413 lines
18 KiB
Python
413 lines
18 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
'''
|
|
#########################################
|
|
## SYNCHRONIZE CAMERAS ##
|
|
#########################################
|
|
|
|
Post-synchronize your cameras in case they are not natively synchronized.
|
|
|
|
For each camera, computes mean vertical speed for the chosen keypoints,
|
|
and find the time offset for which their correlation is highest.
|
|
|
|
Depending on the analysed motion, all keypoints can be taken into account,
|
|
or a list of them, or the right or left side.
|
|
All frames can be considered, or only those around a specific time (typically,
|
|
the time when there is a single participant in the scene performing a clear vertical motion).
|
|
Has also been successfully tested for synchronizing random walkswith random walks.
|
|
|
|
Keypoints whose likelihood is too low are filtered out; and the remaining ones are
|
|
filtered with a butterworth filter.
|
|
|
|
INPUTS:
|
|
- json files from each camera folders
|
|
- a Config.toml file
|
|
- a skeleton model
|
|
|
|
OUTPUTS:
|
|
- synchronized json files for each camera
|
|
'''
|
|
|
|
|
|
## INIT
|
|
import numpy as np
|
|
import pandas as pd
|
|
import cv2
|
|
import matplotlib.pyplot as plt
|
|
from scipy import signal
|
|
from scipy import interpolate
|
|
import json
|
|
import os
|
|
import glob
|
|
import fnmatch
|
|
import re
|
|
import shutil
|
|
from anytree import RenderTree
|
|
from anytree.importer import DictImporter
|
|
import logging
|
|
|
|
from Pose2Sim.common import sort_stringlist_by_last_number
|
|
from Pose2Sim.skeletons import *
|
|
|
|
|
|
## AUTHORSHIP INFORMATION
|
|
__author__ = "David Pagnon, HunMin Kim"
|
|
__copyright__ = "Copyright 2021, Pose2Sim"
|
|
__credits__ = ["David Pagnon"]
|
|
__license__ = "BSD 3-Clause License"
|
|
__version__ = "0.9.4"
|
|
__maintainer__ = "David Pagnon"
|
|
__email__ = "contact@david-pagnon.com"
|
|
__status__ = "Development"
|
|
|
|
|
|
# FUNCTIONS
|
|
def convert_json2pandas(json_files, likelihood_threshold=0.6):
|
|
'''
|
|
Convert a list of JSON files to a pandas DataFrame.
|
|
|
|
INPUTS:
|
|
- json_files: list of str. Paths of the the JSON files.
|
|
- likelihood_threshold: float. Drop values if confidence is below likelihood_threshold.
|
|
- frame_range: select files within frame_range.
|
|
|
|
OUTPUTS:
|
|
- df_json_coords: dataframe. Extracted coordinates in a pandas dataframe.
|
|
'''
|
|
|
|
nb_coord = 25 # int(len(json_data)/3)
|
|
json_coords = []
|
|
for j_p in json_files:
|
|
with open(j_p) as j_f:
|
|
try:
|
|
json_data = json.load(j_f)['people'][0]['pose_keypoints_2d']
|
|
# remove points with low confidence
|
|
json_data = np.array([[json_data[3*i],json_data[3*i+1],json_data[3*i+2]] if json_data[3*i+2]>likelihood_threshold else [0.,0.,0.] for i in range(nb_coord)]).ravel().tolist()
|
|
except:
|
|
# print(f'No person found in {os.path.basename(json_dir)}, frame {i}')
|
|
json_data = [np.nan] * 25*3
|
|
json_coords.append(json_data)
|
|
df_json_coords = pd.DataFrame(json_coords)
|
|
|
|
return df_json_coords
|
|
|
|
|
|
def drop_col(df, col_nb):
|
|
'''
|
|
Drops every nth column from a DataFrame.
|
|
|
|
INPUTS:
|
|
- df: dataframe. The DataFrame from which columns will be dropped.
|
|
- col_nb: int. The column number to drop.
|
|
|
|
OUTPUTS:
|
|
- dataframe: DataFrame with dropped columns.
|
|
'''
|
|
|
|
idx_col = list(range(col_nb-1, df.shape[1], col_nb))
|
|
df_dropped = df.drop(idx_col, axis=1)
|
|
df_dropped.columns = range(df_dropped.columns.size)
|
|
return df_dropped
|
|
|
|
|
|
def vert_speed(df, axis='y'):
|
|
'''
|
|
Calculate the vertical speed of a DataFrame along a specified axis.
|
|
|
|
INPUTS:
|
|
- df: dataframe. DataFrame of 2D coordinates.
|
|
- axis: str. The axis along which to calculate speed. 'x', 'y', or 'z', default is 'y'.
|
|
|
|
OUTPUTS:
|
|
- df_vert_speed: DataFrame of vertical speed values.
|
|
'''
|
|
|
|
axis_dict = {'x':0, 'y':1, 'z':2}
|
|
df_diff = df.diff()
|
|
df_diff = df_diff.fillna(df_diff.iloc[1]*2)
|
|
df_vert_speed = pd.DataFrame([df_diff.loc[:, 2*k + axis_dict[axis]] for k in range(int(df_diff.shape[1] / 2))]).T # modified ( df_diff.shape[1]*2 to df_diff.shape[1] / 2 )
|
|
df_vert_speed.columns = np.arange(len(df_vert_speed.columns))
|
|
return df_vert_speed
|
|
|
|
|
|
def interpolate_zeros_nans(col, kind):
|
|
'''
|
|
Interpolate missing points (of value nan)
|
|
|
|
INPUTS:
|
|
- col: pandas column of coordinates
|
|
- kind: 'linear', 'slinear', 'quadratic', 'cubic'. Default 'cubic'
|
|
|
|
OUTPUTS:
|
|
- col_interp: interpolated pandas column
|
|
'''
|
|
|
|
mask = ~(np.isnan(col) | col.eq(0)) # true where nans or zeros
|
|
idx_good = np.where(mask)[0]
|
|
try:
|
|
f_interp = interpolate.interp1d(idx_good, col[idx_good], kind=kind, bounds_error=False)
|
|
col_interp = np.where(mask, col, f_interp(col.index))
|
|
return col_interp
|
|
except:
|
|
# print('No good values to interpolate')
|
|
return col
|
|
|
|
|
|
def time_lagged_cross_corr(camx, camy, lag_range, show=True, ref_cam_id=0, cam_id=1):
|
|
'''
|
|
Compute the time-lagged cross-correlation between two pandas series.
|
|
|
|
INPUTS:
|
|
- camx: pandas series. Coordinates of reference camera.
|
|
- camy: pandas series. Coordinates of camera to compare.
|
|
- lag_range: int or list. Range of frames for which to compute cross-correlation.
|
|
- show: bool. If True, display the cross-correlation plot.
|
|
- ref_cam_id: int. The reference camera id.
|
|
- cam_id: int. The camera id to compare.
|
|
|
|
OUTPUTS:
|
|
- offset: int. The time offset for which the correlation is highest.
|
|
- max_corr: float. The maximum correlation value.
|
|
'''
|
|
|
|
if isinstance(lag_range, int):
|
|
lag_range = [-lag_range, lag_range]
|
|
|
|
pearson_r = [camx.corr(camy.shift(lag)) for lag in range(lag_range[0], lag_range[1])]
|
|
offset = int(np.floor(len(pearson_r)/2)-np.argmax(pearson_r))
|
|
if not np.isnan(pearson_r).all():
|
|
max_corr = np.nanmax(pearson_r)
|
|
|
|
if show:
|
|
f, ax = plt.subplots(2,1)
|
|
# speed
|
|
camx.plot(ax=ax[0], label = f'Reference: camera #{ref_cam_id}')
|
|
camy.plot(ax=ax[0], label = f'Compared: camera #{cam_id}')
|
|
ax[0].set(xlabel='Frame', ylabel='Speed (px/frame)')
|
|
ax[0].legend()
|
|
# time lagged cross-correlation
|
|
ax[1].plot(list(range(lag_range[0], lag_range[1])), pearson_r)
|
|
ax[1].axvline(np.ceil(len(pearson_r)/2) + lag_range[0],color='k',linestyle='--')
|
|
ax[1].axvline(np.argmax(pearson_r) + lag_range[0],color='r',linestyle='--',label='Peak synchrony')
|
|
plt.annotate(f'Max correlation={np.round(max_corr,2)}', xy=(0.05, 0.9), xycoords='axes fraction')
|
|
ax[1].set(title=f'Offset = {offset} frames', xlabel='Offset (frames)',ylabel='Pearson r')
|
|
|
|
plt.legend()
|
|
f.tight_layout()
|
|
plt.show()
|
|
else:
|
|
max_corr = 0
|
|
offset = 0
|
|
if show:
|
|
# print('No good values to interpolate')
|
|
pass
|
|
|
|
return offset, max_corr
|
|
|
|
|
|
def synchronize_cams_all(config_dict):
|
|
'''
|
|
Post-synchronize your cameras in case they are not natively synchronized.
|
|
|
|
For each camera, computes mean vertical speed for the chosen keypoints,
|
|
and find the time offset for which their correlation is highest.
|
|
|
|
Depending on the analysed motion, all keypoints can be taken into account,
|
|
or a list of them, or the right or left side.
|
|
All frames can be considered, or only those around a specific time (typically,
|
|
the time when there is a single participant in the scene performing a clear vertical motion).
|
|
Has also been successfully tested for synchronizing random walkswith random walks.
|
|
|
|
Keypoints whose likelihood is too low are filtered out; and the remaining ones are
|
|
filtered with a butterworth filter.
|
|
|
|
INPUTS:
|
|
- json files from each camera folders
|
|
- a Config.toml file
|
|
- a skeleton model
|
|
|
|
OUTPUTS:
|
|
- synchronized json files for each camera
|
|
'''
|
|
|
|
# Get parameters from Config.toml
|
|
project_dir = config_dict.get('project').get('project_dir')
|
|
pose_dir = os.path.realpath(os.path.join(project_dir, 'pose'))
|
|
pose_model = config_dict.get('pose').get('pose_model')
|
|
multi_person = config_dict.get('project').get('multi_person')
|
|
fps = config_dict.get('project').get('frame_rate')
|
|
frame_range = config_dict.get('project').get('frame_range')
|
|
display_sync_plots = config_dict.get('synchronization').get('display_sync_plots')
|
|
keypoints_to_consider = config_dict.get('synchronization').get('keypoints_to_consider')
|
|
approx_time_maxspeed = config_dict.get('synchronization').get('approx_time_maxspeed')
|
|
time_range_around_maxspeed = config_dict.get('synchronization').get('time_range_around_maxspeed')
|
|
|
|
likelihood_threshold = config_dict.get('synchronization').get('likelihood_threshold')
|
|
filter_cutoff = int(config_dict.get('synchronization').get('filter_cutoff'))
|
|
filter_order = int(config_dict.get('synchronization').get('filter_order'))
|
|
|
|
# Determine frame rate
|
|
video_dir = os.path.join(project_dir, 'videos')
|
|
vid_img_extension = config_dict['pose']['vid_img_extension']
|
|
video_files = glob.glob(os.path.join(video_dir, '*'+vid_img_extension))
|
|
if fps == 'auto':
|
|
try:
|
|
cap = cv2.VideoCapture(video_files[0])
|
|
cap.read()
|
|
if cap.read()[0] == False:
|
|
raise
|
|
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
|
except:
|
|
fps = 60
|
|
lag_range = time_range_around_maxspeed*fps # frames
|
|
|
|
|
|
# Warning if multi_person
|
|
if multi_person:
|
|
logging.warning('\nYou set your project as a multi-person one: make sure you set `approx_time_maxspeed` and `time_range_around_maxspeed` at times where one single person is in the scene, or you may get inaccurate results.')
|
|
do_synchro = input('Do you want to continue? (y/n)')
|
|
if do_synchro.lower() not in ["y","yes"]:
|
|
logging.warning('Synchronization cancelled.')
|
|
return
|
|
else:
|
|
logging.warning('Synchronization will be attempted.\n')
|
|
|
|
# Retrieve keypoints from model
|
|
try: # from skeletons.py
|
|
model = eval(pose_model)
|
|
except:
|
|
try: # from Config.toml
|
|
model = DictImporter().import_(config_dict.get('pose').get(pose_model))
|
|
if model.id == 'None':
|
|
model.id = None
|
|
except:
|
|
raise NameError('Model not found in skeletons.py nor in Config.toml')
|
|
keypoints_ids = [node.id for _, _, node in RenderTree(model) if node.id!=None]
|
|
keypoints_names = [node.name for _, _, node in RenderTree(model) if node.id!=None]
|
|
|
|
# List json files
|
|
try:
|
|
pose_listdirs_names = next(os.walk(pose_dir))[1]
|
|
os.listdir(os.path.join(pose_dir, pose_listdirs_names[0]))[0]
|
|
except:
|
|
raise ValueError(f'No json files found in {pose_dir} subdirectories. Make sure you run Pose2Sim.poseEstimation() first.')
|
|
pose_listdirs_names = sort_stringlist_by_last_number(pose_listdirs_names)
|
|
json_dirs_names = [k for k in pose_listdirs_names if 'json' in k]
|
|
json_dirs = [os.path.join(pose_dir, j_d) for j_d in json_dirs_names] # list of json directories in pose_dir
|
|
json_files_names = [fnmatch.filter(os.listdir(os.path.join(pose_dir, js_dir)), '*.json') for js_dir in json_dirs_names]
|
|
json_files_names = [sort_stringlist_by_last_number(j) for j in json_files_names]
|
|
nb_frames_per_cam = [len(fnmatch.filter(os.listdir(os.path.join(json_dir)), '*.json')) for json_dir in json_dirs]
|
|
cam_nb = len(json_dirs)
|
|
cam_list = list(range(cam_nb))
|
|
|
|
# frame range selection
|
|
f_range = [[0, min([len(j) for j in json_files_names])] if frame_range==[] else frame_range][0]
|
|
# json_files_names = [[j for j in json_files_cam if int(re.split(r'(\d+)',j)[-2]) in range(*f_range)] for json_files_cam in json_files_names]
|
|
|
|
# Determine frames to consider for synchronization
|
|
if isinstance(approx_time_maxspeed, list): # search around max speed
|
|
approx_frame_maxspeed = [int(fps * t) for t in approx_time_maxspeed]
|
|
nb_frames_per_cam = [len(fnmatch.filter(os.listdir(os.path.join(json_dir)), '*.json')) for json_dir in json_dirs]
|
|
search_around_frames = [[int(a-lag_range) if a-lag_range>0 else 0, int(a+lag_range) if a+lag_range<nb_frames_per_cam[i] else nb_frames_per_cam[i]+f_range[0]] for i,a in enumerate(approx_frame_maxspeed)]
|
|
logging.info(f'Synchronization is calculated around the times {approx_time_maxspeed} +/- {time_range_around_maxspeed} s.')
|
|
elif approx_time_maxspeed == 'auto': # search on the whole sequence (slower if long sequence)
|
|
search_around_frames = [[f_range[0], f_range[0]+nb_frames_per_cam[i]] for i in range(cam_nb)]
|
|
logging.info('Synchronization is calculated on the whole sequence. This may take a while.')
|
|
else:
|
|
raise ValueError('approx_time_maxspeed should be a list of floats or "auto"')
|
|
|
|
if keypoints_to_consider == 'right':
|
|
logging.info(f'Keypoints used to compute the best synchronization offset: right side.')
|
|
elif keypoints_to_consider == 'left':
|
|
logging.info(f'Keypoints used to compute the best synchronization offset: left side.')
|
|
elif isinstance(keypoints_to_consider, list):
|
|
logging.info(f'Keypoints used to compute the best synchronization offset: {keypoints_to_consider}.')
|
|
elif keypoints_to_consider == 'all':
|
|
logging.info(f'All keypoints are used to compute the best synchronization offset.')
|
|
logging.info(f'These keypoints are filtered with a Butterworth filter (cut-off frequency: {filter_cutoff} Hz, order: {filter_order}).')
|
|
logging.info(f'They are removed when their likelihood is below {likelihood_threshold}.\n')
|
|
|
|
# Extract, interpolate, and filter keypoint coordinates
|
|
logging.info('Synchronizing...')
|
|
df_coords = []
|
|
b, a = signal.butter(filter_order/2, filter_cutoff/(fps/2), 'low', analog = False)
|
|
json_files_names_range = [[j for j in json_files_cam if int(re.split(r'(\d+)',j)[-2]) in range(*frames_cam)] for (json_files_cam, frames_cam) in zip(json_files_names,search_around_frames)]
|
|
json_files_range = [[os.path.join(pose_dir, j_dir, j_file) for j_file in json_files_names_range[j]] for j, j_dir in enumerate(json_dirs_names)]
|
|
|
|
if np.array([j==[] for j in json_files_names_range]).any():
|
|
raise ValueError(f'No json files found within the specified frame range ({frame_range}) at the times {approx_time_maxspeed} +/- {time_range_around_maxspeed} s.')
|
|
|
|
for i in range(cam_nb):
|
|
df_coords.append(convert_json2pandas(json_files_range[i], likelihood_threshold=likelihood_threshold))
|
|
df_coords[i] = drop_col(df_coords[i],3) # drop likelihood
|
|
if keypoints_to_consider == 'right':
|
|
kpt_indices = [i for i,k in zip(keypoints_ids,keypoints_names) if k.startswith('R') or k.startswith('right')]
|
|
kpt_indices = np.sort(np.concatenate([np.array(kpt_indices)*2, np.array(kpt_indices)*2+1]))
|
|
df_coords[i] = df_coords[i][kpt_indices]
|
|
elif keypoints_to_consider == 'left':
|
|
kpt_indices = [i for i,k in zip(keypoints_ids,keypoints_names) if k.startswith('L') or k.startswith('left')]
|
|
kpt_indices = np.sort(np.concatenate([np.array(kpt_indices)*2, np.array(kpt_indices)*2+1]))
|
|
df_coords[i] = df_coords[i][kpt_indices]
|
|
elif isinstance(keypoints_to_consider, list):
|
|
kpt_indices = [i for i,k in zip(keypoints_ids,keypoints_names) if k in keypoints_to_consider]
|
|
kpt_indices = np.sort(np.concatenate([np.array(kpt_indices)*2, np.array(kpt_indices)*2+1]))
|
|
df_coords[i] = df_coords[i][kpt_indices]
|
|
elif keypoints_to_consider == 'all':
|
|
pass
|
|
else:
|
|
raise ValueError('keypoints_to_consider should be "all", "right", "left", or a list of keypoint names.\n\
|
|
If you specified keypoints, make sure that they exist in your pose_model.')
|
|
|
|
df_coords[i] = df_coords[i].apply(interpolate_zeros_nans, axis=0, args = ['linear'])
|
|
df_coords[i] = df_coords[i].bfill().ffill()
|
|
df_coords[i] = pd.DataFrame(signal.filtfilt(b, a, df_coords[i], axis=0))
|
|
|
|
|
|
# Compute sum of speeds
|
|
df_speed = []
|
|
sum_speeds = []
|
|
for i in range(cam_nb):
|
|
df_speed.append(vert_speed(df_coords[i]))
|
|
sum_speeds.append(abs(df_speed[i]).sum(axis=1))
|
|
# nb_coord = df_speed[i].shape[1]
|
|
# sum_speeds[i][ sum_speeds[i]>vmax*nb_coord ] = 0
|
|
|
|
# # Replace 0 by random values, otherwise 0 padding may lead to unreliable correlations
|
|
# sum_speeds[i].loc[sum_speeds[i] < 1] = sum_speeds[i].loc[sum_speeds[i] < 1].apply(lambda x: np.random.normal(0,1))
|
|
|
|
sum_speeds[i] = pd.DataFrame(signal.filtfilt(b, a, sum_speeds[i], axis=0)).squeeze()
|
|
|
|
|
|
# Compute offset for best synchronization:
|
|
# Highest correlation of sum of absolute speeds for each cam compared to reference cam
|
|
ref_cam_id = nb_frames_per_cam.index(min(nb_frames_per_cam)) # ref cam: least amount of frames
|
|
ref_frame_nb = len(df_coords[ref_cam_id])
|
|
lag_range = int(ref_frame_nb/2)
|
|
cam_list.pop(ref_cam_id)
|
|
offset = []
|
|
for cam_id in cam_list:
|
|
offset_cam_section, max_corr_cam = time_lagged_cross_corr(sum_speeds[ref_cam_id], sum_speeds[cam_id], lag_range, show=display_sync_plots, ref_cam_id=ref_cam_id, cam_id=cam_id)
|
|
offset_cam = offset_cam_section - (search_around_frames[ref_cam_id][0] - search_around_frames[cam_id][0])
|
|
if isinstance(approx_time_maxspeed, list):
|
|
logging.info(f'--> Camera {ref_cam_id} and {cam_id}: {offset_cam} frames offset ({offset_cam_section} on the selected section), correlation {round(max_corr_cam, 2)}.')
|
|
else:
|
|
logging.info(f'--> Camera {ref_cam_id} and {cam_id}: {offset_cam} frames offset, correlation {round(max_corr_cam, 2)}.')
|
|
offset.append(offset_cam)
|
|
offset.insert(ref_cam_id, 0)
|
|
|
|
# rename json files according to the offset and copy them to pose-sync
|
|
sync_dir = os.path.abspath(os.path.join(pose_dir, '..', 'pose-sync'))
|
|
os.makedirs(sync_dir, exist_ok=True)
|
|
for d, j_dir in enumerate(json_dirs):
|
|
os.makedirs(os.path.join(sync_dir, os.path.basename(j_dir)), exist_ok=True)
|
|
for j_file in json_files_names[d]:
|
|
j_split = re.split(r'(\d+)',j_file)
|
|
j_split[-2] = f'{int(j_split[-2])-offset[d]:06d}'
|
|
if int(j_split[-2]) > 0:
|
|
json_offset_name = ''.join(j_split)
|
|
shutil.copy(os.path.join(pose_dir, os.path.basename(j_dir), j_file), os.path.join(sync_dir, os.path.basename(j_dir), json_offset_name))
|
|
|
|
logging.info(f'Synchronized json files saved in {sync_dir}.')
|