pose2sim/Pose2Sim/markerAugmentation.py

252 lines
11 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
###########################################################################
## AUGMENT MARKER DATA ##
###########################################################################
Augment trc 3D coordinates.
Estimate the position of 43 additional markers.
INPUTS:
- a trc file
- filtering parameters in Config.toml
OUTPUT:
- a filtered trc file
'''
## INIT
import os
import numpy as np
from Pose2Sim.MarkerAugmenter import utilsDataman
import copy
import tensorflow as tf
from Pose2Sim.MarkerAugmenter.utils import TRC2numpy
import json
import glob
import logging
## AUTHORSHIP INFORMATION
__author__ = "Antoine Falisse, adapted by HunMin Kim"
__copyright__ = "Copyright 2022, OpenCap"
__credits__ = ["Antoine Falisse", "HunMin Kim"]
__license__ = "Apache-2.0 License"
__version__ = '0.5'
__maintainer__ = "David Pagnon"
__email__ = "contact@david-pagnon.com"
__status__ = "Development"
## FUNCTIONS
# subject_height must be in meters
def get_midhip_data(trc_file):
try:
# Find MidHip data
midhip_data = trc_file.marker("CHip")
if midhip_data is None or len(midhip_data) == 0:
raise ValueError("MidHip data is empty")
except (KeyError, ValueError):
# If MidHip data is not found, calculate it from RHip and LHip
rhip_data = trc_file.marker("RHip")
lhip_data = trc_file.marker("LHip")
midhip_data = (rhip_data + lhip_data) / 2
return midhip_data
def augmentTRC(config_dict):
# get parameters from Config.toml
project_dir = config_dict.get('project').get('project_dir')
pathInputTRCFile = os.path.realpath(os.path.join(project_dir, 'pose-3d'))
pathOutputTRCFile = os.path.realpath(os.path.join(project_dir, 'pose-3d'))
pose_model = config_dict.get('pose').get('pose_model')
subject_height = config_dict.get('markerAugmentation').get('participant_height')
if subject_height is None or subject_height == 0 or subject_height==0:
raise ValueError("Subject height is not set or invalid in the config file.")
subject_mass = config_dict.get('markerAugmentation').get('participant_mass')
if not type(subject_height) == list:
subject_height = [subject_height]
subject_mass = [subject_mass]
augmenterDir = os.path.dirname(utilsDataman.__file__)
augmenterModelName = 'LSTM'
augmenter_model = 'v0.3'
offset = True
# Apply all trc files
all_trc_files = [f for f in glob.glob(os.path.join(pathInputTRCFile, '*.trc')) if '_LSTM' not in f]
trc_no_filtering = [f for f in glob.glob(os.path.join(pathInputTRCFile, '*.trc')) if
'_LSTM' not in f and 'filt' not in f]
trc_filtering = [f for f in glob.glob(os.path.join(pathInputTRCFile, '*.trc')) if '_LSTM' not in f and 'filt' in f]
if len(all_trc_files) == 0:
raise ValueError('No trc files found.')
if len(trc_filtering) > 0:
trc_files = trc_filtering
else:
trc_files = trc_no_filtering
for p, pathInputTRCFile in enumerate(trc_files):
pathOutputTRCFile = os.path.splitext(pathInputTRCFile)[0] + '_LSTM.trc'
# This is by default - might need to be adjusted in the future.
featureHeight = True
featureWeight = True
# Augmenter types
if augmenter_model == 'v0.3':
# Lower body
augmenterModelType_lower = '{}_lower'.format(augmenter_model)
from Pose2Sim.MarkerAugmenter.utils import getOpenPoseMarkers_lowerExtremity2
feature_markers_lower, response_markers_lower = getOpenPoseMarkers_lowerExtremity2()
# Upper body
augmenterModelType_upper = '{}_upper'.format(augmenter_model)
from Pose2Sim.MarkerAugmenter.utils import getMarkers_upperExtremity_noPelvis2
feature_markers_upper, response_markers_upper = getMarkers_upperExtremity_noPelvis2()
augmenterModelType_all = [augmenterModelType_lower, augmenterModelType_upper]
feature_markers_all = [feature_markers_lower, feature_markers_upper]
response_markers_all = [response_markers_lower, response_markers_upper]
else:
raise ValueError('Augmenter models other than 0.3 are not supported.')
logging.info('Using Stanford augmenter model: {}'.format(augmenter_model))
# %% Process data.
# Import TRC file
try:
trc_file = utilsDataman.TRCFile(pathInputTRCFile)
except:
raise ValueError('Cannot read TRC file. You may need to enable interpolation in Config.toml while triangulating.')
# Verify that all feature markers are present in the TRC file.
feature_markers_joined = set(feature_markers_all[0]+feature_markers_all[1])
trc_markers = set(trc_file.marker_names)
missing_markers = list(feature_markers_joined - trc_markers)
if len(missing_markers) > 0:
raise ValueError(f'Marker augmentation requires {missing_markers} markers and they are not present in the TRC file.')
# Loop over augmenter types to handle separate augmenters for lower and
# upper bodies.
outputs_all = {}
n_response_markers_all = 0
for idx_augm, augmenterModelType in enumerate(augmenterModelType_all):
outputs_all[idx_augm] = {}
feature_markers = feature_markers_all[idx_augm]
response_markers = response_markers_all[idx_augm]
augmenterModelDir = os.path.join(augmenterDir, augmenterModelName,
augmenterModelType)
# %% Pre-process inputs.
# Step 1: import .trc file with OpenPose marker trajectories.
trc_data = TRC2numpy(pathInputTRCFile, feature_markers)
# Calculate the midHip marker as the average of RHip and LHip
midhip_data = get_midhip_data(trc_file)
trc_data_data = trc_data[:,1:]
# Step 2: Normalize with reference marker position.
with open(os.path.join(augmenterModelDir, "metadata.json"), 'r') as f:
metadata = json.load(f)
referenceMarker_data = midhip_data # instead of trc_file.marker(referenceMarker) # change by HunMin
norm_trc_data_data = np.zeros((trc_data_data.shape[0],
trc_data_data.shape[1]))
for i in range(0,trc_data_data.shape[1],3):
norm_trc_data_data[:,i:i+3] = (trc_data_data[:,i:i+3] -
referenceMarker_data)
# Step 3: Normalize with subject's height.
norm2_trc_data_data = copy.deepcopy(norm_trc_data_data)
norm2_trc_data_data = norm2_trc_data_data / subject_height[p]
# Step 4: Add remaining features.
inputs = copy.deepcopy(norm2_trc_data_data)
if featureHeight:
inputs = np.concatenate(
(inputs, subject_height[p]*np.ones((inputs.shape[0],1))), axis=1)
if featureWeight:
inputs = np.concatenate(
(inputs, subject_mass[p]*np.ones((inputs.shape[0],1))), axis=1)
# Step 5: Pre-process data
pathMean = os.path.join(augmenterModelDir, "mean.npy")
pathSTD = os.path.join(augmenterModelDir, "std.npy")
if os.path.isfile(pathMean):
trainFeatures_mean = np.load(pathMean, allow_pickle=True)
inputs -= trainFeatures_mean
if os.path.isfile(pathSTD):
trainFeatures_std = np.load(pathSTD, allow_pickle=True)
inputs /= trainFeatures_std
# Step 6: Reshape inputs if necessary (eg, LSTM)
if augmenterModelName == "LSTM":
inputs = np.reshape(inputs, (1, inputs.shape[0], inputs.shape[1]))
# %% Load model and weights, and predict outputs.
json_file = open(os.path.join(augmenterModelDir, "model.json"), 'r')
pretrainedModel_json = json_file.read()
json_file.close()
model = tf.keras.models.model_from_json(pretrainedModel_json)
model.load_weights(os.path.join(augmenterModelDir, "weights.h5"))
outputs = model.predict(inputs)
tf.keras.backend.clear_session()
# %% Post-process outputs.
# Step 1: Reshape if necessary (eg, LSTM)
if augmenterModelName == "LSTM":
outputs = np.reshape(outputs, (outputs.shape[1], outputs.shape[2]))
# Step 2: Un-normalize with subject's height.
unnorm_outputs = outputs * subject_height[p]
# Step 2: Un-normalize with reference marker position.
unnorm2_outputs = np.zeros((unnorm_outputs.shape[0],
unnorm_outputs.shape[1]))
for i in range(0,unnorm_outputs.shape[1],3):
unnorm2_outputs[:,i:i+3] = (unnorm_outputs[:,i:i+3] +
referenceMarker_data)
# %% Add markers to .trc file.
for c, marker in enumerate(response_markers):
x = unnorm2_outputs[:,c*3]
y = unnorm2_outputs[:,c*3+1]
z = unnorm2_outputs[:,c*3+2]
trc_file.add_marker(marker, x, y, z)
# %% Gather data for computing minimum y-position.
outputs_all[idx_augm]['response_markers'] = response_markers
outputs_all[idx_augm]['response_data'] = unnorm2_outputs
n_response_markers_all += len(response_markers)
# %% Extract minimum y-position across response markers. This is used
# to align feet and floor when visualizing.
responses_all_conc = np.zeros((unnorm2_outputs.shape[0],
n_response_markers_all*3))
idx_acc_res = 0
for idx_augm in outputs_all:
idx_acc_res_end = (idx_acc_res +
(len(outputs_all[idx_augm]['response_markers']))*3)
responses_all_conc[:,idx_acc_res:idx_acc_res_end] = (
outputs_all[idx_augm]['response_data'])
idx_acc_res = idx_acc_res_end
# Minimum y-position across response markers.
min_y_pos = np.min(responses_all_conc[:,1::3])
# %% If offset
if offset:
trc_file.offset('y', -(min_y_pos-0.01))
# %% Return augmented .trc file
trc_file.write(pathOutputTRCFile)
logging.info(f'Augmented marker coordinates are stored at {pathOutputTRCFile}.\n')
return min_y_pos