nb_dimensions)] coords_filt = np.array(mu)[:,ind_of_position] # RTS smoother if smooth == True: mu2, P, C, _ = f.rts_smoother(mu, cov) coords_filt = np.array(mu2)[:,ind_of_position] return coords_filt def kalman_filter_1d(config, col): ''' 1D Kalman filter Deals with nans INPUT: - col: Pandas dataframe column - trustratio: int, ratio process_noise/measurement_noise - framerate: int - smooth: boolean, True if double pass (recommended), False if single pass (if real-time) OUTPUT: - col_filtered: Filtered pandas dataframe column ''' trustratio = int(config.get('filtering').get('kalman').get('trust_ratio')) smooth = int(config.get('filtering').get('kalman').get('smooth')) framerate = config.get('project').get('frame_rate') measurement_noise = 20 process_noise = measurement_noise * trustratio # split into sequences of not nans col_filtered = col.copy() mask = np.isnan(col_filtered) | col_filtered.eq(0) falsemask_indices = np.where(~mask)[0] gaps = np.where(np.diff(falsemask_indices) > 1)[0] + 1 idx_sequences = np.split(falsemask_indices, gaps) if idx_sequences[0].size > 0: idx_sequences_to_filter = [seq for seq in idx_sequences] # Filter each of the selected sequences for seq_f in idx_sequences_to_filter: col_filtered[seq_f] = kalman_filter(col_filtered[seq_f], framerate, measurement_noise, process_noise, nb_dimensions=1, nb_derivatives=3, smooth=smooth).flatten() return col_filtered def butterworth_filter_1d(config, col): ''' 1D Zero-phase Butterworth filter (dual pass) Deals with nans INPUT: - col: numpy array - order: int - cutoff: int - framerate: int OUTPUT: - col_filtered: Filtered pandas dataframe column ''' type = 'low' #config.get('filtering').get('butterworth').get('type') order = int(config.get('filtering').get('butterworth').get('order')) cutoff = int(config.get('filtering').get('butterworth').get('cut_off_frequency')) framerate = config.get('project').get('frame_rate') b, a = signal.butter(order/2, cutoff/(framerate/2), type, analog = False) padlen = 3 * max(len(a), len(b)) # split into sequences of not nans col_filtered = col.copy() mask = np.isnan(col_filtered) | col_filtered.eq(0) falsemask_indices = np.where(~mask)[0] gaps = np.where(np.diff(falsemask_indices) > 1)[0] + 1 idx_sequences = np.split(falsemask_indices, gaps) if idx_sequences[0].size > 0: idx_sequences_to_filter = [seq for seq in idx_sequences if len(seq) > padlen] # Filter each of the selected sequences for seq_f in idx_sequences_to_filter: col_filtered[seq_f] = signal.filtfilt(b, a, col_filtered[seq_f]) return col_filtered def butterworth_on_speed_filter_1d(config, col): ''' 1D zero-phase Butterworth filter (dual pass) on derivative INPUT: - col: Pandas dataframe column - frame rate, order, cut-off frequency, type (from Config.toml) OUTPUT: - col_filtered: Filtered pandas dataframe column ''' type = 'low' # config.get('filtering').get('butterworth_on_speed').get('type') order = int(config.get('filtering').get('butterworth_on_speed').get('order')) cutoff = int(config.get('filtering').get('butterworth_on_speed').get('cut_off_frequency')) framerate = config.get('project').get('frame_rate') b, a = signal.butter(order/2, cutoff/(framerate/2), type, analog = False) padlen = 3 * max(len(a), len(b)) # derivative col_filtered = col.copy() col_filtered_diff = col_filtered.diff() # derivative col_filtered_diff = col_filtered_diff.fillna(col_filtered_diff.iloc[1]/2) # set first value correctly instead of nan # split into sequences of not nans mask = np.isnan(col_filtered_diff) | col_filtered_diff.eq(0) falsemask_indices = np.where(~mask)[0] gaps = np.where(np.diff(falsemask_indices) > 1)[0] + 1 idx_sequences = np.split(falsemask_indices, gaps) if idx_sequences[0].size > 0: idx_sequences_to_filter = [seq for seq in idx_sequences if len(seq) > padlen] # Filter each of the selected sequences for seq_f in idx_sequences_to_filter: col_filtered_diff[seq_f] = signal.filtfilt(b, a, col_filtered_diff[seq_f]) col_filtered = col_filtered_diff.cumsum() + col.iloc[0] # integrate filtered derivative return col_filtered def gaussian_filter_1d(config, col): ''' 1D Gaussian filter INPUT: - col: Pandas dataframe column - gaussian_filter_sigma_kernel: kernel size from Config.toml OUTPUT: - col_filtered: Filtered pandas dataframe column ''' gaussian_filter_sigma_kernel = int(config.get('filtering').get('gaussian').get('sigma_kernel')) col_filtered = gaussian_filter1d(col, gaussian_filter_sigma_kernel) return col_filtered def loess_filter_1d(config, col): ''' 1D LOWESS filter (Locally Weighted Scatterplot Smoothing) INPUT: - col: Pandas dataframe column - loess_filter_nb_values: window used for smoothing from Config.toml frac = loess_filter_nb_values * frames_number OUTPUT: - col_filtered: Filtered pandas dataframe column ''' kernel = config.get('filtering').get('LOESS').get('nb_values_used') col_filtered = col.copy() mask = np.isnan(col_filtered) falsemask_indices = np.where(~mask)[0] gaps = np.where(np.diff(falsemask_indices) > 1)[0] + 1 idx_sequences = np.split(falsemask_indices, gaps) if idx_sequences[0].size > 0: idx_sequences_to_filter = [seq for seq in idx_sequences if len(seq) > kernel] # Filter each of the selected sequences for seq_f in idx_sequences_to_filter: col_filtered[seq_f] = lowess(col_filtered[seq_f], seq_f, is_sorted=True, frac=kernel/len(seq_f), it=0)[:,1] return col_filtered def median_filter_1d(config, col): ''' 1D median filter INPUT: - col: Pandas dataframe column - median_filter_kernel_size: kernel size from Config.toml OUTPUT: - col_filtered: Filtered pandas dataframe column ''' median_filter_kernel_size = config.get('filtering').get('median').get('kernel_size') col_filtered = signal.medfilt(col, kernel_size=median_filter_kernel_size) return col_filtered def display_figures_fun(Q_unfilt, Q_filt, time_col, keypoints_names): ''' Displays filtered and unfiltered data for comparison INPUTS: - Q_unfilt: pandas dataframe of unfiltered 3D coordinates - Q_filt: pandas dataframe of filtered 3D coordinates - time_col: pandas column - keypoints_names: list of strings OUTPUT: - matplotlib window with tabbed figures for each keypoint ''' pw = plotWindow() for id, keypoint in enumerate(keypoints_names): f = plt.figure() axX = plt.subplot(311) plt.plot(time_col.to_numpy(), Q_unfilt.iloc[:,id*3].to_numpy(), label='unfiltered') plt.plot(time_col.to_numpy(), Q_filt.iloc[:,id*3].to_numpy(), label='filtered') plt.setp(axX.get_xticklabels(), visible=False) axX.set_ylabel(keypoint+' X') plt.legend() axY = plt.subplot(312) plt.plot(time_col.to_numpy(), Q_unfilt.iloc[:,id*3+1].to_numpy(), label='unfiltered') plt.plot(time_col.to_numpy(), Q_filt.iloc[:,id*3+1].to_numpy(), label='filtered') plt.setp(axY.get_xticklabels(), visible=False) axY.set_ylabel(keypoint+' Y') plt.legend() axZ = plt.subplot(313) plt.plot(time_col.to_numpy(), Q_unfilt.iloc[:,id*3+2].to_numpy(), label='unfiltered') plt.plot(time_col.to_numpy(), Q_filt.iloc[:,id*3+2].to_numpy(), label='filtered') axZ.set_ylabel(keypoint+' Z') axZ.set_xlabel('Time') plt.legend() pw.addPlot(keypoint, f) pw.show() def filter1d(col, config, filter_type): ''' Choose filter type and filter column INPUT: - col: Pandas dataframe column - filter_type: filter type from Config.toml OUTPUT: - col_filtered: Filtered pandas dataframe column ''' # Choose filter filter_mapping = { 'kalman': kalman_filter_1d, 'butterworth': butterworth_filter_1d, 'butterworth_on_speed': butterworth_on_speed_filter_1d, 'gaussian': gaussian_filter_1d, 'LOESS': loess_filter_1d, 'median': median_filter_1d } filter_fun = filter_mapping[filter_type] # Filter column col_filtered = filter_fun(config, col) return col_filtered def recap_filter3d(config, trc_path): ''' Print a log message giving filtering parameters. Also stored in User/logs.txt. OUTPUT: - Message in console ''' # Read Config filter_type = config.get('filtering').get('type') kalman_filter_trustratio = int(config.get('filtering').get('kalman').get('trust_ratio')) kalman_filter_smooth = int(config.get('filtering').get('kalman').get('smooth')) kalman_filter_smooth_str = 'smoother' if kalman_filter_smooth else 'filter' butterworth_filter_type = 'low' # config.get('filtering').get('butterworth').get('type') butterworth_filter_order = int(config.get('filtering').get('butterworth').get('order')) butterworth_filter_cutoff = int(config.get('filtering').get('butterworth').get('cut_off_frequency')) butter_speed_filter_type = 'low' # config.get('filtering').get('butterworth_on_speed').get('type') butter_speed_filter_order = int(config.get('filtering').get('butterworth_on_speed').get('order')) butter_speed_filter_cutoff = int(config.get('filtering').get('butterworth_on_speed').get('cut_off_frequency')) gaussian_filter_sigma_kernel = int(config.get('filtering').get('gaussian').get('sigma_kernel')) loess_filter_nb_values = config.get('filtering').get('LOESS').get('nb_values_used') median_filter_kernel_size = config.get('filtering').get('median').get('kernel_size') # Recap filter_mapping_recap = { 'kalman': f'--> Filter type: Kalman {kalman_filter_smooth_str}. Measurements trusted {kalman_filter_trustratio} times as much as previous data, assuming a constant acceleration process.', 'butterworth': f'--> Filter type: Butterworth {butterworth_filter_type}-pass. Order {butterworth_filter_order}, Cut-off frequency {butterworth_filter_cutoff} Hz.', 'butterworth_on_speed': f'--> Filter type: Butterworth on speed {butter_speed_filter_type}-pass. Order {butter_speed_filter_order}, Cut-off frequency {butter_speed_filter_cutoff} Hz.', 'gaussian': f'--> Filter type: Gaussian. Standard deviation kernel: {gaussian_filter_sigma_kernel}', 'LOESS': f'--> Filter type: LOESS. Number of values used: {loess_filter_nb_values}', 'median': f'--> Filter type: Median. Kernel size: {median_filter_kernel_size}' } logging.info(filter_mapping_recap[filter_type]) logging.info(f'Filtered 3D coordinates are stored at {trc_path}.\n') def filter_all(config): ''' Filter the 3D coordinates of the trc file. Displays filtered coordinates for checking. INPUTS: - a trc file - filtration parameters from Config.toml OUTPUT: - a filtered trc file ''' # Read config project_dir = config.get('project').get('project_dir') try: pose_tracked_dir = os.path.join(project_dir, 'pose-associated') os.listdir(pose_tracked_dir) pose_dir = pose_tracked_dir except: pose_dir = os.path.join(project_dir, 'pose') frame_range = config.get('project').get('frame_range') pose3d_dir = os.path.realpath(os.path.join(project_dir, 'pose-3d')) display_figures = config.get('filtering').get('display_figures') filter_type = config.get('filtering').get('type') seq_name = os.path.basename(os.path.realpath(project_dir)) # Frames range pose_listdirs_names = next(os.walk(pose_dir))[1] json_dirs_names = [k for k in pose_listdirs_names if 'json' in k] json_files_names = [fnmatch.filter(os.listdir(os.path.join(pose_dir, js_dir)), '*.json') for js_dir in json_dirs_names] f_range = [[0,min([len(j) for j in json_files_names])] if frame_range==[] else frame_range][0] # Trc paths trc_path_in = [file for file in glob.glob(os.path.join(pose3d_dir, '*.trc')) if 'filt' not in file] trc_f_out = [f'{os.path.basename(t).split(".")[0]}_filt_{filter_type}.trc' for t in trc_path_in] trc_path_out = [os.path.join(pose3d_dir, t) for t in trc_f_out] for t_in, t_out in zip(trc_path_in, trc_path_out): # Read trc header with open(t_in, 'r') as trc_file: header = [next(trc_file) for line in range(5)] # Read trc coordinates values trc_df = pd.read_csv(t_in, sep="\t", skiprows=4) frames_col, time_col = trc_df.iloc[:,0], trc_df.iloc[:,1] Q_coord = trc_df.drop(trc_df.columns[[0, 1]], axis=1) # Filter coordinates Q_filt = Q_coord.apply(filter1d, axis=0, args = [config, filter_type]) # Display figures if display_figures: # Retrieve keypoints keypoints_names = pd.read_csv(t_in, sep="\t", skiprows=3, nrows=0).columns[2::3].to_numpy() display_figures_fun(Q_coord, Q_filt, time_col, keypoints_names) # Reconstruct trc file with filtered coordinates with open(t_out, 'w') as trc_o: [trc_o.write(line) for line in header] Q_filt.insert(0, 'Frame#', frames_col) Q_filt.insert(1, 'Time', time_col) Q_filt.to_csv(trc_o, sep='\t', index=False, header=None, lineterminator='\n') # Recap recap_filter3d(config, t_out)