#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ########################################################################### ## OTHER SHARED UTILITIES ## ########################################################################### Functions shared between modules, and other utilities ''' ## INIT import toml import json import numpy as np import re import cv2 import c3d import sys import matplotlib as mpl mpl.use('qt5agg') mpl.rc('figure', max_open_warning=0) from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from PyQt5.QtWidgets import QMainWindow, QApplication, QWidget, QTabWidget, QVBoxLayout import warnings warnings.filterwarnings("ignore", category=UserWarning, module="c3d") ## AUTHORSHIP INFORMATION __author__ = "David Pagnon" __copyright__ = "Copyright 2021, Maya-Mocap" __credits__ = ["David Pagnon"] __license__ = "BSD 3-Clause License" __version__ = "0.8.2" __maintainer__ = "David Pagnon" __email__ = "contact@david-pagnon.com" __status__ = "Development" ## FUNCTIONS def common_items_in_list(list1, list2): ''' Do two lists have any items in common at the same index? Returns True or False ''' for i, j in enumerate(list1): if j == list2[i]: return True return False def bounding_boxes(js_file, margin_percent=0.1, around='extremities'): ''' Compute the bounding boxes of the people in the json file. Either around the extremities (with a margin) or around the center of the person (with a margin). INPUTS: - js_file: json file - margin_percent: margin around the person - around: 'extremities' or 'center' OUTPUT: - bounding_boxes: list of bounding boxes [x_min, y_min, x_max, y_max] ''' bounding_boxes = [] with open(js_file, 'r') as json_f: js = json.load(json_f) for people in range(len(js['people'])): if len(js['people'][people]['pose_keypoints_2d']) < 3: continue else: x = js['people'][people]['pose_keypoints_2d'][0::3] y = js['people'][people]['pose_keypoints_2d'][1::3] x_min, x_max = min(x), max(x) y_min, y_max = min(y), max(y) if around == 'extremities': dx = (x_max - x_min) * margin_percent dy = (y_max - y_min) * margin_percent bounding_boxes.append([x_min-dx, y_min-dy, x_max+dx, y_max+dy]) elif around == 'center': x_mean, y_mean = np.mean(x), np.mean(y) x_size = (x_max - x_min) * (1 + margin_percent) y_size = (y_max - y_min) * (1 + margin_percent) bounding_boxes.append([x_mean - x_size/2, y_mean - y_size/2, x_mean + x_size/2, y_mean + y_size/2]) return bounding_boxes def retrieve_calib_params(calib_file): ''' Compute projection matrices from toml calibration file. INPUT: - calib_file: calibration .toml file. OUTPUT: - S: (h,w) vectors as list of 2x1 arrays - K: intrinsic matrices as list of 3x3 arrays - dist: distortion vectors as list of 4x1 arrays - inv_K: inverse intrinsic matrices as list of 3x3 arrays - optim_K: intrinsic matrices for undistorting points as list of 3x3 arrays - R: rotation rodrigue vectors as list of 3x1 arrays - T: translation vectors as list of 3x1 arrays ''' calib = toml.load(calib_file) S, K, dist, optim_K, inv_K, R, R_mat, T = [], [], [], [], [], [], [], [] for c, cam in enumerate(calib.keys()): if cam != 'metadata': S.append(np.array(calib[cam]['size'])) K.append(np.array(calib[cam]['matrix'])) dist.append(np.array(calib[cam]['distortions'])) optim_K.append(cv2.getOptimalNewCameraMatrix(K[c], dist[c], [int(s) for s in S[c]], 1, [int(s) for s in S[c]])[0]) inv_K.append(np.linalg.inv(K[c])) R.append(np.array(calib[cam]['rotation'])) R_mat.append(cv2.Rodrigues(R[c])[0]) T.append(np.array(calib[cam]['translation'])) calib_params = {'S': S, 'K': K, 'dist': dist, 'inv_K': inv_K, 'optim_K': optim_K, 'R': R, 'R_mat': R_mat, 'T': T} return calib_params def computeP(calib_file, undistort=False): ''' Compute projection matrices from toml calibration file. INPUT: - calib_file: calibration .toml file. - undistort: boolean OUTPUT: - P: projection matrix as list of arrays ''' calib = toml.load(calib_file) P = [] for cam in list(calib.keys()): if cam != 'metadata': K = np.array(calib[cam]['matrix']) if undistort: S = np.array(calib[cam]['size']) dist = np.array(calib[cam]['distortions']) optim_K = cv2.getOptimalNewCameraMatrix(K, dist, [int(s) for s in S], 1, [int(s) for s in S])[0] Kh = np.block([optim_K, np.zeros(3).reshape(3,1)]) else: Kh = np.block([K, np.zeros(3).reshape(3,1)]) R, _ = cv2.Rodrigues(np.array(calib[cam]['rotation'])) T = np.array(calib[cam]['translation']) H = np.block([[R,T.reshape(3,1)], [np.zeros(3), 1 ]]) P.append(Kh @ H) return P def weighted_triangulation(P_all,x_all,y_all,likelihood_all): ''' Triangulation with direct linear transform, weighted with likelihood of joint pose estimation. INPUTS: - P_all: list of arrays. Projection matrices of all cameras - x_all,y_all: x, y 2D coordinates to triangulate - likelihood_all: likelihood of joint pose estimation OUTPUT: - Q: array of triangulated point (x,y,z,1.) ''' A = np.empty((0,4)) for c in range(len(x_all)): P_cam = P_all[c] A = np.vstack((A, (P_cam[0] - x_all[c]*P_cam[2]) * likelihood_all[c] )) A = np.vstack((A, (P_cam[1] - y_all[c]*P_cam[2]) * likelihood_all[c] )) if np.shape(A)[0] >= 4: S, U, Vt = cv2.SVDecomp(A) V = Vt.T Q = np.array([V[0][3]/V[3][3], V[1][3]/V[3][3], V[2][3]/V[3][3], 1]) else: Q = np.array([np.nan,np.nan,np.nan,1]) return Q def reprojection(P_all, Q): ''' Reprojects 3D point on all cameras. INPUTS: - P_all: list of arrays. Projection matrix for all cameras - Q: array of triangulated point (x,y,z,1.) OUTPUTS: - x_calc, y_calc: list of coordinates of point reprojected on all cameras ''' x_calc, y_calc = [], [] for c in range(len(P_all)): P_cam = P_all[c] x_calc.append(P_cam[0] @ Q / (P_cam[2] @ Q)) y_calc.append(P_cam[1] @ Q / (P_cam[2] @ Q)) return x_calc, y_calc def euclidean_distance(q1, q2): ''' Euclidean distance between 2 points (N-dim). INPUTS: - q1: list of N_dimensional coordinates of point - q2: idem OUTPUTS: - euc_dist: float. Euclidian distance between q1 and q2 ''' q1 = np.array(q1) q2 = np.array(q2) dist = q2 - q1 if np.isnan(dist).all(): dist = np.empty_like(dist) dist[...] = np.inf euc_dist = np.sqrt(np.nansum( [d**2 for d in dist])) return euc_dist def world_to_camera_persp(r, t): ''' Converts rotation R and translation T from Qualisys world centered perspective to OpenCV camera centered perspective and inversely. Qc = RQ+T --> Q = R-1.Qc - R-1.T ''' r = r.T t = - r @ t return r, t def rotate_cam(r, t, ang_x=0, ang_y=0, ang_z=0): ''' Apply rotations around x, y, z in cameras coordinates Angle in radians ''' r,t = np.array(r), np.array(t) if r.shape == (3,3): rt_h = np.block([[r,t.reshape(3,1)], [np.zeros(3), 1 ]]) elif r.shape == (3,): rt_h = np.block([[cv2.Rodrigues(r)[0],t.reshape(3,1)], [np.zeros(3), 1 ]]) r_ax_x = np.array([1,0,0, 0,np.cos(ang_x),-np.sin(ang_x), 0,np.sin(ang_x),np.cos(ang_x)]).reshape(3,3) r_ax_y = np.array([np.cos(ang_y),0,np.sin(ang_y), 0,1,0, -np.sin(ang_y),0,np.cos(ang_y)]).reshape(3,3) r_ax_z = np.array([np.cos(ang_z),-np.sin(ang_z),0, np.sin(ang_z),np.cos(ang_z),0, 0,0,1]).reshape(3,3) r_ax = r_ax_z @ r_ax_y @ r_ax_x r_ax_h = np.block([[r_ax,np.zeros(3).reshape(3,1)], [np.zeros(3), 1]]) r_ax_h__rt_h = r_ax_h @ rt_h r = r_ax_h__rt_h[:3,:3] t = r_ax_h__rt_h[:3,3] return r, t def quat2rod(quat, scalar_idx=0): ''' Converts quaternion to Rodrigues vector INPUT: - quat: quaternion. np.array of size 4 - scalar_idx: index of scalar part of quaternion. Default: 0, sometimes 3 OUTPUT: - rod: Rodrigues vector. np.array of size 3 ''' if scalar_idx == 0: w, qx, qy, qz = np.array(quat) if scalar_idx == 3: qx, qy, qz, w = np.array(quat) else: print('Error: scalar_idx should be 0 or 3') rodx = qx * np.tan(w/2) rody = qy * np.tan(w/2) rodz = qz * np.tan(w/2) rod = np.array([rodx, rody, rodz]) return rod def quat2mat(quat, scalar_idx=0): ''' Converts quaternion to rotation matrix INPUT: - quat: quaternion. np.array of size 4 - scalar_idx: index of scalar part of quaternion. Default: 0, sometimes 3 OUTPUT: - mat: 3x3 rotation matrix ''' if scalar_idx == 0: w, qx, qy, qz = np.array(quat) elif scalar_idx == 3: qx, qy, qz, w = np.array(quat) else: print('Error: scalar_idx should be 0 or 3') r11 = 1 - 2 * (qy**2 + qz**2) r12 = 2 * (qx*qy - qz*w) r13 = 2 * (qx*qz + qy*w) r21 = 2 * (qx*qy + qz*w) r22 = 1 - 2 * (qx**2 + qz**2) r23 = 2 * (qy*qz - qx*w) r31 = 2 * (qx*qz - qy*w) r32 = 2 * (qy*qz + qx*w) r33 = 1 - 2 * (qx**2 + qy**2) mat = np.array([r11, r12, r13, r21, r22, r23, r31, r32, r33]).reshape(3,3).T return mat def sort_stringlist_by_last_number(string_list): ''' Sort a list of strings based on the last number in the string. Works if other numbers in the string, if strings after number. Ignores alphabetical order. Example: ['json1', 'js4on2.b', 'eypoints_0000003.json', 'ajson0', 'json10'] gives: ['ajson0', 'json1', 'js4on2.b', 'eypoints_0000003.json', 'json10'] ''' def sort_by_last_number(s): return int(re.findall(r'\d+', s)[-1]) return sorted(string_list, key=sort_by_last_number) def natural_sort_key(s): ''' Sorts list of strings with numbers in natural order (alphabetical and numerical) Example: ['item_1', 'item_2', 'item_10', 'stuff_1'] ''' return [int(c) if c.isdigit() else c.lower() for c in re.split(r'(\d+)', s)] def zup2yup(Q): ''' Turns Z-up system coordinates into Y-up coordinates INPUT: - Q: pandas dataframe N 3D points as columns, ie 3*N columns in Z-up system coordinates and frame number as rows OUTPUT: - Q: pandas dataframe with N 3D points in Y-up system coordinates ''' # X->Y, Y->Z, Z->X cols = list(Q.columns) cols = np.array([[cols[i*3+1],cols[i*3+2],cols[i*3]] for i in range(int(len(cols)/3))]).flatten() Q = Q[cols] return Q def extract_trc_data(trc_path): ''' Extract marker names and coordinates from a trc file. INPUTS: - trc_path: Path to the trc file OUTPUTS: - marker_names: List of marker names - marker_coords: Array of marker coordinates (n_frames, t+3*n_markers) ''' # marker names with open(trc_path, 'r') as file: lines = file.readlines() marker_names_line = lines[3] marker_names = marker_names_line.strip().split('\t')[2::3] # time and marker coordinates trc_data_np = np.genfromtxt(trc_path, skip_header=5, delimiter = '\t')[:,1:] return marker_names, trc_data_np def create_c3d_file(c3d_path, marker_names, trc_data_np): ''' Create a c3d file from the data extracted from a trc file. INPUTS: - c3d_path: Path to the c3d file - marker_names: List of marker names - trc_data_np: Array of marker coordinates (n_frames, t+3*n_markers) OUTPUTS: - c3d file ''' # retrieve frame rate times = trc_data_np[:,0] frame_rate = round((len(times)-1) / (times[-1] - times[0])) # write c3d file writer = c3d.Writer(point_rate=frame_rate, analog_rate=0, point_scale=1.0, point_units='mm', gen_scale=-1.0) writer.set_point_labels(marker_names) writer.set_screen_axis(X='+Z', Y='+Y') for frame in trc_data_np: residuals = np.full((len(marker_names), 1), 0.0) cameras = np.zeros((len(marker_names), 1)) coords = frame[1:].reshape(-1,3)*1000 points = np.hstack((coords, residuals, cameras)) writer.add_frames([(points, np.array([]))]) writer.set_start_frame(0) writer._set_last_frame(len(trc_data_np)-1) with open(c3d_path, 'wb') as handle: writer.write(handle) def convert_to_c3d(trc_path): ''' Make Visual3D compatible c3d files from a trc path INPUT: - trc_path: string, trc file to convert OUTPUT: - c3d file ''' c3d_path = trc_path.replace('.trc', '.c3d') marker_names, trc_data_np = extract_trc_data(trc_path) create_c3d_file(c3d_path, marker_names, trc_data_np) return c3d_path ## CLASSES class plotWindow(): ''' Display several figures in tabs Taken from https://github.com/superjax/plotWindow/blob/master/plotWindow.py USAGE: pw = plotWindow() f = plt.figure() plt.plot(x1, y1) pw.addPlot("1", f) f = plt.figure() plt.plot(x2, y2) pw.addPlot("2", f) ''' def __init__(self, parent=None): self.app = QApplication(sys.argv) self.MainWindow = QMainWindow() self.MainWindow.__init__() self.MainWindow.setWindowTitle("Multitabs figure") self.canvases = [] self.figure_handles = [] self.toolbar_handles = [] self.tab_handles = [] self.current_window = -1 self.tabs = QTabWidget() self.MainWindow.setCentralWidget(self.tabs) self.MainWindow.resize(1280, 720) self.MainWindow.show() def addPlot(self, title, figure): new_tab = QWidget() layout = QVBoxLayout() new_tab.setLayout(layout) figure.subplots_adjust(left=0.1, right=0.99, bottom=0.1, top=0.91, wspace=0.2, hspace=0.2) new_canvas = FigureCanvas(figure) new_toolbar = NavigationToolbar(new_canvas, new_tab) layout.addWidget(new_canvas) layout.addWidget(new_toolbar) self.tabs.addTab(new_tab, title) self.toolbar_handles.append(new_toolbar) self.canvases.append(new_canvas) self.figure_handles.append(figure) self.tab_handles.append(new_tab) def show(self): self.app.exec_()