pose2sim/Pose2Sim/triangulation.py
2024-02-23 18:16:56 +01:00

727 lines
40 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
###########################################################################
## ROBUST TRIANGULATION OF 2D COORDINATES ##
###########################################################################
This module triangulates 2D json coordinates and builds a .trc file readable
by OpenSim.
The triangulation is weighted by the likelihood of each detected 2D keypoint
(if they meet the likelihood threshold). If the reprojection error is above a
threshold, right and left sides are swapped; if it is still above, a camera
is removed for this point and this frame, until the threshold is met. If more
cameras are removed than a predefined minimum, triangulation is skipped for
the point and this frame. In the end, missing values are interpolated.
In case of multiple subjects detection, make sure you first run the
personAssociation module.
INPUTS:
- a calibration file (.toml extension)
- json files for each camera with only one person of interest
- a Config.toml file
- a skeleton model
OUTPUTS:
- a .trc file with 3D coordinates in Y-up system coordinates
'''
## INIT
import os
import glob
import fnmatch
import numpy as np
import json
import itertools as it
import pandas as pd
import cv2
import toml
from tqdm import tqdm
from scipy import interpolate
from collections import Counter, OrderedDict
from anytree import RenderTree
from anytree.importer import DictImporter
import logging
from Pose2Sim.common import retrieve_calib_params, computeP, weighted_triangulation, \
reprojection, euclidean_distance, natural_sort, zup2yup
from Pose2Sim.skeletons import *
## AUTHORSHIP INFORMATION
__author__ = "David Pagnon"
__copyright__ = "Copyright 2021, Pose2Sim"
__credits__ = ["David Pagnon"]
__license__ = "BSD 3-Clause License"
__version__ = '0.6'
__maintainer__ = "David Pagnon"
__email__ = "contact@david-pagnon.com"
__status__ = "Development"
## FUNCTIONS
def interpolate_zeros_nans(col, *args):
'''
Interpolate missing points (of value zero),
unless more than N contiguous values are missing.
INPUTS:
- col: pandas column of coordinates
- args[0] = N: max number of contiguous bad values, above which they won't be interpolated
- args[1] = kind: 'linear', 'slinear', 'quadratic', 'cubic'. Default: 'cubic'
OUTPUT:
- col_interp: interpolated pandas column
'''
if len(args)==2:
N, kind = args
if len(args)==1:
N = np.inf
kind = args[0]
if not args:
N = np.inf
# Interpolate nans
mask = ~(np.isnan(col) | col.eq(0)) # true where nans or zeros
idx_good = np.where(mask)[0]
if 'kind' not in locals(): # 'linear', 'slinear', 'quadratic', 'cubic'
f_interp = interpolate.interp1d(idx_good, col[idx_good], kind="linear", bounds_error=False)
else:
f_interp = interpolate.interp1d(idx_good, col[idx_good], kind=kind, fill_value='extrapolate', bounds_error=False)
col_interp = np.where(mask, col, f_interp(col.index)) #replace at false index with interpolated values
# Reintroduce nans if lenght of sequence > N
idx_notgood = np.where(~mask)[0]
gaps = np.where(np.diff(idx_notgood) > 1)[0] + 1 # where the indices of true are not contiguous
sequences = np.split(idx_notgood, gaps)
if sequences[0].size>0:
for seq in sequences:
if len(seq) > N: # values to exclude from interpolation are set to false when they are too long
col_interp[seq] = np.nan
return col_interp
def make_trc(config, Q, keypoints_names, f_range, id_person=-1):
'''
Make Opensim compatible trc file from a dataframe with 3D coordinates
INPUT:
- config: dictionary of configuration parameters
- Q: pandas dataframe with 3D coordinates as columns, frame number as rows
- keypoints_names: list of strings
- f_range: list of two numbers. Range of frames
OUTPUT:
- trc file
'''
# Read config
project_dir = config.get('project').get('project_dir')
frame_rate = config.get('project').get('frame_rate')
if id_person == -1:
seq_name = f'{os.path.basename(os.path.realpath(project_dir))}'
else:
seq_name = f'{os.path.basename(os.path.realpath(project_dir))}_Participant{id_person+1}'
pose3d_dir = os.path.join(project_dir, 'pose-3d')
trc_f = f'{seq_name}_{f_range[0]}-{f_range[1]}.trc'
#Header
DataRate = CameraRate = OrigDataRate = frame_rate
NumFrames = len(Q)
NumMarkers = len(keypoints_names)
header_trc = ['PathFileType\t4\t(X/Y/Z)\t' + trc_f,
'DataRate\tCameraRate\tNumFrames\tNumMarkers\tUnits\tOrigDataRate\tOrigDataStartFrame\tOrigNumFrames',
'\t'.join(map(str,[DataRate, CameraRate, NumFrames, NumMarkers, 'm', OrigDataRate, f_range[0], f_range[1]])),
'Frame#\tTime\t' + '\t\t\t'.join(keypoints_names) + '\t\t',
'\t\t'+'\t'.join([f'X{i+1}\tY{i+1}\tZ{i+1}' for i in range(len(keypoints_names))])]
# Zup to Yup coordinate system
Q = zup2yup(Q)
#Add Frame# and Time columns
Q.index = np.array(range(0, f_range[1]-f_range[0])) + 1
Q.insert(0, 't', Q.index / frame_rate)
#Write file
if not os.path.exists(pose3d_dir): os.mkdir(pose3d_dir)
trc_path = os.path.realpath(os.path.join(pose3d_dir, trc_f))
with open(trc_path, 'w') as trc_o:
[trc_o.write(line+'\n') for line in header_trc]
Q.to_csv(trc_o, sep='\t', index=True, header=None, lineterminator='\n')
return trc_path
def recap_triangulate(config, error, nb_cams_excluded, keypoints_names, cam_excluded_count, interp_frames, non_interp_frames, trc_path):
'''
Print a message giving statistics on reprojection errors (in pixel and in m)
as well as the number of cameras that had to be excluded to reach threshold
conditions. Also stored in User/logs.txt.
INPUT:
- a Config.toml file
- error: dataframe
- nb_cams_excluded: dataframe
- keypoints_names: list of strings
OUTPUT:
- Message in console
'''
# Read config
project_dir = config.get('project').get('project_dir')
session_dir = os.path.realpath(os.path.join(project_dir, '..', '..'))
calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if ('Calib' or 'calib') in c][0]
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file
calib = toml.load(calib_file)
cam_names = np.array([calib[c].get('name') for c in list(calib.keys())])
cam_names = cam_names[list(cam_excluded_count[0].keys())]
error_threshold_triangulation = config.get('triangulation').get('reproj_error_threshold_triangulation')
likelihood_threshold = config.get('triangulation').get('likelihood_threshold_triangulation')
show_interp_indices = config.get('triangulation').get('show_interp_indices')
interpolation_kind = config.get('triangulation').get('interpolation')
handle_LR_swap = config.get('triangulation').get('handle_LR_swap')
undistort_points = config.get('triangulation').get('undistort_points')
# Recap
calib_cam1 = calib[list(calib.keys())[0]]
fm = calib_cam1['matrix'][0][0]
Dm = euclidean_distance(calib_cam1['translation'], [0,0,0])
logging.info('')
nb_persons_to_detect = len(error)
for n in range(nb_persons_to_detect):
if nb_persons_to_detect > 1:
print(f'\n\nPARTICIPANT {n+1}\n')
for idx, name in enumerate(keypoints_names):
mean_error_keypoint_px = np.around(error[n].iloc[:,idx].mean(), decimals=1) # RMS à la place?
mean_error_keypoint_m = np.around(mean_error_keypoint_px * Dm / fm, decimals=3)
mean_cam_excluded_keypoint = np.around(nb_cams_excluded[n].iloc[:,idx].mean(), decimals=2)
logging.info(f'Mean reprojection error for {name} is {mean_error_keypoint_px} px (~ {mean_error_keypoint_m} m), reached with {mean_cam_excluded_keypoint} excluded cameras. ')
if show_interp_indices:
if interpolation_kind != 'none':
if len(list(interp_frames[n][idx])) ==0:
logging.info(f' No frames needed to be interpolated.')
else:
interp_str = str(interp_frames[n][idx]).replace(":", " to ").replace("'", "").replace("]", "").replace("[", "")
logging.info(f' Frames {interp_str} were interpolated.')
if len(list(non_interp_frames[n][idx]))>0:
noninterp_str = str(non_interp_frames[n][idx]).replace(":", " to ").replace("'", "").replace("]", "").replace("[", "")
logging.info(f' Frames {non_interp_frames[n][idx]} could not be interpolated: consider adjusting thresholds.')
else:
logging.info(f' No frames were interpolated because \'interpolation_kind\' was set to none. ')
mean_error_px = np.around(error[n]['mean'].mean(), decimals=1)
mean_error_mm = np.around(mean_error_px * Dm / fm *1000, decimals=1)
mean_cam_excluded = np.around(nb_cams_excluded[n]['mean'].mean(), decimals=2)
logging.info(f'\n--> Mean reprojection error for all points on all frames is {mean_error_px} px, which roughly corresponds to {mean_error_mm} mm. ')
logging.info(f'Cameras were excluded if likelihood was below {likelihood_threshold} and if the reprojection error was above {error_threshold_triangulation} px.')
logging.info(f'In average, {mean_cam_excluded} cameras had to be excluded to reach these thresholds.')
cam_excluded_count[n] = {i: v for i, v in zip(cam_names, cam_excluded_count[n].values())}
cam_excluded_count[n] = {i: cam_excluded_count[n][i] for i in sorted(cam_excluded_count[n].keys())}
str_cam_excluded_count = ''
for i, (k, v) in enumerate(cam_excluded_count[n].items()):
if i ==0:
str_cam_excluded_count += f'Camera {k} was excluded {int(np.round(v*100))}% of the time, '
elif i == len(cam_excluded_count[n])-1:
str_cam_excluded_count += f'and Camera {k}: {int(np.round(v*100))}%.'
else:
str_cam_excluded_count += f'Camera {k}: {int(np.round(v*100))}%, '
logging.info(str_cam_excluded_count)
logging.info(f'\n3D coordinates are stored at {trc_path[n]}.')
logging.info(f'\n\nLimb swapping was {"handled" if handle_LR_swap else "not handled"}.')
logging.info(f'Lens distortions were {"taken into account" if undistort_points else "not taken into account"}.')
def triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, projection_matrices, calib_params):
'''
Triangulates 2D keypoint coordinates. If reprojection error is above threshold,
tries swapping left and right sides. If still above, removes a camera until error
is below threshold unless the number of remaining cameras is below a predefined number.
1. Creates subset with N cameras excluded
2. Tries all possible triangulations
3. Chooses the one with smallest reprojection error
If error too big, take off one more camera.
If then below threshold, retain result.
If better but still too big, take off one more camera.
INPUTS:
- a Config.toml file
- coords_2D_kpt: (x,y,likelihood) * ncams array
- coords_2D_kpt_swapped: (x,y,likelihood) * ncams array with left/right swap
- projection_matrices: list of arrays
OUTPUTS:
- Q: array of triangulated point (x,y,z,1.)
- error_min: float
- nb_cams_excluded: int
'''
# Read config
error_threshold_triangulation = config.get('triangulation').get('reproj_error_threshold_triangulation')
min_cameras_for_triangulation = config.get('triangulation').get('min_cameras_for_triangulation')
handle_LR_swap = config.get('triangulation').get('handle_LR_swap')
undistort_points = config.get('triangulation').get('undistort_points')
if undistort_points:
calib_params_K = calib_params['K']
calib_params_dist = calib_params['dist']
calib_params_R = calib_params['R']
calib_params_T = calib_params['T']
# Initialize
x_files, y_files, likelihood_files = coords_2D_kpt
x_files_swapped, y_files_swapped, likelihood_files_swapped = coords_2D_kpt_swapped
n_cams = len(x_files)
error_min = np.inf
nb_cams_off = 0 # cameras will be taken-off until reprojection error is under threshold
# print('\n')
while error_min > error_threshold_triangulation and n_cams - nb_cams_off >= min_cameras_for_triangulation:
# print("error min ", error_min, "thresh ", error_threshold_triangulation, 'nb_cams_off ', nb_cams_off)
# Create subsets with "nb_cams_off" cameras excluded
id_cams_off = np.array(list(it.combinations(range(n_cams), nb_cams_off)))
if undistort_points:
calib_params_K_filt = [calib_params_K]*len(id_cams_off)
calib_params_dist_filt = [calib_params_dist]*len(id_cams_off)
calib_params_R_filt = [calib_params_R]*len(id_cams_off)
calib_params_T_filt = [calib_params_T]*len(id_cams_off)
projection_matrices_filt = [projection_matrices]*len(id_cams_off)
x_files_filt = np.vstack([x_files.copy()]*len(id_cams_off))
y_files_filt = np.vstack([y_files.copy()]*len(id_cams_off))
x_files_swapped_filt = np.vstack([x_files_swapped.copy()]*len(id_cams_off))
y_files_swapped_filt = np.vstack([y_files_swapped.copy()]*len(id_cams_off))
likelihood_files_filt = np.vstack([likelihood_files.copy()]*len(id_cams_off))
if nb_cams_off > 0:
for i in range(len(id_cams_off)):
x_files_filt[i][id_cams_off[i]] = np.nan
y_files_filt[i][id_cams_off[i]] = np.nan
x_files_swapped_filt[i][id_cams_off[i]] = np.nan
y_files_swapped_filt[i][id_cams_off[i]] = np.nan
likelihood_files_filt[i][id_cams_off[i]] = np.nan
# Excluded cameras index and count
id_cams_off_tot_new = [np.argwhere(np.isnan(x)).ravel() for x in likelihood_files_filt]
nb_cams_excluded_filt = [np.count_nonzero(np.nan_to_num(x)==0) for x in likelihood_files_filt] # count nans and zeros
nb_cams_off_tot = max(nb_cams_excluded_filt)
# print('likelihood_files_filt ',likelihood_files_filt)
# print('nb_cams_excluded_filt ', nb_cams_excluded_filt, 'nb_cams_off_tot ', nb_cams_off_tot)
if nb_cams_off_tot > n_cams - min_cameras_for_triangulation:
break
id_cams_off_tot = id_cams_off_tot_new
# print('still in loop')
if undistort_points:
calib_params_K_filt = [ [ c[i] for i in range(n_cams) if not np.isnan(likelihood_files_filt[j][i]) and not likelihood_files_filt[j][i]==0. ] for j, c in enumerate(calib_params_K_filt) ]
calib_params_dist_filt = [ [ c[i] for i in range(n_cams) if not np.isnan(likelihood_files_filt[j][i]) and not likelihood_files_filt[j][i]==0. ] for j, c in enumerate(calib_params_dist_filt) ]
calib_params_R_filt = [ [ c[i] for i in range(n_cams) if not np.isnan(likelihood_files_filt[j][i]) and not likelihood_files_filt[j][i]==0. ] for j, c in enumerate(calib_params_R_filt) ]
calib_params_T_filt = [ [ c[i] for i in range(n_cams) if not np.isnan(likelihood_files_filt[j][i]) and not likelihood_files_filt[j][i]==0. ] for j, c in enumerate(calib_params_T_filt) ]
projection_matrices_filt = [ [ p[i] for i in range(n_cams) if not np.isnan(likelihood_files_filt[j][i]) and not likelihood_files_filt[j][i]==0. ] for j, p in enumerate(projection_matrices_filt) ]
# print('\nnb_cams_off', repr(nb_cams_off), 'nb_cams_excluded', repr(nb_cams_excluded_filt))
# print('likelihood_files ', repr(likelihood_files))
# print('y_files ', repr(y_files))
# print('x_files ', repr(x_files))
# print('x_files_swapped ', repr(x_files_swapped))
# print('likelihood_files_filt ', repr(likelihood_files_filt))
# print('x_files_filt ', repr(x_files_filt))
# print('id_cams_off_tot ', id_cams_off_tot)
x_files_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(likelihood_files_filt[i][ii]) and not likelihood_files_filt[i][ii]==0. ]) for i,x in enumerate(x_files_filt) ]
y_files_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(likelihood_files_filt[i][ii]) and not likelihood_files_filt[i][ii]==0. ]) for i,x in enumerate(y_files_filt) ]
x_files_swapped_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(likelihood_files_filt[i][ii]) and not likelihood_files_filt[i][ii]==0. ]) for i,x in enumerate(x_files_swapped_filt) ]
y_files_swapped_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(likelihood_files_filt[i][ii]) and not likelihood_files_filt[i][ii]==0. ]) for i,x in enumerate(y_files_swapped_filt) ]
likelihood_files_filt = [ np.array([ xx for ii, xx in enumerate(x) if not np.isnan(xx) and not xx==0. ]) for x in likelihood_files_filt ]
# print('y_files_filt ', repr(y_files_filt))
# print('x_files_filt ', repr(x_files_filt))
# Triangulate 2D points
Q_filt = [weighted_triangulation(projection_matrices_filt[i], x_files_filt[i], y_files_filt[i], likelihood_files_filt[i]) for i in range(len(id_cams_off))]
# Reprojection
if undistort_points:
coords_2D_kpt_calc_filt = [np.array([cv2.projectPoints(np.array(Q_filt[i][:-1]), calib_params_R_filt[i][j], calib_params_T_filt[i][j], calib_params_K_filt[i][j], calib_params_dist_filt[i][j])[0].ravel()
for j in range(n_cams-nb_cams_excluded_filt[i])])
for i in range(len(id_cams_off))]
coords_2D_kpt_calc_filt = [[coords_2D_kpt_calc_filt[i][:,0], coords_2D_kpt_calc_filt[i][:,1]] for i in range(len(id_cams_off))]
else:
coords_2D_kpt_calc_filt = [reprojection(projection_matrices_filt[i], Q_filt[i]) for i in range(len(id_cams_off))]
coords_2D_kpt_calc_filt = np.array(coords_2D_kpt_calc_filt, dtype=object)
x_calc_filt = coords_2D_kpt_calc_filt[:,0]
# print('x_calc_filt ', x_calc_filt)
y_calc_filt = coords_2D_kpt_calc_filt[:,1]
# Reprojection error
error = []
for config_off_id in range(len(x_calc_filt)):
q_file = [(x_files_filt[config_off_id][i], y_files_filt[config_off_id][i]) for i in range(len(x_files_filt[config_off_id]))]
q_calc = [(x_calc_filt[config_off_id][i], y_calc_filt[config_off_id][i]) for i in range(len(x_calc_filt[config_off_id]))]
error.append( np.mean( [euclidean_distance(q_file[i], q_calc[i]) for i in range(len(q_file))] ) )
# print('error ', error)
# Choosing best triangulation (with min reprojection error)
# print('\n', error)
# print('len(error) ', len(error))
# print('len(x_calc_filt) ', len(x_calc_filt))
# print('len(likelihood_files_filt) ', len(likelihood_files_filt))
# print('len(id_cams_off_tot) ', len(id_cams_off_tot))
# print('min error ', np.nanmin(error))
# print('argmin error ', np.nanargmin(error))
error_min = np.nanmin(error)
# print(error_min)
best_cams = np.nanargmin(error)
nb_cams_excluded = nb_cams_excluded_filt[best_cams]
Q = Q_filt[best_cams][:-1]
# Swap left and right sides if reprojection error still too high
if handle_LR_swap and error_min > error_threshold_triangulation:
# print('handle')
n_cams_swapped = 1
error_off_swap_min = error_min
while error_off_swap_min > error_threshold_triangulation and n_cams_swapped < (n_cams - nb_cams_off_tot) / 2: # more than half of the cameras switched: may triangulate twice the same side
# print('SWAP: nb_cams_off ', nb_cams_off, 'n_cams_swapped ', n_cams_swapped, 'nb_cams_off_tot ', nb_cams_off_tot)
# Create subsets
id_cams_swapped = np.array(list(it.combinations(range(n_cams-nb_cams_off_tot), n_cams_swapped)))
# print('id_cams_swapped ', id_cams_swapped)
x_files_filt_off_swap = [[x] * len(id_cams_swapped) for x in x_files_filt]
y_files_filt_off_swap = [[y] * len(id_cams_swapped) for y in y_files_filt]
# print('x_files_filt_off_swap ', x_files_filt_off_swap)
# print('y_files_filt_off_swap ', y_files_filt_off_swap)
for id_off in range(len(id_cams_off)): # for each configuration with nb_cams_off_tot removed
for id_swapped, config_swapped in enumerate(id_cams_swapped): # for each of these configurations, test all subconfigurations with with n_cams_swapped swapped
# print('id_off ', id_off, 'id_swapped ', id_swapped, 'config_swapped ', config_swapped)
x_files_filt_off_swap[id_off][id_swapped][config_swapped] = x_files_swapped_filt[id_off][config_swapped]
y_files_filt_off_swap[id_off][id_swapped][config_swapped] = y_files_swapped_filt[id_off][config_swapped]
# Triangulate 2D points
Q_filt_off_swap = np.array([[weighted_triangulation(projection_matrices_filt[id_off], x_files_filt_off_swap[id_off][id_swapped], y_files_filt_off_swap[id_off][id_swapped], likelihood_files_filt[id_off])
for id_swapped in range(len(id_cams_swapped))]
for id_off in range(len(id_cams_off))] )
# Reprojection
if undistort_points:
coords_2D_kpt_calc_off_swap = [np.array([[cv2.projectPoints(np.array(Q_filt_off_swap[id_off][id_swapped][:-1]), calib_params_R_filt[id_off][j], calib_params_T_filt[id_off][j], calib_params_K_filt[id_off][j], calib_params_dist_filt[id_off][j])[0].ravel()
for j in range(n_cams-nb_cams_off_tot)]
for id_swapped in range(len(id_cams_swapped))])
for id_off in range(len(id_cams_off))]
coords_2D_kpt_calc_off_swap = np.array([[[coords_2D_kpt_calc_off_swap[id_off][id_swapped,:,0], coords_2D_kpt_calc_off_swap[id_off][id_swapped,:,1]]
for id_swapped in range(len(id_cams_swapped))]
for id_off in range(len(id_cams_off))])
else:
coords_2D_kpt_calc_off_swap = [np.array([reprojection(projection_matrices_filt[id_off], Q_filt_off_swap[id_off][id_swapped])
for id_swapped in range(len(id_cams_swapped))])
for id_off in range(len(id_cams_off))]
# print(repr(coords_2D_kpt_calc_off_swap))
x_calc_off_swap = [c[:,0] for c in coords_2D_kpt_calc_off_swap]
y_calc_off_swap = [c[:,1] for c in coords_2D_kpt_calc_off_swap]
# Reprojection error
# print('x_files_filt_off_swap ', x_files_filt_off_swap)
# print('x_calc_off_swap ', x_calc_off_swap)
error_off_swap = []
for id_off in range(len(id_cams_off)):
error_percam = []
for id_swapped, config_swapped in enumerate(id_cams_swapped):
# print(id_off,id_swapped,n_cams,nb_cams_off)
# print(repr(x_files_filt_off_swap))
q_file_off_swap = [(x_files_filt_off_swap[id_off][id_swapped][i], y_files_filt_off_swap[id_off][id_swapped][i]) for i in range(n_cams - nb_cams_off_tot)]
q_calc_off_swap = [(x_calc_off_swap[id_off][id_swapped][i], y_calc_off_swap[id_off][id_swapped][i]) for i in range(n_cams - nb_cams_off_tot)]
error_percam.append( np.mean( [euclidean_distance(q_file_off_swap[i], q_calc_off_swap[i]) for i in range(len(q_file_off_swap))] ) )
error_off_swap.append(error_percam)
error_off_swap = np.array(error_off_swap)
# print('error_off_swap ', error_off_swap)
# Choosing best triangulation (with min reprojection error)
error_off_swap_min = np.min(error_off_swap)
best_off_swap_config = np.unravel_index(error_off_swap.argmin(), error_off_swap.shape)
id_off_cams = best_off_swap_config[0]
id_swapped_cams = id_cams_swapped[best_off_swap_config[1]]
Q_best = Q_filt_off_swap[best_off_swap_config][:-1]
n_cams_swapped += 1
if error_off_swap_min < error_min:
error_min = error_off_swap_min
best_cams = id_off_cams
Q = Q_best
# print(error_min)
nb_cams_off += 1
# Index of excluded cams for this keypoint
# print('Loop ended')
if 'best_cams' in locals():
# print(id_cams_off_tot)
# print('len(id_cams_off_tot) ', len(id_cams_off_tot))
# print('id_cams_off_tot ', id_cams_off_tot)
id_excluded_cams = id_cams_off_tot[best_cams]
# print('id_excluded_cams ', id_excluded_cams)
else:
id_excluded_cams = list(range(n_cams))
nb_cams_excluded = n_cams
# print('id_excluded_cams ', id_excluded_cams)
# If triangulation not successful, error = nan, and 3D coordinates as missing values
if error_min > error_threshold_triangulation:
error_min = np.nan
Q = np.array([np.nan, np.nan, np.nan])
return Q, error_min, nb_cams_excluded, id_excluded_cams
def extract_files_frame_f(json_tracked_files_f, keypoints_ids, nb_persons_to_detect):
'''
Extract data from json files for frame f,
in the order of the body model hierarchy.
INPUTS:
- json_tracked_files_f: list of str. Paths of json_files for frame f.
- keypoints_ids: list of int. Keypoints IDs in the order of the hierarchy.
- nb_persons_to_detect: int
OUTPUTS:
- x_files, y_files, likelihood_files: [[[list of coordinates] * n_cams ] * nb_persons_to_detect]
'''
n_cams = len(json_tracked_files_f)
x_files = [[] for n in range(nb_persons_to_detect)]
y_files = [[] for n in range(nb_persons_to_detect)]
likelihood_files = [[] for n in range(nb_persons_to_detect)]
for n in range(nb_persons_to_detect):
for cam_nb in range(n_cams):
x_files_cam, y_files_cam, likelihood_files_cam = [], [], []
with open(json_tracked_files_f[cam_nb], 'r') as json_f:
js = json.load(json_f)
for keypoint_id in keypoints_ids:
try:
x_files_cam.append( js['people'][n]['pose_keypoints_2d'][keypoint_id*3] )
y_files_cam.append( js['people'][n]['pose_keypoints_2d'][keypoint_id*3+1] )
likelihood_files_cam.append( js['people'][n]['pose_keypoints_2d'][keypoint_id*3+2] )
except:
x_files_cam.append( np.nan )
y_files_cam.append( np.nan )
likelihood_files_cam.append( np.nan )
x_files[n].append(x_files_cam)
y_files[n].append(y_files_cam)
likelihood_files[n].append(likelihood_files_cam)
x_files = np.array(x_files)
y_files = np.array(y_files)
likelihood_files = np.array(likelihood_files)
return x_files, y_files, likelihood_files
def triangulate_all(config):
'''
For each frame
For each keypoint
- Triangulate keypoint
- Reproject it on all cameras
- Take off cameras until requirements are met
Interpolate missing values
Create trc file
Print recap message
INPUTS:
- a calibration file (.toml extension)
- json files for each camera with only one person of interest
- a Config.toml file
- a skeleton model
OUTPUTS:
- a .trc file with 3D coordinates in Y-up system coordinates
'''
# Read config
project_dir = config.get('project').get('project_dir')
session_dir = os.path.realpath(os.path.join(project_dir, '..', '..'))
pose_model = config.get('pose').get('pose_model')
frame_range = config.get('project').get('frame_range')
likelihood_threshold = config.get('triangulation').get('likelihood_threshold_triangulation')
interpolation_kind = config.get('triangulation').get('interpolation')
interp_gap_smaller_than = config.get('triangulation').get('interp_if_gap_smaller_than')
show_interp_indices = config.get('triangulation').get('show_interp_indices')
undistort_points = config.get('triangulation').get('undistort_points')
calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if ('Calib' or 'calib') in c][0]
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file
pose_dir = os.path.join(project_dir, 'pose')
poseTracked_dir = os.path.join(project_dir, 'pose-associated')
# Projection matrix from toml calibration file
P = computeP(calib_file, undistort=undistort_points)
calib_params = retrieve_calib_params(calib_file)
# Retrieve keypoints from model
try: # from skeletons.py
model = eval(pose_model)
except:
try: # from Config.toml
model = DictImporter().import_(config.get('pose').get(pose_model))
if model.id == 'None':
model.id = None
except:
raise NameError('Model not found in skeletons.py nor in Config.toml')
keypoints_ids = [node.id for _, _, node in RenderTree(model) if node.id!=None]
keypoints_names = [node.name for _, _, node in RenderTree(model) if node.id!=None]
keypoints_idx = list(range(len(keypoints_ids)))
keypoints_nb = len(keypoints_ids)
# for pre, _, node in RenderTree(model):
# print(f'{pre}{node.name} id={node.id}')
# left/right swapped keypoints
keypoints_names_swapped = [keypoint_name.replace('R', 'L') if keypoint_name.startswith('R') else keypoint_name.replace('L', 'R') if keypoint_name.startswith('L') else keypoint_name for keypoint_name in keypoints_names]
keypoints_names_swapped = [keypoint_name_swapped.replace('right', 'left') if keypoint_name_swapped.startswith('right') else keypoint_name_swapped.replace('left', 'right') if keypoint_name_swapped.startswith('left') else keypoint_name_swapped for keypoint_name_swapped in keypoints_names_swapped]
keypoints_idx_swapped = [keypoints_names.index(keypoint_name_swapped) for keypoint_name_swapped in keypoints_names_swapped] # find index of new keypoint_name
# 2d-pose files selection
pose_listdirs_names = next(os.walk(pose_dir))[1]
pose_listdirs_names = natural_sort(pose_listdirs_names)
json_dirs_names = [k for k in pose_listdirs_names if 'json' in k]
try:
json_files_names = [fnmatch.filter(os.listdir(os.path.join(poseTracked_dir, js_dir)), '*.json') for js_dir in json_dirs_names]
json_files_names = [natural_sort(j) for j in json_files_names]
json_tracked_files = [[os.path.join(poseTracked_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)]
except:
json_files_names = [fnmatch.filter(os.listdir(os.path.join(pose_dir, js_dir)), '*.json') for js_dir in json_dirs_names]
json_files_names = [natural_sort(j) for j in json_files_names]
json_tracked_files = [[os.path.join(pose_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)]
# Prep triangulation
f_range = [[0,min([len(j) for j in json_files_names])] if frame_range==[] else frame_range][0]
frames_nb = f_range[1]-f_range[0]
nb_persons_to_detect = max([len(json.load(open(json_fname))['people']) for json_fname in json_tracked_files[0]])
n_cams = len(json_dirs_names)
# Check that camera number is consistent between calibration file and pose folders
if n_cams != len(P):
raise Exception(f'Error: The number of cameras is not consistent:\
Found {len(P)} cameras in the calibration file,\
and {n_cams} cameras based on the number of pose folders.')
# Triangulation
Q_tot, error_tot, nb_cams_excluded_tot,id_excluded_cams_tot = [], [], [], []
for f in tqdm(range(*f_range)):
# Get x,y,likelihood values from files
json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)]
# print(json_tracked_files_f)
x_files, y_files, likelihood_files = extract_files_frame_f(json_tracked_files_f, keypoints_ids, nb_persons_to_detect)
# [[[list of coordinates] * n_cams ] * nb_persons_to_detect]
# vs. [[list of coordinates] * n_cams ]
# undistort points
if undistort_points:
for n in range(nb_persons_to_detect):
points = [np.array(tuple(zip(x_files[n][i],y_files[n][i]))).reshape(-1, 1, 2).astype('float32') for i in range(n_cams)]
undistorted_points = [cv2.undistortPoints(points[i], calib_params['K'][i], calib_params['dist'][i], None, calib_params['optim_K'][i]) for i in range(n_cams)]
x_files[n] = np.array([[u[i][0][0] for i in range(len(u))] for u in undistorted_points])
y_files[n] = np.array([[u[i][0][1] for i in range(len(u))] for u in undistorted_points])
# This is good for slight distortion. For fisheye camera, the model does not work anymore. See there for an example https://github.com/lambdaloop/aniposelib/blob/d03b485c4e178d7cff076e9fe1ac36837db49158/aniposelib/cameras.py#L301
# Replace likelihood by 0 if under likelihood_threshold
with np.errstate(invalid='ignore'):
for n in range(nb_persons_to_detect):
x_files[n][likelihood_files[n] < likelihood_threshold] = np.nan
y_files[n][likelihood_files[n] < likelihood_threshold] = np.nan
likelihood_files[n][likelihood_files[n] < likelihood_threshold] = np.nan
Q = [[] for n in range(nb_persons_to_detect)]
error = [[] for n in range(nb_persons_to_detect)]
nb_cams_excluded = [[] for n in range(nb_persons_to_detect)]
id_excluded_cams = [[] for n in range(nb_persons_to_detect)]
for n in range(nb_persons_to_detect):
for keypoint_idx in keypoints_idx:
# Triangulate cameras with min reprojection error
# print('\n', keypoints_names[keypoint_idx])
coords_2D_kpt = np.array( (x_files[n][:, keypoint_idx], y_files[n][:, keypoint_idx], likelihood_files[n][:, keypoint_idx]) )
coords_2D_kpt_swapped = np.array(( x_files[n][:, keypoints_idx_swapped[keypoint_idx]], y_files[n][:, keypoints_idx_swapped[keypoint_idx]], likelihood_files[n][:, keypoints_idx_swapped[keypoint_idx]] ))
Q_kpt, error_kpt, nb_cams_excluded_kpt, id_excluded_cams_kpt = triangulation_from_best_cameras(config, coords_2D_kpt, coords_2D_kpt_swapped, P, calib_params) # P has been modified if undistort_points=True
Q[n].append(Q_kpt)
error[n].append(error_kpt)
nb_cams_excluded[n].append(nb_cams_excluded_kpt)
id_excluded_cams[n].append(id_excluded_cams_kpt)
# Add triangulated points, errors and excluded cameras to pandas dataframes
Q_tot.append([np.concatenate(Q[n]) for n in range(nb_persons_to_detect)])
error_tot.append([error[n] for n in range(nb_persons_to_detect)])
nb_cams_excluded_tot.append([nb_cams_excluded[n] for n in range(nb_persons_to_detect)])
id_excluded_cams = [[id_excluded_cams[n][k] for k in range(keypoints_nb)] for n in range(nb_persons_to_detect)]
id_excluded_cams_tot.append(id_excluded_cams)
Q_tot = [pd.DataFrame([Q_tot[f][n] for f in range(*f_range)]) for n in range(nb_persons_to_detect)]
error_tot = [pd.DataFrame([error_tot[f][n] for f in range(*f_range)]) for n in range(nb_persons_to_detect)]
nb_cams_excluded_tot = [pd.DataFrame([nb_cams_excluded_tot[f][n] for f in range(*f_range)]) for n in range(nb_persons_to_detect)]
id_excluded_cams_tot = [pd.DataFrame([id_excluded_cams_tot[f][n] for f in range(*f_range)]) for n in range(nb_persons_to_detect)]
for n in range(nb_persons_to_detect):
error_tot[n]['mean'] = error_tot[n].mean(axis = 1)
nb_cams_excluded_tot[n]['mean'] = nb_cams_excluded_tot[n].mean(axis = 1)
# Delete participants with less than 4 valid triangulated frames
# for each person, for each keypoint, frames to interpolate
zero_nan_frames = [np.where( Q_tot[n].iloc[:,::3].T.eq(0) | ~np.isfinite(Q_tot[n].iloc[:,::3].T) ) for n in range(nb_persons_to_detect)]
zero_nan_frames_per_kpt = [[zero_nan_frames[n][1][np.where(zero_nan_frames[n][0]==k)[0]] for k in range(keypoints_nb)] for n in range(nb_persons_to_detect)]
non_nan_nb_first_kpt = [frames_nb - len(zero_nan_frames_per_kpt[n][0]) for n in range(nb_persons_to_detect)]
deleted_person_id = [n for n in range(len(non_nan_nb_first_kpt)) if non_nan_nb_first_kpt[n]<4]
Q_tot = [Q_tot[n] for n in range(len(Q_tot)) if n not in deleted_person_id]
error_tot = [error_tot[n] for n in range(len(error_tot)) if n not in deleted_person_id]
nb_cams_excluded_tot = [nb_cams_excluded_tot[n] for n in range(len(nb_cams_excluded_tot)) if n not in deleted_person_id]
id_excluded_cams_tot = [id_excluded_cams_tot[n] for n in range(len(id_excluded_cams_tot)) if n not in deleted_person_id]
nb_persons_to_detect = len(Q_tot)
# IDs of excluded cameras
# id_excluded_cams_tot = [np.concatenate([id_excluded_cams_tot[f][k] for f in range(frames_nb)]) for k in range(keypoints_nb)]
id_excluded_cams_tot = [np.hstack(np.hstack(np.array(id_excluded_cams_tot[n]))) for n in range(nb_persons_to_detect)]
cam_excluded_count = [dict(Counter(k)) for k in id_excluded_cams_tot]
[cam_excluded_count[n].update((x, y/frames_nb/keypoints_nb) for x, y in cam_excluded_count[n].items()) for n in range(nb_persons_to_detect)]
# Optionally, for each person, for each keypoint, show indices of frames that should be interpolated
if show_interp_indices:
gaps = [[np.where(np.diff(zero_nan_frames_per_kpt[n][k]) > 1)[0] + 1 for k in range(keypoints_nb)] for n in range(nb_persons_to_detect)]
sequences = [[np.split(zero_nan_frames_per_kpt[n][k], gaps[n][k]) for k in range(keypoints_nb)] for n in range(nb_persons_to_detect)]
interp_frames = [[[f'{seq[0]}:{seq[-1]}' for seq in seq_kpt if len(seq)<=interp_gap_smaller_than and len(seq)>0] for seq_kpt in sequences[n]] for n in range(nb_persons_to_detect)]
non_interp_frames = [[[f'{seq[0]}:{seq[-1]}' for seq in seq_kpt if len(seq)>interp_gap_smaller_than] for seq_kpt in sequences[n]] for n in range(nb_persons_to_detect)]
else:
interp_frames = None
non_interp_frames = []
# Interpolate missing values
if interpolation_kind != 'none':
for n in range(nb_persons_to_detect):
Q_tot[n].apply(interpolate_zeros_nans, axis=0, args = [interp_gap_smaller_than, interpolation_kind])
# Q_tot.replace(np.nan, 0, inplace=True)
# Create TRC file
trc_paths = [make_trc(config, Q_tot[n], keypoints_names, f_range, id_person=n) for n in range(len(Q_tot))]
# Recap message
recap_triangulate(config, error_tot, nb_cams_excluded_tot, keypoints_names, cam_excluded_count, interp_frames, non_interp_frames, trc_paths)