238 lines
8.0 KiB
Python
238 lines
8.0 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
'''
|
|
##################################################
|
|
## QCA CALIBRATION TO TOML CALIBRATION ##
|
|
##################################################
|
|
|
|
Convert a Qualisys .qca.txt calibration file
|
|
to an OpenCV .toml calibration file
|
|
|
|
Usage:
|
|
from Pose2Sim.Utilities import calib_qca_to_toml; calib_qca_to_toml.calib_qca_to_toml_func(r'<input_qca_file>')
|
|
OR python -m calib_qca_to_toml -i input_qca_file
|
|
OR python -m calib_qca_to_toml -i input_qca_file --binning_factor 2 -o output_toml_file
|
|
'''
|
|
|
|
|
|
## INIT
|
|
import os
|
|
import argparse
|
|
import re
|
|
import numpy as np
|
|
from lxml import etree
|
|
import cv2
|
|
|
|
|
|
## AUTHORSHIP INFORMATION
|
|
__author__ = "David Pagnon"
|
|
__copyright__ = "Copyright 2021, Pose2Sim"
|
|
__credits__ = ["David Pagnon"]
|
|
__license__ = "BSD 3-Clause License"
|
|
__version__ = "0.9.4"
|
|
__maintainer__ = "David Pagnon"
|
|
__email__ = "contact@david-pagnon.com"
|
|
__status__ = "Development"
|
|
|
|
|
|
## FUNCTIONS
|
|
def natural_sort_key(s):
|
|
'''
|
|
Key for natural sorting of strings containing numbers.
|
|
'''
|
|
return [int(c) if c.isdigit() else c.lower() for c in re.split(r'(\d+)', s)]
|
|
|
|
|
|
def read_qca(qca_path, binning_factor):
|
|
'''
|
|
Read a Qualisys .qca.txt calibration file
|
|
Returns 5 lists of size N (N=number of cameras):
|
|
- ret: residual reprojection error in _mm_: list of floats
|
|
- C (camera name),
|
|
- S (image size),
|
|
- D (distorsion),
|
|
- K (intrinsic parameters),
|
|
- R (extrinsic rotation),
|
|
- T (extrinsic translation)
|
|
'''
|
|
|
|
root = etree.parse(qca_path).getroot()
|
|
ret, C, S, D, K, R, T = [], [], [], [], [], [], []
|
|
vid_id = []
|
|
|
|
# Camera name
|
|
for i, tag in enumerate(root.findall('cameras/camera')):
|
|
ret += [float(tag.attrib.get('avg-residual'))/1000]
|
|
C += [tag.attrib.get('serial')]
|
|
if tag.attrib.get('model') in ('Miqus Video', 'Miqus Video UnderWater', 'none'):
|
|
vid_id += [i]
|
|
|
|
# Image size
|
|
for tag in root.findall('cameras/camera/fov_video'):
|
|
w = (float(tag.attrib.get('right')) - float(tag.attrib.get('left'))) /binning_factor
|
|
h = (float(tag.attrib.get('bottom')) - float(tag.attrib.get('top'))) /binning_factor
|
|
S += [[w, h]]
|
|
|
|
# Intrinsic parameters: distorsion and intrinsic matrix
|
|
for i, tag in enumerate(root.findall('cameras/camera/intrinsic')):
|
|
k1 = float(tag.get('radialDistortion1'))/64/binning_factor
|
|
k2 = float(tag.get('radialDistortion2'))/64/binning_factor
|
|
p1 = float(tag.get('tangentalDistortion1'))/64/binning_factor
|
|
p2 = float(tag.get('tangentalDistortion2'))/64/binning_factor
|
|
D+= [np.array([k1, k2, p1, p2])]
|
|
|
|
fu = float(tag.get('focalLengthU'))/64/binning_factor
|
|
fv = float(tag.get('focalLengthV'))/64/binning_factor
|
|
cu = float(tag.get('centerPointU'))/64/binning_factor \
|
|
- float(root.findall('cameras/camera/fov_video')[i].attrib.get('left'))
|
|
cv = float(tag.get('centerPointV'))/64/binning_factor \
|
|
- float(root.findall('cameras/camera/fov_video')[i].attrib.get('top'))
|
|
K += [np.array([fu, 0., cu, 0., fv, cv, 0., 0., 1.]).reshape(3,3)]
|
|
|
|
# Extrinsic parameters: rotation matrix and translation vector
|
|
for tag in root.findall('cameras/camera/transform'):
|
|
tx = float(tag.get('x'))/1000
|
|
ty = float(tag.get('y'))/1000
|
|
tz = float(tag.get('z'))/1000
|
|
r11 = float(tag.get('r11'))
|
|
r12 = float(tag.get('r12'))
|
|
r13 = float(tag.get('r13'))
|
|
r21 = float(tag.get('r21'))
|
|
r22 = float(tag.get('r22'))
|
|
r23 = float(tag.get('r23'))
|
|
r31 = float(tag.get('r31'))
|
|
r32 = float(tag.get('r32'))
|
|
r33 = float(tag.get('r33'))
|
|
|
|
# Rotation (by-column to by-line)
|
|
R += [np.array([r11, r21, r31, r12, r22, r32, r13, r23, r33]).reshape(3,3)]
|
|
T += [np.array([tx, ty, tz])]
|
|
|
|
# Cameras names by natural order
|
|
C_vid = [C[v] for v in vid_id]
|
|
C_vid_id = [C_vid.index(c) for c in sorted(C_vid, key=natural_sort_key)]
|
|
C_id = [vid_id[c] for c in C_vid_id]
|
|
C = [C[c] for c in C_id]
|
|
ret = [ret[c] for c in C_id]
|
|
S = [S[c] for c in C_id]
|
|
D = [D[c] for c in C_id]
|
|
K = [K[c] for c in C_id]
|
|
R = [R[c] for c in C_id]
|
|
T = [T[c] for c in C_id]
|
|
|
|
return C, S, D, K, R, T
|
|
|
|
|
|
def world_to_camera_persp(r, t):
|
|
'''
|
|
Converts rotation R and translation T
|
|
from Qualisys object centered perspective
|
|
to OpenCV camera centered perspective
|
|
and inversely.
|
|
|
|
Qc = RQ+T --> Q = R-1.Qc - R-1.T
|
|
'''
|
|
|
|
r = r.T
|
|
t = - r @ t
|
|
|
|
return r, t
|
|
|
|
|
|
def rotate_cam(r, t, ang_x=np.pi, ang_y=0, ang_z=0):
|
|
'''
|
|
Apply rotations around x, y, z in cameras coordinates
|
|
'''
|
|
|
|
rt_h = np.block([[r,t.reshape(3,1)], [np.zeros(3), 1 ]])
|
|
|
|
r_ax_x = np.array([1,0,0, 0,np.cos(ang_x),-np.sin(ang_x), 0,np.sin(ang_x),np.cos(ang_x)]).reshape(3,3)
|
|
r_ax_y = np.array([np.cos(ang_y),0,np.sin(ang_y), 0,1,0, -np.sin(ang_y),0,np.cos(ang_y)]).reshape(3,3)
|
|
r_ax_z = np.array([np.cos(ang_z),-np.sin(ang_z),0, np.sin(ang_z),np.cos(ang_z),0, 0,0,1]).reshape(3,3)
|
|
r_ax = r_ax_z @ r_ax_y @ r_ax_x
|
|
|
|
r_ax_h = np.block([[r_ax,np.zeros(3).reshape(3,1)], [np.zeros(3), 1]])
|
|
r_ax_h__rt_h = r_ax_h @ rt_h
|
|
|
|
r = r_ax_h__rt_h[:3,:3]
|
|
t = r_ax_h__rt_h[:3,3]
|
|
|
|
return r, t
|
|
|
|
|
|
def toml_write(toml_path, C, S, D, K, R, T):
|
|
'''
|
|
Writes calibration parameters to a .toml file.
|
|
'''
|
|
|
|
with open(os.path.join(toml_path), 'w+') as cal_f:
|
|
for c in range(len(C)):
|
|
cam=f'[cam_{c+1}]\n'
|
|
name = f'name = "{C[c]}"\n'
|
|
size = f'size = [ {S[c][0]}, {S[c][1]},]\n'
|
|
mat = f'matrix = [ [ {K[c][0,0]}, 0.0, {K[c][0,2]},], [ 0.0, {K[c][1,1]}, {K[c][1,2]},], [ 0.0, 0.0, 1.0,],]\n'
|
|
dist = f'distortions = [ {D[c][0]}, {D[c][1]}, {D[c][2]}, {D[c][3]},]\n'
|
|
rot = f'rotation = [ {R[c][0]}, {R[c][1]}, {R[c][2]},]\n'
|
|
tran = f'translation = [ {T[c][0]}, {T[c][1]}, {T[c][2]},]\n'
|
|
fish = f'fisheye = false\n\n'
|
|
cal_f.write(cam + name + size + mat + dist + rot + tran + fish)
|
|
meta = '[metadata]\nadjusted = false\nerror = 0.0\n'
|
|
cal_f.write(meta)
|
|
|
|
|
|
def calib_qca_to_toml_func(*args):
|
|
'''
|
|
Convert a Qualisys .qca.txt calibration file
|
|
to an OpenCV .toml calibration file
|
|
|
|
Usage:
|
|
import calib_qca_to_toml; calib_qca_to_toml.calib_qca_to_toml_func(r'<input_qca_file>')
|
|
OR calib_qca_to_toml -i input_qca_file
|
|
OR calib_qca_to_toml -i input_qca_file --binning_factor 2 -o output_toml_file
|
|
'''
|
|
|
|
try:
|
|
qca_path = args[0].get('input_file') # invoked with argparse
|
|
binning_factor = int(args[0]['binning_factor'])
|
|
if args[0]['output_file'] == None:
|
|
toml_path = qca_path.replace('.qca.txt', '.toml')
|
|
else:
|
|
toml_path = args[0]['output_file']
|
|
except:
|
|
qca_path = args[0] # invoked as a function
|
|
toml_path = qca_path.replace('.qca.txt', '.toml')
|
|
try:
|
|
binning_factor = int(args[1])
|
|
except:
|
|
binning_factor = 1
|
|
|
|
C, S, D, K, R, T = read_qca(qca_path, binning_factor)
|
|
|
|
RT = [world_to_camera_persp(r,t) for r, t in zip(R, T)]
|
|
R = [rt[0] for rt in RT]
|
|
T = [rt[1] for rt in RT]
|
|
|
|
RT = [rotate_cam(r, t, ang_x=np.pi, ang_y=0, ang_z=0) for r, t in zip(R, T)]
|
|
R = [rt[0] for rt in RT]
|
|
T = [rt[1] for rt in RT]
|
|
|
|
R = [np.array(cv2.Rodrigues(r)[0]).flatten() for r in R]
|
|
T = np.array(T)/1000
|
|
|
|
toml_write(toml_path, C, S, D, K, R, T)
|
|
|
|
print('Calibration file generated.\n')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-i', '--input_file', required = True, help='Qualisys .qca.txt input calibration file')
|
|
parser.add_argument('-b', '--binning_factor', required = False, default = 1, help='Binning factor if applied')
|
|
parser.add_argument('-o', '--output_file', required=False, help='OpenCV .toml output calibration file')
|
|
args = vars(parser.parse_args())
|
|
|
|
calib_qca_to_toml_func(args)
|
|
|