#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ########################################################################### ## CAMERAS CALIBRATION ## ########################################################################### Use this module to calibrate your cameras and save results to a .toml file. It either converts a Qualisys calibration .qca.txt file, Or calibrates cameras from checkerboard images. Checkerboard calibration is based on https://docs.opencv.org/3.4.15/dc/dbb/tutorial_py_calibration.html. /!\ Beware that corners must be detected on all frames, or else extrinsic parameters may be wrong. Set show_corner_detection to 1 to verify. INPUTS: - a calibration file in the 'calibration' folder (.qca.txt extension) - OR folders 'calibration\intrinsics' (populated with video or about 30 images) and 'calibration\extrinsics' (populated with video or one image) - a Config.toml file in the 'User' folder OUTPUTS: - a calibration file in the 'calibration' folder (.toml extension) ''' # TODO: DETECT WHEN WINDOW IS CLOSED # TODO: WHEN 'Y', CATCH IF NUMBER OF IMAGE POINTS CLICKED NOT EQUAL TO NB OBJ POINTS ## INIT from Pose2Sim.common import RT_qca2cv, rotate_cam, quat2mat, euclidean_distance, natural_sort import os import logging import pickle import numpy as np os.environ["OPENCV_LOG_LEVEL"]="FATAL" import cv2 import glob import toml import re from lxml import etree import warnings import matplotlib.pyplot as plt from mpl_interactions import zoom_factory, panhandler from PIL import Image from contextlib import contextmanager,redirect_stderr,redirect_stdout from os import devnull ## AUTHORSHIP INFORMATION __author__ = "David Pagnon" __copyright__ = "Copyright 2021, Pose2Sim" __credits__ = ["David Pagnon"] __license__ = "BSD 3-Clause License" __version__ = "0.4" __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" ## FUNCTIONS def calib_qca_fun(file_to_convert_path, binning_factor=1): ''' Convert a Qualisys .qca.txt calibration file Converts from camera view to object view, Pi rotates cameras, and converts rotation with Rodrigues formula INPUTS: - file_to_convert_path: path of the .qca.text file to convert - binning_factor: when filming in 540p, one out of 2 pixels is binned so that the full frame is used OUTPUTS: - ret: residual reprojection error in _mm_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats - T: extrinsic translation: list of arrays of floats ''' logging.info(f'Converting {file_to_convert_path} to .toml calibration file...') ret, C, S, D, K, R, T = read_qca(file_to_convert_path, binning_factor) RT = [RT_qca2cv(r,t) for r, t in zip(R, T)] R = [rt[0] for rt in RT] T = [rt[1] for rt in RT] RT = [rotate_cam(r, t, ang_x=np.pi, ang_y=0, ang_z=0) for r, t in zip(R, T)] R = [rt[0] for rt in RT] T = [rt[1] for rt in RT] R = [np.array(cv2.Rodrigues(r)[0]).flatten() for r in R] T = np.array(T) return ret, C, S, D, K, R, T def read_qca(qca_path, binning_factor): ''' Reads a Qualisys .qca.txt calibration file Returns 6 lists of size N (N=number of cameras) INPUTS: - qca_path: path to .qca.txt calibration file: string - binning_factor: usually 1: integer OUTPUTS: - ret: residual reprojection error in _mm_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of 3x3 arrays of floats - T: extrinsic translation: list of arrays of floats ''' root = etree.parse(qca_path).getroot() ret, C, S, D, K, R, T = [], [], [], [], [], [], [] vid_id = [] # Camera name for i, tag in enumerate(root.findall('cameras/camera')): ret += [float(tag.attrib.get('avg-residual'))] C += [tag.attrib.get('serial')] if tag.attrib.get('model') in ('Miqus Video', 'Miqus Video UnderWater', 'none'): vid_id += [i] # Image size for tag in root.findall('cameras/camera/fov_video'): w = (float(tag.attrib.get('right')) - float(tag.attrib.get('left')) +1) /binning_factor h = (float(tag.attrib.get('bottom')) - float(tag.attrib.get('top')) +1) /binning_factor S += [[w, h]] # Intrinsic parameters: distorsion and intrinsic matrix for i, tag in enumerate(root.findall('cameras/camera/intrinsic')): k1 = float(tag.get('radialDistortion1'))/64/binning_factor k2 = float(tag.get('radialDistortion2'))/64/binning_factor p1 = float(tag.get('tangentalDistortion1'))/64/binning_factor p2 = float(tag.get('tangentalDistortion2'))/64/binning_factor D+= [np.array([k1, k2, p1, p2])] fu = float(tag.get('focalLengthU'))/64/binning_factor fv = float(tag.get('focalLengthV'))/64/binning_factor cu = float(tag.get('centerPointU'))/64/binning_factor \ - float(root.findall('cameras/camera/fov_video')[i].attrib.get('left')) cv = float(tag.get('centerPointV'))/64/binning_factor \ - float(root.findall('cameras/camera/fov_video')[i].attrib.get('top')) K += [np.array([fu, 0., cu, 0., fv, cv, 0., 0., 1.]).reshape(3,3)] # Extrinsic parameters: rotation matrix and translation vector for tag in root.findall('cameras/camera/transform'): tx = float(tag.get('x'))/1000 ty = float(tag.get('y'))/1000 tz = float(tag.get('z'))/1000 r11 = float(tag.get('r11')) r12 = float(tag.get('r12')) r13 = float(tag.get('r13')) r21 = float(tag.get('r21')) r22 = float(tag.get('r22')) r23 = float(tag.get('r23')) r31 = float(tag.get('r31')) r32 = float(tag.get('r32')) r33 = float(tag.get('r33')) # Rotation (by-column to by-line) R += [np.array([r11, r12, r13, r21, r22, r23, r31, r32, r33]).reshape(3,3).T] T += [np.array([tx, ty, tz])] # Cameras names by natural order C_vid = [C[v] for v in vid_id] C_vid_id = [C_vid.index(c) for c in natural_sort(C_vid)] C_id = [vid_id[c] for c in C_vid_id] C = [C[c] for c in C_id] ret = [ret[c] for c in C_id] S = [S[c] for c in C_id] D = [D[c] for c in C_id] K = [K[c] for c in C_id] R = [R[c] for c in C_id] T = [T[c] for c in C_id] return ret, C, S, D, K, R, T def calib_optitrack_fun(config, binning_factor=1): ''' Convert an Optitrack calibration file INPUTS: - a Config.toml file OUTPUTS: - ret: residual reprojection error in _mm_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats - T: extrinsic translation: list of arrays of floats ''' logging.warning('See Readme.md to retrieve Optitrack calibration values.') logging.warning("Once done, do not run Pose2Sim.calibration() or the same error message will be risen.") raise NameError("See Readme.md to retrieve Optitrack calibration values.\nOnce done, do not run Pose2Sim.calibration() or the same error message will be risen.") def calib_vicon_fun(file_to_convert_path, binning_factor=1): ''' Convert a Vicon .xcp calibration file Converts from camera view to object view, and converts rotation with Rodrigues formula INPUTS: - file_to_convert_path: path of the .xcp file to convert - binning_factor: always 1 with Vicon calibration OUTPUTS: - ret: residual reprojection error in _mm_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats - T: extrinsic translation: list of arrays of floats ''' logging.info(f'Converting {file_to_convert_path} to .toml calibration file...') ret, C, S, D, K, R, T = read_vicon(file_to_convert_path) RT = [RT_qca2cv(r,t) for r, t in zip(R, T)] R = [rt[0] for rt in RT] T = [rt[1] for rt in RT] R = [np.array(cv2.Rodrigues(r)[0]).flatten() for r in R] T = np.array(T) return ret, C, S, D, K, R, T def read_vicon(vicon_path): ''' Reads a Vicon .xcp calibration file Returns 6 lists of size N (N=number of cameras) INPUTS: - vicon_path: path to .xcp calibration file: string OUTPUTS: - ret: residual reprojection error in _mm_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of 3x3 arrays of floats - T: extrinsic translation: list of arrays of floats ''' root = etree.parse(vicon_path).getroot() ret, C, S, D, K, R, T = [], [], [], [], [], [], [] vid_id = [] # Camera name and image size for i, tag in enumerate(root.findall('Camera')): C += [tag.attrib.get('DEVICEID')] S += [[float(t) for t in tag.attrib.get('SENSOR_SIZE').split()]] ret += [float(tag.findall('KeyFrames/KeyFrame')[0].attrib.get('WORLD_ERROR'))] vid_id += [i] # Intrinsic parameters: distorsion and intrinsic matrix for cam_elem in root.findall('Camera'): try: dist = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('VICON_RADIAL2').split()[3:5] except: dist = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('VICON_RADIAL').split() D += [[float(d) for d in dist] + [0.0, 0.0]] fu = float(cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('FOCAL_LENGTH')) fv = fu / float(cam_elem.attrib.get('PIXEL_ASPECT_RATIO')) cam_center = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('PRINCIPAL_POINT').split() cu, cv = [float(c) for c in cam_center] K += [np.array([fu, 0., cu, 0., fv, cv, 0., 0., 1.]).reshape(3,3)] # Extrinsic parameters: rotation matrix and translation vector for cam_elem in root.findall('Camera'): rot = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('ORIENTATION').split() R_quat = [float(r) for r in rot] R_mat = quat2mat(R_quat, scalar_idx=3) R += [R_mat] trans = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('POSITION').split() T += [[float(t)/1000 for t in trans]] # Camera names by natural order C_vid_id = [v for v in vid_id if ('VIDEO' or 'Video') in root.findall('Camera')[v].attrib.get('TYPE')] C_vid = [root.findall('Camera')[v].attrib.get('DEVICEID') for v in C_vid_id] C = natural_sort(C_vid) C_id_sorted = [i for v_sorted in C for i,v in enumerate(root.findall('Camera')) if v.attrib.get('DEVICEID')==v_sorted] S = [S[c] for c in C_id_sorted] D = [D[c] for c in C_id_sorted] K = [K[c] for c in C_id_sorted] R = [R[c] for c in C_id_sorted] T = [T[c] for c in C_id_sorted] return ret, C, S, D, K, R, T def read_intrinsic_yml(intrinsic_path): ''' Reads an intrinsic .yml calibration file Returns 3 lists of size N (N=number of cameras): - S (image size) - K (intrinsic parameters) - D (distorsion) N.B. : Size is calculated as twice the position of the optical center. Please correct in the .toml file if needed. ''' intrinsic_yml = cv2.FileStorage(intrinsic_path, cv2.FILE_STORAGE_READ) N = intrinsic_yml.getNode('names').size() S, D, K = [], [], [] for i in range(N): name = intrinsic_yml.getNode('names').at(i).string() K.append(intrinsic_yml.getNode(f'K_{name}').mat()) D.append(intrinsic_yml.getNode(f'dist_{name}').mat().flatten()[:-1]) S.append([K[i][0,2]*2, K[i][1,2]*2]) return S, K, D def read_extrinsic_yml(extrinsic_path): ''' Reads an intrinsic .yml calibration file Returns 3 lists of size N (N=number of cameras): - R (extrinsic rotation, Rodrigues vector) - T (extrinsic translation) ''' extrinsic_yml = cv2.FileStorage(extrinsic_path, cv2.FILE_STORAGE_READ) N = extrinsic_yml.getNode('names').size() R, T = [], [] for i in range(N): name = extrinsic_yml.getNode('names').at(i).string() R.append(extrinsic_yml.getNode(f'R_{name}').mat().flatten()) # R_1 pour Rodrigues, Rot_1 pour matrice T.append(extrinsic_yml.getNode(f'T_{name}').mat().flatten()) return R, T def calib_easymocap_fun(files_to_convert_paths, binning_factor=1): ''' Reads EasyMocap .yml calibration files INPUTS: - files_to_convert_paths: paths of the intri.yml and extri.yml calibration files to convert - binning_factor: always 1 with easymocap calibration OUTPUTS: - ret: residual reprojection error in _mm_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats - T: extrinsic translation: list of arrays of floats ''' extrinsic_path, intrinsic_path = files_to_convert_paths S, K, D = read_intrinsic_yml(intrinsic_path) R, T = read_extrinsic_yml(extrinsic_path) C = np.array(range(len(S)))+1 ret = [np.nan]*len(C) return ret, C, S, D, K, R, T def calib_biocv_fun(files_to_convert_paths, binning_factor=1): ''' Convert bioCV calibration files. INPUTS: - files_to_convert_paths: paths of the calibration files to convert (no extension) - binning_factor: always 1 with biocv calibration OUTPUTS: - ret: residual reprojection error in _mm_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats - T: extrinsic translation: list of arrays of floats ''' logging.info(f'Converting {[os.path.basename(f) for f in files_to_convert_paths]} to .toml calibration file...') ret, C, S, D, K, R, T = [], [], [], [], [], [], [] for i, f_path in enumerate(files_to_convert_paths): with open(f_path) as f: calib_data = f.read().split('\n') ret += [np.nan] C += [f'cam_{str(i+1).zfill(2)}'] S += [[int(calib_data[0]), int(calib_data[1])]] D += [[float(d) for d in calib_data[-2].split(' ')[:4]]] K += [np.array([k.strip().split(' ') for k in calib_data[2:5]], np.float32)] RT = np.array([k.strip().split(' ') for k in calib_data[6:9]], np.float32) R += [cv2.Rodrigues(RT[:,:3])[0].squeeze()] T += [RT[:,3]/1000] return ret, C, S, D, K, R, T def calib_opencap_fun(files_to_convert_paths, binning_factor=1): ''' Convert OpenCap calibration files. Extrinsics in OpenCap are calculated with a vertical board for the world frame. As we want the world frame to be horizontal, we need to rotate cameras by -Pi/2 around x in the world frame. T is good the way it is. INPUTS: - files_to_convert_paths: paths of the .pickle calibration files to convert - binning_factor: always 1 with opencap calibration OUTPUTS: - ret: residual reprojection error in _mm_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats - T: extrinsic translation: list of arrays of floats ''' logging.info(f'Converting {[os.path.basename(f) for f in files_to_convert_paths]} to .toml calibration file...') ret, C, S, D, K, R, T = [], [], [], [], [], [], [] for i, f_path in enumerate(files_to_convert_paths): with open(f_path, 'rb') as f_pickle: calib_data = pickle.load(f_pickle) ret += [np.nan] C += [f'cam_{str(i+1).zfill(2)}'] S += [list(calib_data['imageSize'].squeeze()[::-1])] D += [list(calib_data['distortion'][0][:-1])] K += [calib_data['intrinsicMat']] R_cam = calib_data['rotation'] T_cam = calib_data['translation'].squeeze() # Rotate cameras by Pi/2 around x in world frame -> could have just switched some columns in matrix # camera frame to world frame R_w, T_w = RT_qca2cv(R_cam, T_cam) # x_rotate -Pi/2 and z_rotate Pi R_w_90, T_w_90 = rotate_cam(R_w, T_w, ang_x=-np.pi/2, ang_y=0, ang_z=np.pi) # world frame to camera frame R_c_90, T_c_90 = RT_qca2cv(R_w_90, T_w_90) # store in R and T R+=[cv2.Rodrigues(R_c_90)[0].squeeze()] T+=[T_cam/1000] return ret, C, S, D, K, R, T def calib_board_fun(calib_dir, intrinsics_config_dict, extrinsics_config_dict): ''' Calibrates intrinsic and extrinsic parameters from images or videos of a checkerboard or retrieve them from a file INPUTS: - calib_dir: directory containing intrinsic and extrinsic folders, each populated with camera directories - intrinsics_config_dict: dictionary of intrinsics parameters (overwrite_intrinsics, show_detection_intrinsics, intrinsics_extension, extract_every_N_sec, intrinsics_corners_nb, intrinsics_square_size, intrinsics_marker_size, intrinsics_aruco_dict) - extrinsics_config_dict: dictionary of extrinsics parameters (calculate_extrinsics, show_detection_extrinsics, extrinsics_extension, extrinsics_corners_nb, extrinsics_square_size, extrinsics_marker_size, extrinsics_aruco_dict, object_coords_3d) OUTPUTS: - ret: residual reprojection error in _px_: list of floats - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats (Rodrigues) - T: extrinsic translation: list of arrays of floats ''' overwrite_intrinsics = intrinsics_config_dict.get('overwrite_intrinsics') calculate_extrinsics = extrinsics_config_dict.get('calculate_extrinsics') # retrieve intrinsics if calib_file found and if overwrite_intrinsics=False try: calib_file = glob.glob(os.path.join(calib_dir, f'Calib*.toml'))[0] except: pass if not overwrite_intrinsics and 'calib_file' in locals(): logging.info(f'\nPreexisting calibration file found: \'{calib_file}\'.') logging.info(f'\nRetrieving intrinsic parameters from file. Set "overwrite_intrinsics" to true in Config.toml to overwrite.') calib_file = glob.glob(os.path.join(calib_dir, f'Calib*.toml'))[0] calib_data = toml.load(calib_file) ret, C, S, D, K, R, T = [], [], [], [], [], [], [] for cam in calib_data: if cam != 'metadata': ret += [0.0] C += [calib_data[cam]['name']] S += [calib_data[cam]['size']] K += [np.array(calib_data[cam]['matrix'])] D += [calib_data[cam]['distortions']] R += [[0.0, 0.0, 0.0]] T += [[0.0, 0.0, 0.0]] # calculate intrinsics otherwise else: logging.info(f'\nCalculating intrinsic parameters...') ret, C, S, D, K, R, T = calibrate_intrinsics(calib_dir, intrinsics_config_dict) # calculate extrinsics if calculate_extrinsics: logging.info(f'\nCalculating extrinsic parameters...') ret, C, S, D, K, R, T = calibrate_extrinsics(calib_dir, extrinsics_config_dict, C, S, K, D) else: logging.info(f'\nExtrinsic parameters won\'t be calculated. Set "calculate_extrinsics" to true in Config.toml to calculate them.') return ret, C, S, D, K, R, T def calibrate_intrinsics(calib_dir, intrinsics_config_dict): ''' Calculate intrinsic parameters from images or videos of a checkerboard Extract frames, then detect corners, then calibrate INPUTS: - calib_dir: directory containing intrinsic and extrinsic folders, each populated with camera directories - intrinsics_config_dict: dictionary of intrinsics parameters (overwrite_intrinsics, show_detection_intrinsics, intrinsics_extension, extract_every_N_sec, intrinsics_corners_nb, intrinsics_square_size, intrinsics_marker_size, intrinsics_aruco_dict) OUTPUTS: - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats ''' try: intrinsics_cam_listdirs_names = next(os.walk(os.path.join(calib_dir, 'intrinsics')))[1] except StopIteration: logging.exception(f'Error: No {os.path.join(calib_dir, "intrinsics")} folder found.') raise Exception(f'Error: No {os.path.join(calib_dir, "intrinsics")} folder found.') intrinsics_extension = intrinsics_config_dict.get('intrinsics_extension') extract_every_N_sec = intrinsics_config_dict.get('extract_every_N_sec') overwrite_extraction = False show_detection_intrinsics = intrinsics_config_dict.get('show_detection_intrinsics') intrinsics_corners_nb = intrinsics_config_dict.get('intrinsics_corners_nb') intrinsics_square_size = intrinsics_config_dict.get('intrinsics_square_size') / 1000 # convert to meters ret, C, S, D, K, R, T = [], [], [], [], [], [], [] for i,cam in enumerate(intrinsics_cam_listdirs_names): # Prepare object points objp = np.zeros((intrinsics_corners_nb[0]*intrinsics_corners_nb[1],3), np.float32) objp[:,:2] = np.mgrid[0:intrinsics_corners_nb[0],0:intrinsics_corners_nb[1]].T.reshape(-1,2) objp[:,:2] = objp[:,0:2]*intrinsics_square_size objpoints = [] # 3d points in world space imgpoints = [] # 2d points in image plane logging.info(f'\nCamera {cam}:') img_vid_files = glob.glob(os.path.join(calib_dir, 'intrinsics', cam, f'*.{intrinsics_extension}')) if img_vid_files == []: logging.exception(f'The folder {os.path.join(calib_dir, "intrinsics", cam)} does not exist or does not contain any files with extension .{intrinsics_extension}.') raise ValueError(f'The folder {os.path.join(calib_dir, "intrinsics", cam)} does not exist or does not contain any files with extension .{intrinsics_extension}.') img_vid_files = sorted(img_vid_files, key=lambda c: [int(n) for n in re.findall(r'\d+', c)]) #sorting paths with numbers # extract frames from video if video try: cap = cv2.VideoCapture(img_vid_files[0]) cap.read() if cap.read()[0] == False: raise extract_frames(img_vid_files[0], extract_every_N_sec, overwrite_extraction) img_vid_files = glob.glob(os.path.join(calib_dir, 'intrinsics', cam, f'*.png')) img_vid_files = sorted(img_vid_files, key=lambda c: [int(n) for n in re.findall(r'\d+', c)]) except: pass # find corners for img_path in img_vid_files: if show_detection_intrinsics == True: imgp_confirmed, objp_confirmed = findCorners(img_path, intrinsics_corners_nb, objp=objp, show=show_detection_intrinsics) if isinstance(imgp_confirmed, np.ndarray): imgpoints.append(imgp_confirmed) objpoints.append(objp_confirmed) else: imgp_confirmed = findCorners(img_path, intrinsics_corners_nb, objp=objp, show=show_detection_intrinsics) if isinstance(imgp_confirmed, np.ndarray): imgpoints.append(imgp_confirmed) objpoints.append(objp) if len(imgpoints) < 10: logging.info(f'Corners were detected only on {len(imgpoints)} images for camera {cam}. Calibration of intrinsic parameters may not be accurate with fewer than 10 good images of the board.') # calculate intrinsics img = cv2.imread(str(img_path)) ret_cam, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[1::-1], None, None, flags=(cv2.CALIB_FIX_K3 + cv2.CALIB_FIX_PRINCIPAL_POINT)) h, w = [np.float32(i) for i in img.shape[:-1]] ret.append(ret_cam) C.append(cam) S.append([w, h]) D.append(dist[0]) K.append(mtx) R.append([0.0, 0.0, 0.0]) T.append([0.0, 0.0, 0.0]) logging.info(f'Intrinsics error: {np.around(ret_cam, decimals=3)} px for each cameras.') return ret, C, S, D, K, R, T def calibrate_extrinsics(calib_dir, extrinsics_config_dict, C, S, K, D): ''' Calibrates extrinsic parameters from an image or the first frame of a video of a checkerboard or of measured clues on the scene INPUTS: - calib_dir: directory containing intrinsic and extrinsic folders, each populated with camera directories - extrinsics_config_dict: dictionary of extrinsics parameters (extrinsics_board_type, calculate_extrinsics, show_detection_extrinsics, extrinsics_extension, extrinsics_corners_nb, extrinsics_square_size, extrinsics_marker_size, extrinsics_aruco_dict, object_coords_3d) OUTPUTS: - R: extrinsic rotation: list of arrays of floats (Rodrigues) - T: extrinsic translation: list of arrays of floats ''' try: extrinsics_cam_listdirs_names = next(os.walk(os.path.join(calib_dir, 'extrinsics')))[1] except StopIteration: logging.exception(f'Error: No {os.path.join(calib_dir, "extrinsics")} folder found.') raise Exception(f'Error: No {os.path.join(calib_dir, "extrinsics")} folder found.') extrinsics_extension = extrinsics_config_dict.get('extrinsics_extension') extrinsics_board_type = extrinsics_config_dict.get('extrinsics_board_type') extrinsics_corners_nb = extrinsics_config_dict.get('extrinsics_corners_nb') extrinsics_square_size = extrinsics_config_dict.get('extrinsics_square_size') / 1000 # convert to meters object_coords_3d = np.array(extrinsics_config_dict.get('object_coords_3d'), np.float32) show_reprojection_error = extrinsics_config_dict.get('show_reprojection_error') ret, R, T = [], [], [] for i, cam in enumerate(extrinsics_cam_listdirs_names): logging.info(f'\nCamera {cam}:') # Read images or video img_vid_files = glob.glob(os.path.join(calib_dir, 'extrinsics', cam, f'*.{extrinsics_extension}')) if img_vid_files == []: logging.exception(f'The folder {os.path.join(calib_dir, "extrinsics", cam)} does not exist or does not contain any files with extension .{extrinsics_extension}.') raise ValueError(f'The folder {os.path.join(calib_dir, "extrinsics", cam)} does not exist or does not contain any files with extension .{extrinsics_extension}.') img_vid_files = sorted(img_vid_files, key=lambda c: [int(n) for n in re.findall(r'\d+', c)]) #sorting paths with numbers # extract frames from image, or from video if imread is None img = cv2.imread(img_vid_files[0]) if img is None: cap = cv2.VideoCapture(img_vid_files[0]) res, img = cap.read() if res == False: raise img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Find corners or label by hand if extrinsics_board_type == 'checkerboard': objp = np.zeros((extrinsics_corners_nb[0] * extrinsics_corners_nb[1], 3), np.float32) objp[:, :2] = np.mgrid[0:extrinsics_corners_nb[0], 0:extrinsics_corners_nb[1]].T.reshape(-1, 2) objp[:, :2] = objp[:, 0:2] * extrinsics_square_size imgp, objp_not_used = findCorners(img_vid_files[0], extrinsics_corners_nb, objp=objp, show=show_reprojection_error) if imgp == []: logging.exception('No corners found. Set "show_detection_extrinsics" to true to click corners by hand, or change extrinsic_board_type to "scene"') raise ValueError('No corners found. Set "show_detection_extrinsics" to true to click corners by hand, or change extrinsic_board_type to "scene"') elif extrinsics_board_type == 'scene': imgp, objp = imgp_objp_visualizer_clicker(img, imgp=[], objp=object_coords_3d, img_path=img_vid_files[0]) if imgp == []: logging.exception('No points clicked (or fewer than 6). Press \'C\' when the image is displayed, and then click on the image points corresponding to the \'object_coords_3d\' you measured and wrote down in the Config.toml file.') raise ValueError('No points clicked (or fewer than 6). Press \'C\' when the image is displayed, and then click on the image points corresponding to the \'object_coords_3d\' you measured and wrote down in the Config.toml file.') if len(objp) < 10: logging.info(f'Only {len(objp)} reference points for camera {cam}. Calibration of extrinsic parameters may not be accurate with fewer than 10 reference points, as spread out as possible.') # Calculate extrinsics mtx, dist = np.array(K[i]), np.array(D[i]) _, r, t = cv2.solvePnP(np.array(objp), imgp, mtx, dist) r, t = r.flatten(), t.flatten() # Projection of object points to image plane Kh_cam = np.block([mtx, np.zeros(3).reshape(3,1)]) r_mat, _ = cv2.Rodrigues(r) H_cam = np.block([[r_mat,t.reshape(3,1)], [np.zeros(3), 1 ]]) P_cam = Kh_cam.dot(H_cam) proj_obj = [ ( P_cam[0].dot(np.append(o, 1)) / P_cam[2].dot(np.append(o, 1)), P_cam[1].dot(np.append(o, 1)) / P_cam[2].dot(np.append(o, 1)) ) for o in objp] # Check calibration results if show_reprojection_error: # Reopen image, otherwise 2 sets of text are overlaid img = cv2.imread(img_vid_files[0]) if img is None: cap = cv2.VideoCapture(img_vid_files[0]) res, img = cap.read() if res == False: raise img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for o in proj_obj: cv2.circle(img, (int(o[0]), int(o[1])), 8, (0,0,255), -1) for i in imgp: cv2.drawMarker(img, (int(i[0][0]), int(i[0][1])), (0,255,0), cv2.MARKER_CROSS, 15, 2) cv2.putText(img, 'Verify calibration results, then close window.', (20, 20), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, 'Verify calibration results, then close window.', (20, 20), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) cv2.drawMarker(img, (20,40), (0,255,0), cv2.MARKER_CROSS, 15, 2) cv2.putText(img, ' Clicked points', (20, 40), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, ' Clicked points', (20, 40), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) cv2.circle(img, (20,60), 8, (0,0,255), -1) cv2.putText(img, ' Reprojected object points', (20, 60), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, ' Reprojected object points', (20, 60), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) im_pil = Image.fromarray(img) im_pil.show(title = os.path.basename(img_vid_files[0])) # Calculate reprojection error imgp_to_objreproj_dist = [euclidean_distance(proj_obj[n], imgp[n]) for n in range(len(proj_obj))] rms_px = np.sqrt(np.sum([d**2 for d in imgp_to_objreproj_dist])) ret.append(rms_px) R.append(r) T.append(t) return ret, C, S, D, K, R, T def findCorners(img_path, corner_nb, objp=[], show=True): ''' Find corners in the photo of a checkerboard. Press 'Y' to accept detection, 'N' to dismiss this image, 'C' to click points by hand. Left click to add a point, right click to remove the last point. Use mouse wheel to zoom in and out and to pan. Make sure that: - the checkerboard is surrounded by a white border - rows != lines, and row is even if lines is odd (or conversely) - it is flat and without reflections - corner_nb correspond to _internal_ corners INPUTS: - img_path: path to image (or video) - corner_nb: [H, W] internal corners in checkerboard: list of two integers [4,7] - optionnal: show: choose whether to show corner detections - optionnal: objp: array [3d corner coordinates] OUTPUTS: - imgp_confirmed: array of [[2d corner coordinates]] - only if objp!=[]: objp_confirmed: array of [3d corner coordinates] ''' criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # stop refining after 30 iterations or if error less than 0.001px img = cv2.imread(img_path) if img is None: cap = cv2.VideoCapture(img_path) ret, img = cap.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Find corners ret, corners = cv2.findChessboardCorners(gray, corner_nb, None) # If corners are found, refine corners if ret == True: imgp = cv2.cornerSubPix(gray, corners, (11,11), (-1,-1), criteria) logging.info(f'{os.path.basename(img_path)}: Corners found.') if show: # Draw corners cv2.drawChessboardCorners(img, corner_nb, imgp, ret) # Add corner index for i, corner in enumerate(imgp): if i in [0, corner_nb[0]-1, corner_nb[0]*(corner_nb[1]-1), corner_nb[0]*corner_nb[1] -1]: x, y = corner.ravel() cv2.putText(img, str(i+1), (int(x)-5, int(y)-5), cv2.FONT_HERSHEY_SIMPLEX, .8, (255, 255, 255), 7) cv2.putText(img, str(i+1), (int(x)-5, int(y)-5), cv2.FONT_HERSHEY_SIMPLEX, .8, (0,0,0), 2) # Visualizer and key press event handler for var_to_delete in ['imgp_confirmed', 'objp_confirmed']: if var_to_delete in globals(): del globals()[var_to_delete] imgp_objp_confirmed = imgp_objp_visualizer_clicker(img, imgp=imgp, objp=objp, img_path=img_path) else: imgp_objp_confirmed = imgp # If corners are not found, dismiss or click points by hand else: logging.info(f'{os.path.basename(img_path)}: Corners not found. To label them by hand, set "show_detection_intrinsics" to true in the Config.toml file.') if show: # Visualizer and key press event handler imgp_objp_confirmed = imgp_objp_visualizer_clicker(img, imgp=[], objp=objp, img_path=img_path) else: imgp_objp_confirmed = [] return imgp_objp_confirmed def imgp_objp_visualizer_clicker(img, imgp=[], objp=[], img_path=''): ''' Shows image img. If imgp is given, displays them in green If objp is given, can be displayed in a 3D plot if 'C' is pressed. If img_path is given, just uses it to name the window If 'Y' is pressed, closes all and returns confirmed imgp and (if given) objp If 'N' is pressed, closes all and returns nothing If 'C' is pressed, allows clicking imgp by hand. If objp is given: Displays them in 3D as a helper. Left click to add a point, right click to remove the last point. Press 'H' to indicate that one of the objp is not visible on image Closes all and returns imgp and objp if all points have been clicked Allows for zooming and panning with middle click INPUTS: - img: image opened with openCV - optional: imgp: detected image points, to be accepted or not. Array of [[2d corner coordinates]] - optionnal: objp: array of [3d corner coordinates] - optional: img_path: path to image OUTPUTS: - imgp_confirmed: image points that have been correctly identified. array of [[2d corner coordinates]] - only if objp!=[]: objp_confirmed: array of [3d corner coordinates] ''' global old_image_path old_image_path = img_path def on_key(event): ''' Handles key press events: 'Y' to return imgp, 'N' to dismiss image, 'C' to click points by hand. Left click to add a point, 'H' to indicate it is not visible, right click to remove the last point. ''' global imgp_confirmed, objp_confirmed, objp_confirmed_notok, scat, ax_3d, fig_3d, events, count if event.key == 'y': # If 'y', close all # If points have been clicked, imgp_confirmed is returned, else imgp # If objp is given, objp_confirmed is returned in addition if 'scat' not in globals() or 'imgp_confirmed' not in globals(): imgp_confirmed = imgp objp_confirmed = objp else: imgp_confirmed = np.array([imgp.astype('float32') for imgp in imgp_confirmed]) objp_confirmed = objp_confirmed # OpenCV needs at leas 4 correspondance points to calibrate if len(imgp_confirmed) < 6: objp_confirmed = [] imgp_confirmed = [] # close all, del all global variables except imgp_confirmed and objp_confirmed plt.close('all') if len(objp) == 0: if 'objp_confirmed' in globals(): del objp_confirmed if event.key == 'n' or event.key == 'q': # If 'n', close all and return nothing plt.close('all') imgp_confirmed = [] objp_confirmed = [] if event.key == 'c': # TODO: RIGHT NOW, IF 'C' IS PRESSED ANOTHER TIME, OBJP_CONFIRMED AND IMGP_CONFIRMED ARE RESET TO [] # We should reopen a figure without point on it img_for_pointing = cv2.imread(old_image_path) if img_for_pointing is None: cap = cv2.VideoCapture(old_image_path) ret, img_for_pointing = cap.read() img_for_pointing = cv2.cvtColor(img_for_pointing, cv2.COLOR_BGR2RGB) ax.imshow(img_for_pointing) # To update the image plt.draw() if 'objp_confirmed' in globals(): del objp_confirmed # If 'c', allows retrieving imgp_confirmed by clicking them on the image scat = ax.scatter([],[],s=100,marker='+',color='g') plt.connect('button_press_event', on_click) # If objp is given, display 3D object points in black if len(objp) != 0 and not plt.fignum_exists(2): fig_3d = plt.figure() fig_3d.tight_layout() fig_3d.canvas.manager.set_window_title('Object points to be clicked') ax_3d = fig_3d.add_subplot(projection='3d') plt.rc('xtick', labelsize=5) plt.rc('ytick', labelsize=5) for i, (xs,ys,zs) in enumerate(np.float32(objp)): ax_3d.scatter(xs,ys,zs, marker='.', color='k') ax_3d.text(xs,ys,zs, f'{str(i+1)}', size=10, zorder=1, color='k') set_axes_equal(ax_3d) ax_3d.set_xlabel('X') ax_3d.set_ylabel('Y') ax_3d.set_zlabel('Z') if np.all(objp[:,2] == 0): ax_3d.view_init(elev=-90, azim=0) fig_3d.show() if event.key == 'h': # If 'h', indicates that one of the objp is not visible on image # Displays it in red on 3D plot if len(objp) != 0 and 'ax_3d' in globals(): count = [0 if 'count' not in globals() else count+1][0] if 'events' not in globals(): # retrieve first objp_confirmed_notok and plot 3D events = [event] objp_confirmed_notok = objp[count] ax_3d.scatter(*objp_confirmed_notok, marker='o', color='r') fig_3d.canvas.draw() elif count == len(objp)-1: # if all objp have been clicked or indicated as not visible, close all objp_confirmed = np.array([[objp[count]] if 'objp_confirmed' not in globals() else objp_confirmed+[objp[count]]][0])[:-1] imgp_confirmed = np.array(np.expand_dims(scat.get_offsets(), axis=1), np.float32) plt.close('all') for var_to_delete in ['events', 'count', 'scat', 'fig_3d', 'ax_3d', 'objp_confirmed_notok']: if var_to_delete in globals(): del globals()[var_to_delete] else: # retrieve other objp_confirmed_notok and plot 3D events.append(event) objp_confirmed_notok = objp[count] ax_3d.scatter(*objp_confirmed_notok, marker='o', color='r') fig_3d.canvas.draw() else: pass def on_click(event): ''' Detect click position on image If right click, last point is removed ''' global imgp_confirmed, objp_confirmed, objp_confirmed_notok, scat, ax_3d, fig_3d, events, count, xydata # Left click: Add clicked point to imgp_confirmed # Display it on image and on 3D plot if event.button == 1: # To remember the event to cancel after right click if 'events' in globals(): events.append(event) else: events = [event] # Add clicked point to image xydata = scat.get_offsets() new_xydata = np.concatenate((xydata,[[event.xdata,event.ydata]])) scat.set_offsets(new_xydata) imgp_confirmed = np.expand_dims(scat.get_offsets(), axis=1) plt.draw() # Add clicked point to 3D object points if given if len(objp) != 0: count = [0 if 'count' not in globals() else count+1][0] if count==0: # retrieve objp_confirmed and plot 3D objp_confirmed = [objp[count]] ax_3d.scatter(*objp[count], marker='o', color='g') fig_3d.canvas.draw() elif count == len(objp)-1: # close all plt.close('all') # retrieve objp_confirmed objp_confirmed = np.array([[objp[count]] if 'objp_confirmed' not in globals() else objp_confirmed+[objp[count]]][0]) imgp_confirmed = np.array(imgp_confirmed, np.float32) # delete all for var_to_delete in ['events', 'count', 'scat', 'scat_3d', 'fig_3d', 'ax_3d', 'objp_confirmed_notok']: if var_to_delete in globals(): del globals()[var_to_delete] else: # retrieve objp_confirmed and plot 3D objp_confirmed = [[objp[count]] if 'objp_confirmed' not in globals() else objp_confirmed+[objp[count]]][0] ax_3d.scatter(*objp[count], marker='o', color='g') fig_3d.canvas.draw() # Right click: # If last event was left click, remove last point and if objp given, from objp_confirmed # If last event was 'H' and objp given, remove last point from objp_confirmed_notok elif event.button == 3: # right click if 'events' in globals(): # If last event was left click: if 'button' in dir(events[-1]): if events[-1].button == 1: # Remove lastpoint from image new_xydata = scat.get_offsets()[:-1] scat.set_offsets(new_xydata) plt.draw() # Remove last point from imgp_confirmed imgp_confirmed = imgp_confirmed[:-1] if len(objp) != 0: if count >= 0: count -= 1 # Remove last point from objp_confirmed objp_confirmed = objp_confirmed[:-1] # remove from plot if len(ax_3d.collections) > len(objp): ax_3d.collections[-1].remove() fig_3d.canvas.draw() # If last event was 'h' key elif events[-1].key == 'h': if len(objp) != 0: if count >= 1: count -= 1 # Remove last point from objp_confirmed_notok objp_confirmed_notok = objp_confirmed_notok[:-1] # remove from plot if len(ax_3d.collections) > len(objp): ax_3d.collections[-1].remove() fig_3d.canvas.draw() def set_axes_equal(ax): ''' Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc. From https://stackoverflow.com/questions/13685386/how-to-set-the-equal-aspect-ratio-for-all-axes-x-y-z Input ax: a matplotlib axis, e.g., as output from plt.gca(). ''' x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5*max([x_range, y_range, z_range]) ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) # Write instructions cv2.putText(img, 'Type "Y" to accept point detection.', (20, 20), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, 'Type "Y" to accept point detection.', (20, 20), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) cv2.putText(img, 'If points are wrongfully (or not) detected:', (20, 43), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, 'If points are wrongfully (or not) detected:', (20, 43), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) cv2.putText(img, '- type "N" to dismiss this image,', (20, 66), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, '- type "N" to dismiss this image,', (20, 66), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) cv2.putText(img, '- type "C" to click points by hand (beware of their order).', (20, 89), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, '- type "C" to click points by hand (beware of their order).', (20, 89), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) cv2.putText(img, ' left click to add a point, right click to remove it, "H" to indicate it is not visible. ', (20, 112), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, ' left click to add a point, right click to remove it, "H" to indicate it is not visible. ', (20, 112), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) cv2.putText(img, ' Confirm with "Y", cancel with "N".', (20, 135), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, ' Confirm with "Y", cancel with "N".', (20, 135), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) cv2.putText(img, 'Use mouse wheel to zoom in and out and to pan', (20, 158), cv2.FONT_HERSHEY_SIMPLEX, .7, (255,255,255), 7, lineType = cv2.LINE_AA) cv2.putText(img, 'Use mouse wheel to zoom in and out and to pan', (20, 158), cv2.FONT_HERSHEY_SIMPLEX, .7, (0,0,0), 2, lineType = cv2.LINE_AA) # Put image in a matplotlib figure for more controls plt.rcParams['toolbar'] = 'None' fig, ax = plt.subplots() fig = plt.gcf() fig.canvas.manager.set_window_title(os.path.basename(img_path)) ax.axis("off") for corner in imgp: x, y = corner.ravel() cv2.drawMarker(img, (int(x),int(y)), (128,128,128), cv2.MARKER_CROSS, 10, 2) ax.imshow(img) figManager = plt.get_current_fig_manager() figManager.window.showMaximized() plt.tight_layout() # Allow for zoom and pan in image zoom_factory(ax) ph = panhandler(fig, button=2) # Handles key presses to Accept, dismiss, or click points by hand cid = fig.canvas.mpl_connect('key_press_event', on_key) plt.draw() plt.show(block=True) with warnings.catch_warnings(): warnings.simplefilter("ignore") plt.rcParams['toolbar'] = 'toolmanager' for var_to_delete in ['events', 'count', 'scat', 'fig_3d', 'ax_3d', 'objp_confirmed_notok']: if var_to_delete in globals(): del globals()[var_to_delete] if 'imgp_confirmed' in globals() and 'objp_confirmed' in globals(): return imgp_confirmed, objp_confirmed elif 'imgp_confirmed' in globals() and not 'objp_confirmed' in globals(): return imgp_confirmed else: return def calib_points_fun(config): ''' Not implemented yet ''' pass def extract_frames(video_path, extract_every_N_sec=1, overwrite_extraction=False): ''' Extract frames from video if has not been done yet or if overwrite==True INPUT: - video_path: path to video whose frames need to be extracted - extract_every_N_sec: extract one frame every N seconds (can be <1) - overwrite_extraction: if True, overwrite even if frames have already been extracted OUTPUT: - extracted frames in folder ''' if not os.path.exists(os.path.splitext(video_path)[0] + '_00000.png') or overwrite_extraction: cap = cv2.VideoCapture(str(video_path)) if cap.isOpened(): fps = round(cap.get(cv2.CAP_PROP_FPS)) frame_nb = 0 logging.info(f'Extracting frames...') while cap.isOpened(): ret, frame = cap.read() if ret == True: if frame_nb % (fps*extract_every_N_sec) == 0: img_path = (os.path.splitext(video_path)[0] + '_' +str(frame_nb).zfill(5)+'.png') cv2.imwrite(str(img_path), frame) frame_nb+=1 else: break def toml_write(calib_path, C, S, D, K, R, T): ''' Writes calibration parameters to a .toml file INPUTS: - calib_path: path to the output calibration file: string - C: camera name: list of strings - S: image size: list of list of floats - D: distorsion: list of arrays of floats - K: intrinsic parameters: list of 3x3 arrays of floats - R: extrinsic rotation: list of arrays of floats (Rodrigues) - T: extrinsic translation: list of arrays of floats OUTPUTS: - a .toml file cameras calibrations ''' with open(os.path.join(calib_path), 'w+') as cal_f: for c in range(len(C)): cam=f'[cam_{(c+1):02d}]\n' name = f'name = "{C[c]}"\n' size = f'size = [ {S[c][0]}, {S[c][1]}]\n' mat = f'matrix = [ [ {K[c][0,0]}, 0.0, {K[c][0,2]}], [ 0.0, {K[c][1,1]}, {K[c][1,2]}], [ 0.0, 0.0, 1.0]]\n' dist = f'distortions = [ {D[c][0]}, {D[c][1]}, {D[c][2]}, {D[c][3]}]\n' rot = f'rotation = [ {R[c][0]}, {R[c][1]}, {R[c][2]}]\n' tran = f'translation = [ {T[c][0]}, {T[c][1]}, {T[c][2]}]\n' fish = f'fisheye = false\n\n' cal_f.write(cam + name + size + mat + dist + rot + tran + fish) meta = '[metadata]\nadjusted = false\nerror = 0.0\n' cal_f.write(meta) def recap_calibrate(ret, calib_path, calib_full_type): ''' Print a log message giving calibration results. Also stored in User/logs.txt. OUTPUT: - Message in console ''' calib = toml.load(calib_path) ret_m, ret_px = [], [] for c, cam in enumerate(calib.keys()): if cam != 'metadata': f_px = calib[cam]['matrix'][0][0] Dm = euclidean_distance(calib[cam]['translation'], [0,0,0]) if calib_full_type in ['convert_qualisys', 'convert_vicon','convert_opencap', 'convert_biocv']: ret_m.append( np.around(ret[c], decimals=3) ) ret_px.append( np.around(ret[c] / (Dm*1000) * f_px, decimals=3) ) elif calib_full_type=='calculate_board': ret_px.append( np.around(ret[c], decimals=3) ) ret_m.append( np.around(ret[c]*Dm*1000 / f_px, decimals=3) ) logging.info(f'\n--> Residual (RMS) calibration errors for each camera are respectively {ret_px} px, \nwhich corresponds to {ret_m} mm.\n') logging.info(f'Calibration file is stored at {calib_path}.') def calibrate_cams_all(config): ''' Either converts a preexisting calibration file, or calculates calibration from scratch (from a board or from points). Stores calibration in a .toml file Prints recap. INPUTS: - a Config.toml file OUTPUT: - a .toml camera calibration file ''' # Read config project_dir = config.get('project').get('project_dir') if project_dir == '': project_dir = os.getcwd() calib_dir = os.path.join(project_dir, 'Calibration') calib_type = config.get('calibration').get('calibration_type') if calib_type=='convert': convert_filetype = config.get('calibration').get('convert').get('convert_from') try: if convert_filetype=='qualisys': convert_ext = '.qca.txt' file_to_convert_path = glob.glob(os.path.join(calib_dir, f'*{convert_ext}*'))[0] binning_factor = config.get('calibration').get('convert').get('qualisys').get('binning_factor') elif convert_filetype=='optitrack': file_to_convert_path = [''] binning_factor = 1 elif convert_filetype=='vicon': convert_ext = '.xcp' file_to_convert_path = glob.glob(os.path.join(calib_dir, f'*{convert_ext}'))[0] binning_factor = 1 elif convert_filetype=='opencap': # all files with .pickle extension convert_ext = '.pickle' file_to_convert_path = glob.glob(os.path.join(calib_dir, f'*{convert_ext}')) binning_factor = 1 elif convert_filetype=='easymocap': #intri.yml and intri.yml convert_ext = '.yml' file_to_convert_path = glob.glob(os.path.join(calib_dir, '*.yml')) binning_factor = 1 elif convert_filetype=='biocv': # all files without extension convert_ext = 'no' list_dir = os.listdir(calib_dir) list_dir_noext = [os.path.splitext(f)[0] for f in list_dir if os.path.splitext(f)[1]==''] file_to_convert_path = [os.path.join(calib_dir,f) for f in list_dir_noext if os.path.isfile(os.path.join(calib_dir, f))] binning_factor = 1 elif convert_filetype=='biocv' or convert_filetype=='biocv': # no conversion needed, skips this stage logging.info(f'\n--> No conversion needed from AniPose nor from FreeMocap. Calibration skipped.\n') return else: convert_ext = '???' file_to_convert_path = [''] raise NameError(f'Calibration conversion from {convert_filetype} is not supported.') from None assert file_to_convert_path!=[] except: raise NameError(f'No file with {convert_ext} extension found in {calib_dir}.') calib_output_path = os.path.join(calib_dir, f'Calib_{convert_filetype}.toml') calib_full_type = '_'.join([calib_type, convert_filetype]) args_calib_fun = [file_to_convert_path, binning_factor] elif calib_type=='calculate': calculate_method = config.get('calibration').get('calculate').get('calculate_method') if calculate_method=='board': intrinsics_config_dict = config.get('calibration').get('calculate').get('board').get('intrinsics') extrinsics_board_type = config.get('calibration').get('calculate').get('board').get('extrinsics').get('extrinsics_board_type') extrinsics_config_dict = config.get('calibration').get('calculate').get('board').get('extrinsics') calib_output_path = os.path.join(calib_dir, f'Calib_{extrinsics_board_type}.toml') calib_full_type = '_'.join([calib_type, calculate_method]) args_calib_fun = [calib_dir, intrinsics_config_dict, extrinsics_config_dict] elif calculate_method=='points': logging.info('Calibration from wand or from keypoint detection not supported yet. See Readme.md if you want to contribute.') else: logging.info('Wrong calculate_method in Config.toml') else: logging.info('Wrong calibration_type in Config.toml') # Map calib function calib_mapping = { 'convert_qualisys': calib_qca_fun, 'convert_optitrack': calib_optitrack_fun, 'convert_vicon': calib_vicon_fun, 'convert_opencap': calib_opencap_fun, 'convert_easymocap': calib_easymocap_fun, 'convert_biocv': calib_biocv_fun, 'calculate_board': calib_board_fun, 'calculate_points': calib_points_fun } calib_fun = calib_mapping[calib_full_type] # Calibrate ret, C, S, D, K, R, T = calib_fun(*args_calib_fun) # Write calibration file toml_write(calib_output_path, C, S, D, K, R, T) # Recap message recap_calibrate(ret, calib_output_path, calib_full_type)