b2fe4f7ba3
Edits from @hunminkim98's awesome work at integrating pose estimation into Pose2Sim with RTMLib. Most of the changes in syntax are not necessarily better, it is mostly for the code to be more consistent with the rest of the library. Thank you again for your fantastic work! General: - Automatically detects whether a valid CUDA install is available. If so, use the GPU with the ONNXRuntime backend. Otherwise, use the CPU with the OpenVINO backend - The tensorflow version used for marker augmentation was incompatible with the cuda torch installation for pose estimation: edited code and models for it to work with the latest tf version. - Added logging information to pose estimation - Readme.md: provided an installation procedure for CUDA (took me a while to find something simple and robust) - Readme.md: added information about PoseEstimation with RTMLib - added poseEstimation to tests.py - created videos for the multi-person case (used to only have json, no video), and reorganized Demo folders. Had to recreate calibration file as well Json files: - the json files only saved one person, I made it save all the detected ones - tracking was not taken into account by rtmlib, which caused issues in synchronization: fixed, waiting for merge - took the save_to_openpose function out from the main function - minified the json files (they take less space when all spaces are removed) Detection results: - Compared the triangulated locations of RTMpose keypoints to the ones of OpenPose to potentially edit model marker locations on OpenSim. Did not seem to need it. Others in Config.toml: - removed the "to_openpose" option, which is not needed - added the flag: save_video = 'to_images' # 'to_video' or 'to_images' or ['to_video', 'to_images'] - changed the way frame_range was handled (made me change synchronization in depth, as well as personAssociation and triangulation) - added the flag: time_range_around_maxspeed in synchronization - automatically detect framerate from video, or set to 60 fps if we work from images (or give a value) - frame_range -> time_range - moved height and weight to project (only read for markerAugmentation, and in the future for automatic scaling) - removed reorder_trc from triangulation and Config -> call it for markerAugmentation instead Others: - Provided an installation procedure for OpenSim (for the future) and made continuous installation check its install (a bit harder since it cannot be installed via pip) - scaling from motion instead of static pose (will have to study whether it's as good or not) - added logging to synchronization - Struggled quite a bit with continuous integration * Starting point of integrating RTMPose into Pose2Sim. (#111) * RTM_to_Open Convert format from RTMPose to OpenPose * rtm_intergrated * rtm_integrated * rtm_integrated * rtm_integrated * rtm * Delete build/lib/Pose2Sim directory * rtm * Delete build/lib/Pose2Sim directory * Delete onnxruntime-gpu * device = cpu * add pose folder * Update tests.py * added annotation * fix typo * Should work be still lots of tests to run. Detailed commit coming soon * intermediary commit * last checks before v0.9.0 * Update continuous-integration.yml * Update tests.py * replaced tabs with spaces * unittest issue * unittest typo * deactivated display for CI test of pose detection * Try to make continuous integration work * a * b * c * d * e * f * g * h * i * j * k * l --------- Co-authored-by: HunMinKim <144449115+hunminkim98@users.noreply.github.com>
510 lines
18 KiB
Python
510 lines
18 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
'''
|
|
###########################################################################
|
|
## FILTER 3D COORDINATES ##
|
|
###########################################################################
|
|
|
|
Filter trc 3D coordinates.
|
|
|
|
Available filters: Butterworth, Butterworth on speed, Gaussian, LOESS, Median
|
|
Set your parameters in Config.toml
|
|
|
|
INPUTS:
|
|
- a trc file
|
|
- filtering parameters in Config.toml
|
|
|
|
OUTPUT:
|
|
- a filtered trc file
|
|
'''
|
|
|
|
|
|
## INIT
|
|
import os
|
|
import glob
|
|
import fnmatch
|
|
import numpy as np
|
|
import pandas as pd
|
|
import cv2
|
|
import matplotlib.pyplot as plt
|
|
import logging
|
|
|
|
from scipy import signal
|
|
from scipy.ndimage import gaussian_filter1d
|
|
from statsmodels.nonparametric.smoothers_lowess import lowess
|
|
from filterpy.kalman import KalmanFilter, rts_smoother
|
|
from filterpy.common import Q_discrete_white_noise
|
|
|
|
from Pose2Sim.common import plotWindow
|
|
from Pose2Sim.common import convert_to_c3d
|
|
|
|
## AUTHORSHIP INFORMATION
|
|
__author__ = "David Pagnon"
|
|
__copyright__ = "Copyright 2021, Pose2Sim"
|
|
__credits__ = ["David Pagnon"]
|
|
__license__ = "BSD 3-Clause License"
|
|
__version__ = "0.8.2"
|
|
__maintainer__ = "David Pagnon"
|
|
__email__ = "contact@david-pagnon.com"
|
|
__status__ = "Development"
|
|
|
|
|
|
## FUNCTIONS
|
|
def kalman_filter(coords, frame_rate, measurement_noise, process_noise, nb_dimensions=3, nb_derivatives=3, smooth=True):
|
|
'''
|
|
Filters coordinates with a Kalman filter or a Kalman smoother
|
|
|
|
INPUTS:
|
|
- coords: array of shape (nframes, ndims)
|
|
- frame_rate: integer
|
|
- measurement_noise: integer
|
|
- process_noise: integer
|
|
- nb_dimensions: integer, number of dimensions (3 if 3D coordinates)
|
|
- nb_derivatives: integer, number of derivatives (3 if constant acceleration model)
|
|
- smooth: boolean. True if souble pass (recommended), False if single pass (if real-time)
|
|
|
|
OUTPUTS:
|
|
- kpt_coords_filt: filtered coords
|
|
'''
|
|
|
|
# Variables
|
|
dim_x = nb_dimensions * nb_derivatives # 9 state variables
|
|
dt = 1/frame_rate
|
|
|
|
# Filter definition
|
|
f = KalmanFilter(dim_x=dim_x, dim_z=nb_dimensions)
|
|
|
|
# States: initial position, velocity, accel, in 3D
|
|
def derivate_array(arr, dt=1):
|
|
return np.diff(arr, axis=0)/dt
|
|
def repeat(func, arg_func, nb_reps):
|
|
for i in range(nb_reps):
|
|
arg_func = func(arg_func)
|
|
return arg_func
|
|
x_init = []
|
|
for n_der in range(nb_derivatives):
|
|
x_init += [repeat(derivate_array, coords, n_der)[0]] # pose*3D, vel*3D, accel*3D
|
|
f.x = np.array(x_init).reshape(nb_dimensions,nb_derivatives).T.flatten() # pose, vel, accel *3D
|
|
|
|
# State transition matrix
|
|
F_per_coord = np.zeros((int(dim_x/nb_dimensions), int(dim_x/nb_dimensions)))
|
|
for i in range(nb_derivatives):
|
|
for j in range(min(i+1, nb_derivatives)):
|
|
F_per_coord[j,i] = dt**(i-j) / np.math.factorial(i - j)
|
|
f.F = np.kron(np.eye(nb_dimensions),F_per_coord)
|
|
# F_per_coord= [[1, dt, dt**2/2],
|
|
# [ 0, 1, dt ],
|
|
# [ 0, 0, 1 ]])
|
|
|
|
# No control input
|
|
f.B = None
|
|
|
|
# Measurement matrix (only positions)
|
|
H = np.zeros((nb_dimensions, dim_x))
|
|
for i in range(min(nb_dimensions,dim_x)):
|
|
H[i, int(i*(dim_x/nb_dimensions))] = 1
|
|
f.H = H
|
|
# H = [[1., 0., 0., 0., 0., 0., 0., 0., 0.],
|
|
# [0., 0., 0., 1., 0., 0., 0., 0., 0.],
|
|
# [0., 0., 0., 0., 0., 0., 1., 0., 0.]]
|
|
|
|
# Covariance matrix
|
|
f.P *= measurement_noise
|
|
|
|
# Measurement noise
|
|
f.R = np.diag([measurement_noise**2]*nb_dimensions)
|
|
|
|
# Process noise
|
|
f.Q = Q_discrete_white_noise(nb_derivatives, dt=dt, var=process_noise**2, block_size=nb_dimensions)
|
|
|
|
# Run filter: predict and update for each frame
|
|
mu, cov, _, _ = f.batch_filter(coords) # equivalent to below
|
|
# mu = []
|
|
# for kpt_coord_frame in coords:
|
|
# f.predict()
|
|
# f.update(kpt_coord_frame)
|
|
# mu.append(f.x.copy())
|
|
ind_of_position = [int(d*(dim_x/nb_dimensions)) for d in range(nb_dimensions)]
|
|
coords_filt = np.array(mu)[:,ind_of_position]
|
|
|
|
# RTS smoother
|
|
if smooth == True:
|
|
mu2, P, C, _ = f.rts_smoother(mu, cov)
|
|
coords_filt = np.array(mu2)[:,ind_of_position]
|
|
|
|
return coords_filt
|
|
|
|
|
|
def kalman_filter_1d(config_dict, frame_rate, col):
|
|
'''
|
|
1D Kalman filter
|
|
Deals with nans
|
|
|
|
INPUT:
|
|
- col: Pandas dataframe column
|
|
- trustratio: int, ratio process_noise/measurement_noise
|
|
- frame_rate: int
|
|
- smooth: boolean, True if double pass (recommended), False if single pass (if real-time)
|
|
|
|
OUTPUT:
|
|
- col_filtered: Filtered pandas dataframe column
|
|
'''
|
|
|
|
trustratio = int(config_dict.get('filtering').get('kalman').get('trust_ratio'))
|
|
smooth = int(config_dict.get('filtering').get('kalman').get('smooth'))
|
|
measurement_noise = 20
|
|
process_noise = measurement_noise * trustratio
|
|
|
|
# split into sequences of not nans
|
|
col_filtered = col.copy()
|
|
mask = np.isnan(col_filtered) | col_filtered.eq(0)
|
|
falsemask_indices = np.where(~mask)[0]
|
|
gaps = np.where(np.diff(falsemask_indices) > 1)[0] + 1
|
|
idx_sequences = np.split(falsemask_indices, gaps)
|
|
if idx_sequences[0].size > 0:
|
|
idx_sequences_to_filter = [seq for seq in idx_sequences]
|
|
|
|
# Filter each of the selected sequences
|
|
for seq_f in idx_sequences_to_filter:
|
|
col_filtered[seq_f] = kalman_filter(col_filtered[seq_f], frame_rate, measurement_noise, process_noise, nb_dimensions=1, nb_derivatives=3, smooth=smooth).flatten()
|
|
|
|
return col_filtered
|
|
|
|
|
|
def butterworth_filter_1d(config_dict, frame_rate, col):
|
|
'''
|
|
1D Zero-phase Butterworth filter (dual pass)
|
|
Deals with nans
|
|
|
|
INPUT:
|
|
- col: numpy array
|
|
- order: int
|
|
- cutoff: int
|
|
- frame_rate: int
|
|
|
|
OUTPUT:
|
|
- col_filtered: Filtered pandas dataframe column
|
|
'''
|
|
|
|
type = 'low' #config_dict.get('filtering').get('butterworth').get('type')
|
|
order = int(config_dict.get('filtering').get('butterworth').get('order'))
|
|
cutoff = int(config_dict.get('filtering').get('butterworth').get('cut_off_frequency'))
|
|
|
|
b, a = signal.butter(order/2, cutoff/(frame_rate/2), type, analog = False)
|
|
padlen = 3 * max(len(a), len(b))
|
|
|
|
# split into sequences of not nans
|
|
col_filtered = col.copy()
|
|
mask = np.isnan(col_filtered) | col_filtered.eq(0)
|
|
falsemask_indices = np.where(~mask)[0]
|
|
gaps = np.where(np.diff(falsemask_indices) > 1)[0] + 1
|
|
idx_sequences = np.split(falsemask_indices, gaps)
|
|
if idx_sequences[0].size > 0:
|
|
idx_sequences_to_filter = [seq for seq in idx_sequences if len(seq) > padlen]
|
|
|
|
# Filter each of the selected sequences
|
|
for seq_f in idx_sequences_to_filter:
|
|
col_filtered[seq_f] = signal.filtfilt(b, a, col_filtered[seq_f])
|
|
|
|
return col_filtered
|
|
|
|
|
|
def butterworth_on_speed_filter_1d(config_dict, frame_rate, col):
|
|
'''
|
|
1D zero-phase Butterworth filter (dual pass) on derivative
|
|
|
|
INPUT:
|
|
- col: Pandas dataframe column
|
|
- frame rate, order, cut-off frequency, type (from Config.toml)
|
|
|
|
OUTPUT:
|
|
- col_filtered: Filtered pandas dataframe column
|
|
'''
|
|
|
|
type = 'low' # config_dict.get('filtering').get('butterworth_on_speed').get('type')
|
|
order = int(config_dict.get('filtering').get('butterworth_on_speed').get('order'))
|
|
cutoff = int(config_dict.get('filtering').get('butterworth_on_speed').get('cut_off_frequency'))
|
|
|
|
b, a = signal.butter(order/2, cutoff/(frame_rate/2), type, analog = False)
|
|
padlen = 3 * max(len(a), len(b))
|
|
|
|
# derivative
|
|
col_filtered = col.copy()
|
|
col_filtered_diff = col_filtered.diff() # derivative
|
|
col_filtered_diff = col_filtered_diff.fillna(col_filtered_diff.iloc[1]/2) # set first value correctly instead of nan
|
|
|
|
# split into sequences of not nans
|
|
mask = np.isnan(col_filtered_diff) | col_filtered_diff.eq(0)
|
|
falsemask_indices = np.where(~mask)[0]
|
|
gaps = np.where(np.diff(falsemask_indices) > 1)[0] + 1
|
|
idx_sequences = np.split(falsemask_indices, gaps)
|
|
if idx_sequences[0].size > 0:
|
|
idx_sequences_to_filter = [seq for seq in idx_sequences if len(seq) > padlen]
|
|
|
|
# Filter each of the selected sequences
|
|
for seq_f in idx_sequences_to_filter:
|
|
col_filtered_diff[seq_f] = signal.filtfilt(b, a, col_filtered_diff[seq_f])
|
|
col_filtered = col_filtered_diff.cumsum() + col.iloc[0] # integrate filtered derivative
|
|
|
|
return col_filtered
|
|
|
|
|
|
def gaussian_filter_1d(config_dict, frame_rate, col):
|
|
'''
|
|
1D Gaussian filter
|
|
|
|
INPUT:
|
|
- col: Pandas dataframe column
|
|
- gaussian_filter_sigma_kernel: kernel size from Config.toml
|
|
|
|
OUTPUT:
|
|
- col_filtered: Filtered pandas dataframe column
|
|
'''
|
|
|
|
gaussian_filter_sigma_kernel = int(config_dict.get('filtering').get('gaussian').get('sigma_kernel'))
|
|
|
|
col_filtered = gaussian_filter1d(col, gaussian_filter_sigma_kernel)
|
|
|
|
return col_filtered
|
|
|
|
|
|
def loess_filter_1d(config_dict, frame_rate, col):
|
|
'''
|
|
1D LOWESS filter (Locally Weighted Scatterplot Smoothing)
|
|
|
|
INPUT:
|
|
- col: Pandas dataframe column
|
|
- loess_filter_nb_values: window used for smoothing from Config.toml
|
|
frac = loess_filter_nb_values * frames_number
|
|
|
|
OUTPUT:
|
|
- col_filtered: Filtered pandas dataframe column
|
|
'''
|
|
|
|
kernel = config_dict.get('filtering').get('LOESS').get('nb_values_used')
|
|
|
|
col_filtered = col.copy()
|
|
mask = np.isnan(col_filtered)
|
|
falsemask_indices = np.where(~mask)[0]
|
|
gaps = np.where(np.diff(falsemask_indices) > 1)[0] + 1
|
|
idx_sequences = np.split(falsemask_indices, gaps)
|
|
if idx_sequences[0].size > 0:
|
|
idx_sequences_to_filter = [seq for seq in idx_sequences if len(seq) > kernel]
|
|
|
|
# Filter each of the selected sequences
|
|
for seq_f in idx_sequences_to_filter:
|
|
col_filtered[seq_f] = lowess(col_filtered[seq_f], seq_f, is_sorted=True, frac=kernel/len(seq_f), it=0)[:,1]
|
|
|
|
return col_filtered
|
|
|
|
|
|
def median_filter_1d(config_dict, frame_rate, col):
|
|
'''
|
|
1D median filter
|
|
|
|
INPUT:
|
|
- col: Pandas dataframe column
|
|
- median_filter_kernel_size: kernel size from Config.toml
|
|
|
|
OUTPUT:
|
|
- col_filtered: Filtered pandas dataframe column
|
|
'''
|
|
|
|
median_filter_kernel_size = config_dict.get('filtering').get('median').get('kernel_size')
|
|
|
|
col_filtered = signal.medfilt(col, kernel_size=median_filter_kernel_size)
|
|
|
|
return col_filtered
|
|
|
|
|
|
def display_figures_fun(Q_unfilt, Q_filt, time_col, keypoints_names):
|
|
'''
|
|
Displays filtered and unfiltered data for comparison
|
|
|
|
INPUTS:
|
|
- Q_unfilt: pandas dataframe of unfiltered 3D coordinates
|
|
- Q_filt: pandas dataframe of filtered 3D coordinates
|
|
- time_col: pandas column
|
|
- keypoints_names: list of strings
|
|
|
|
OUTPUT:
|
|
- matplotlib window with tabbed figures for each keypoint
|
|
'''
|
|
|
|
pw = plotWindow()
|
|
for id, keypoint in enumerate(keypoints_names):
|
|
f = plt.figure()
|
|
|
|
axX = plt.subplot(311)
|
|
plt.plot(time_col.to_numpy(), Q_unfilt.iloc[:,id*3].to_numpy(), label='unfiltered')
|
|
plt.plot(time_col.to_numpy(), Q_filt.iloc[:,id*3].to_numpy(), label='filtered')
|
|
plt.setp(axX.get_xticklabels(), visible=False)
|
|
axX.set_ylabel(keypoint+' X')
|
|
plt.legend()
|
|
|
|
axY = plt.subplot(312)
|
|
plt.plot(time_col.to_numpy(), Q_unfilt.iloc[:,id*3+1].to_numpy(), label='unfiltered')
|
|
plt.plot(time_col.to_numpy(), Q_filt.iloc[:,id*3+1].to_numpy(), label='filtered')
|
|
plt.setp(axY.get_xticklabels(), visible=False)
|
|
axY.set_ylabel(keypoint+' Y')
|
|
plt.legend()
|
|
|
|
axZ = plt.subplot(313)
|
|
plt.plot(time_col.to_numpy(), Q_unfilt.iloc[:,id*3+2].to_numpy(), label='unfiltered')
|
|
plt.plot(time_col.to_numpy(), Q_filt.iloc[:,id*3+2].to_numpy(), label='filtered')
|
|
axZ.set_ylabel(keypoint+' Z')
|
|
axZ.set_xlabel('Time')
|
|
plt.legend()
|
|
|
|
pw.addPlot(keypoint, f)
|
|
|
|
pw.show()
|
|
|
|
|
|
def filter1d(col, config_dict, filter_type, frame_rate):
|
|
'''
|
|
Choose filter type and filter column
|
|
|
|
INPUT:
|
|
- col: Pandas dataframe column
|
|
- filter_type: filter type from Config.toml
|
|
- frame_rate: int
|
|
|
|
OUTPUT:
|
|
- col_filtered: Filtered pandas dataframe column
|
|
'''
|
|
|
|
# Choose filter
|
|
filter_mapping = {
|
|
'kalman': kalman_filter_1d,
|
|
'butterworth': butterworth_filter_1d,
|
|
'butterworth_on_speed': butterworth_on_speed_filter_1d,
|
|
'gaussian': gaussian_filter_1d,
|
|
'LOESS': loess_filter_1d,
|
|
'median': median_filter_1d
|
|
}
|
|
filter_fun = filter_mapping[filter_type]
|
|
|
|
# Filter column
|
|
col_filtered = filter_fun(config_dict, frame_rate, col)
|
|
|
|
return col_filtered
|
|
|
|
|
|
def recap_filter3d(config_dict, trc_path):
|
|
'''
|
|
Print a log message giving filtering parameters. Also stored in User/logs.txt.
|
|
|
|
OUTPUT:
|
|
- Message in console
|
|
'''
|
|
|
|
# Read Config
|
|
filter_type = config_dict.get('filtering').get('type')
|
|
kalman_filter_trustratio = int(config_dict.get('filtering').get('kalman').get('trust_ratio'))
|
|
kalman_filter_smooth = int(config_dict.get('filtering').get('kalman').get('smooth'))
|
|
kalman_filter_smooth_str = 'smoother' if kalman_filter_smooth else 'filter'
|
|
butterworth_filter_type = 'low' # config_dict.get('filtering').get('butterworth').get('type')
|
|
butterworth_filter_order = int(config_dict.get('filtering').get('butterworth').get('order'))
|
|
butterworth_filter_cutoff = int(config_dict.get('filtering').get('butterworth').get('cut_off_frequency'))
|
|
butter_speed_filter_type = 'low' # config_dict.get('filtering').get('butterworth_on_speed').get('type')
|
|
butter_speed_filter_order = int(config_dict.get('filtering').get('butterworth_on_speed').get('order'))
|
|
butter_speed_filter_cutoff = int(config_dict.get('filtering').get('butterworth_on_speed').get('cut_off_frequency'))
|
|
gaussian_filter_sigma_kernel = int(config_dict.get('filtering').get('gaussian').get('sigma_kernel'))
|
|
loess_filter_nb_values = config_dict.get('filtering').get('LOESS').get('nb_values_used')
|
|
median_filter_kernel_size = config_dict.get('filtering').get('median').get('kernel_size')
|
|
make_c3d = config_dict.get('filtering').get('make_c3d')
|
|
|
|
# Recap
|
|
filter_mapping_recap = {
|
|
'kalman': f'--> Filter type: Kalman {kalman_filter_smooth_str}. Measurements trusted {kalman_filter_trustratio} times as much as previous data, assuming a constant acceleration process.',
|
|
'butterworth': f'--> Filter type: Butterworth {butterworth_filter_type}-pass. Order {butterworth_filter_order}, Cut-off frequency {butterworth_filter_cutoff} Hz.',
|
|
'butterworth_on_speed': f'--> Filter type: Butterworth on speed {butter_speed_filter_type}-pass. Order {butter_speed_filter_order}, Cut-off frequency {butter_speed_filter_cutoff} Hz.',
|
|
'gaussian': f'--> Filter type: Gaussian. Standard deviation kernel: {gaussian_filter_sigma_kernel}',
|
|
'LOESS': f'--> Filter type: LOESS. Number of values used: {loess_filter_nb_values}',
|
|
'median': f'--> Filter type: Median. Kernel size: {median_filter_kernel_size}'
|
|
}
|
|
logging.info(filter_mapping_recap[filter_type])
|
|
logging.info(f'Filtered 3D coordinates are stored at {trc_path}.\n')
|
|
if make_c3d:
|
|
logging.info('All filtered trc files have been converted to c3d.')
|
|
|
|
|
|
def filter_all(config_dict):
|
|
'''
|
|
Filter the 3D coordinates of the trc file.
|
|
Displays filtered coordinates for checking.
|
|
|
|
INPUTS:
|
|
- a trc file
|
|
- filtration parameters from Config.toml
|
|
|
|
OUTPUT:
|
|
- a filtered trc file
|
|
'''
|
|
|
|
# Read config_dict
|
|
project_dir = config_dict.get('project').get('project_dir')
|
|
pose3d_dir = os.path.realpath(os.path.join(project_dir, 'pose-3d'))
|
|
display_figures = config_dict.get('filtering').get('display_figures')
|
|
filter_type = config_dict.get('filtering').get('type')
|
|
make_c3d = config_dict.get('filtering').get('make_c3d')
|
|
|
|
# Get frame_rate
|
|
video_dir = os.path.join(project_dir, 'videos')
|
|
vid_img_extension = config_dict['pose']['vid_img_extension']
|
|
video_files = glob.glob(os.path.join(video_dir, '*'+vid_img_extension))
|
|
frame_rate = config_dict.get('project').get('frame_rate')
|
|
if frame_rate == 'auto':
|
|
try:
|
|
cap = cv2.VideoCapture(video_files[0])
|
|
cap.read()
|
|
if cap.read()[0] == False:
|
|
raise
|
|
frame_rate = int(cap.get(cv2.CAP_PROP_FPS))
|
|
except:
|
|
frame_rate = 60
|
|
|
|
# Trc paths
|
|
trc_path_in = [file for file in glob.glob(os.path.join(pose3d_dir, '*.trc')) if 'filt' not in file]
|
|
trc_f_out = [f'{os.path.basename(t).split(".")[0]}_filt_{filter_type}.trc' for t in trc_path_in]
|
|
trc_path_out = [os.path.join(pose3d_dir, t) for t in trc_f_out]
|
|
|
|
for t_in, t_out in zip(trc_path_in, trc_path_out):
|
|
# Read trc header
|
|
with open(t_in, 'r') as trc_file:
|
|
header = [next(trc_file) for line in range(5)]
|
|
|
|
# Read trc coordinates values
|
|
trc_df = pd.read_csv(t_in, sep="\t", skiprows=4)
|
|
frames_col, time_col = trc_df.iloc[:,0], trc_df.iloc[:,1]
|
|
Q_coord = trc_df.drop(trc_df.columns[[0, 1]], axis=1)
|
|
|
|
# Filter coordinates
|
|
Q_filt = Q_coord.apply(filter1d, axis=0, args = [config_dict, filter_type, frame_rate])
|
|
|
|
# Display figures
|
|
if display_figures:
|
|
# Retrieve keypoints
|
|
keypoints_names = pd.read_csv(t_in, sep="\t", skiprows=3, nrows=0).columns[2::3].to_numpy()
|
|
display_figures_fun(Q_coord, Q_filt, time_col, keypoints_names)
|
|
|
|
# Reconstruct trc file with filtered coordinates
|
|
with open(t_out, 'w') as trc_o:
|
|
[trc_o.write(line) for line in header]
|
|
Q_filt.insert(0, 'Frame#', frames_col)
|
|
Q_filt.insert(1, 'Time', time_col)
|
|
# Q_filt = Q_filt.fillna(' ')
|
|
Q_filt.to_csv(trc_o, sep='\t', index=False, header=None, lineterminator='\n')
|
|
|
|
# Save c3d
|
|
if make_c3d:
|
|
convert_to_c3d(t_out)
|
|
|
|
# Recap
|
|
recap_filter3d(config_dict, t_out)
|
|
|
|
|