pose2sim/Pose2Sim/calibrate_cams.py
2022-06-09 14:28:04 +02:00

419 lines
15 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
###########################################################################
## CAMERAS CALIBRATION ##
###########################################################################
Use this module to calibrate your cameras and save results to a .toml file.
It either converts a Qualisys calibration .qca.txt file,
Or calibrates cameras from checkerboard images.
Checkerboard calibration is based on
https://docs.opencv.org/3.4.15/dc/dbb/tutorial_py_calibration.html.
/!\ Beware that corners must be detected on all frames, or else extrinsic
parameters may be wrong. Set show_corner_detection to 1 to verify.
INPUTS:
- a calibration file (.qca.txt extension)
- OR checkerboard images or videos for each camera
- a Config.toml file
OUTPUTS:
- a calibration file (.toml extension)
'''
## INIT
import os
import logging
import numpy as np
import cv2
import glob
import toml
import re
from lxml import etree
from Pose2Sim.common import RT_qca2cv, rotate_cam, euclidean_distance
## AUTHORSHIP INFORMATION
__author__ = "David Pagnon"
__copyright__ = "Copyright 2021, Pose2Sim"
__credits__ = ["David Pagnon"]
__license__ = "BSD 3-Clause License"
__version__ = "0.1"
__maintainer__ = "David Pagnon"
__email__ = "contact@david-pagnon.com"
__status__ = "Development"
## FUNCTIONS
def calib_qca_fun(config):
'''
Convert a Qualisys .qca.txt calibration file
Converts from camera view to object view, Pi rotates cameras,
and converts rotation with Roodrigues formula
INPUTS:
- a Config.toml file
OUTPUTS:
- ret: residual reprojection error in _mm_: list of floats
- C: camera name: list of strings
- S: image size: list of list of floats
- D: distorsion: list of arrays of floats
- K: intrinsic parameters: list of 3x3 arrays of floats
- R: extrinsic rotation: list of arrays of floats
- T: extrinsic translation: list of arrays of floats
'''
project_dir = config.get('project').get('project_dir')
if project_dir == '': project_dir = os.getcwd()
calib_folder_name = config.get('project').get('calib_folder_name')
calib_dir = os.path.join(project_dir, calib_folder_name)
qca_path = glob.glob(os.path.join(calib_dir, '*.qca.txt'))[0]
binning_factor = config.get('calibration').get('qca').get('binning_factor')
ret, C, S, D, K, R, T = read_qca(qca_path, binning_factor)
RT = [RT_qca2cv(r,t) for r, t in zip(R, T)]
R = [rt[0] for rt in RT]
T = [rt[1] for rt in RT]
RT = [rotate_cam(r, t, ang_x=np.pi, ang_y=0, ang_z=0) for r, t in zip(R, T)]
R = [rt[0] for rt in RT]
T = [rt[1] for rt in RT]
R = [np.array(cv2.Rodrigues(r)[0]).flatten() for r in R]
T = np.array(T)
return ret, C, S, D, K, R, T
def read_qca(qca_path, binning_factor):
'''
Reads a Qualisys .qca.txt calibration file
Returns 6 lists of size N (N=number of cameras)
INPUTS:
- qca_path: path to .qca.txt calibration file: string
- binning_factor: usually 1: integer
OUTPUTS:
- ret: residual reprojection error in _mm_: list of floats
- C: camera name: list of strings
- S: image size: list of list of floats
- D: distorsion: list of arrays of floats
- K: intrinsic parameters: list of 3x3 arrays of floats
- R: extrinsic rotation: list of 3x3 arrays of floats
- T: extrinsic translation: list of arrays of floats
'''
root = etree.parse(qca_path).getroot()
ret, C, S, D, K, R, T = [], [], [], [], [], [], []
# Cameraa name
for tag in root.findall('cameras/camera'):
ret += [float(tag.attrib.get('avg-residual'))/1000]
C += [tag.attrib.get('serial')]
# Image size
for tag in root.findall('cameras/camera/fov_marker'):
w = float(tag.attrib.get('right'))/binning_factor
h = float(tag.attrib.get('bottom'))/binning_factor
S += [[w, h]]
# Intrinsic parameters: distorsion and intrinsic matrix
for tag in root.findall('cameras/camera/intrinsic'):
k1 = float(tag.get('radialDistortion1'))/64/binning_factor
k2 = float(tag.get('radialDistortion2'))/64/binning_factor
p1 = float(tag.get('tangentalDistortion1'))/64/binning_factor
p2 = float(tag.get('tangentalDistortion2'))/64/binning_factor
D+= [np.array([k1, k2, p1, p2])]
fu = float(tag.get('focalLengthU'))/64/binning_factor
fv = float(tag.get('focalLengthV'))/64/binning_factor
cu = float(tag.get('centerPointU'))/64/binning_factor
cv = float(tag.get('centerPointV'))/64/binning_factor
K += [np.array([fu, 0., cu, 0., fv, cv, 0., 0., 1.]).reshape(3,3)]
# Extrinsic parameters: rotation matrix and translation vector
for tag in root.findall('cameras/camera/transform'):
tx = float(tag.get('x'))/1000
ty = float(tag.get('y'))/1000
tz = float(tag.get('z'))/1000
r11 = float(tag.get('r11'))
r12 = float(tag.get('r12'))
r13 = float(tag.get('r13'))
r21 = float(tag.get('r21'))
r22 = float(tag.get('r22'))
r23 = float(tag.get('r23'))
r31 = float(tag.get('r31'))
r32 = float(tag.get('r32'))
r33 = float(tag.get('r33'))
# Rotation (by-column to by-line)
R += [np.array([r11, r21, r31, r12, r22, r32, r13, r23, r33]).reshape(3,3)]
T += [np.array([tx, ty, tz])]
return ret, C, S, D, K, R, T
def findCorners(img, corners_nb, criteria, show):
'''
Find corners _of internal squares_ in the checkerboard
INPUTS:
- img: image read by opencv
- corners_nb: [H, W] internal corners in checkerboard: list of two integers [9,6]
- criteria: when to stop optimizing corners localization
- show: choose whether to show corner detections
OUTPUTS
- imgp: 2d corner points in image plane
'''
# Find corners
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, corners_nb, None)
# Refine corners
if ret == True:
imgp = cv2.cornerSubPix(gray, corners, (11,11), (-1,-1), criteria)
# Draw and display the corners
if show:
cv2.drawChessboardCorners(img, corners_nb, imgp, ret)
print('Corners found.')
cv2.imshow('img', img)
cv2.waitKey(0)
return imgp
else:
if show:
print('Corners not found.')
return
def calib_checkerboard_fun(config):
'''
Calibrates from images or videos of a checkerboard
INPUTS:
- a Config.toml file
OUTPUTS:
- ret: residual reprojection error in _px_: list of floats
- C: camera name: list of strings
- S: image size: list of list of floats
- D: distorsion: list of arrays of floats
- K: intrinsic parameters: list of 3x3 arrays of floats
- R: extrinsic rotation: list of arrays of floats (Rodrigues)
- T: extrinsic translation: list of arrays of floats
'''
project_dir = config.get('project').get('project_dir')
if project_dir == '': project_dir = os.getcwd()
calib_folder_name = config.get('project').get('calib_folder_name')
calib_dir = os.path.join(project_dir, calib_folder_name)
cam_listdirs_names = next(os.walk(calib_dir))[1]
corners_nb = config.get('calibration').get('checkerboard').get('corners_nb')
square_size = config.get('calibration').get('checkerboard').get('square_size')
square_size = [square_size, square_size] if isinstance(square_size, int)==True else square_size
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # stop refining after 30 iterations or if error less than 0.001px
frame_for_origin = config.get('calibration').get('checkerboard').get('frame_for_origin')
show = config.get('calibration').get('checkerboard').get('show_corner_detection')
from_vid_or_img = config.get('calibration').get('checkerboard').get('from_vid_or_img')
vid_snapshot_every_N_frames = config.get('calibration').get('checkerboard').get('vid_snapshot_every_N_frames')
vid_extension = config.get('calibration').get('checkerboard').get('vid_extension')
img_extension = config.get('calibration').get('checkerboard').get('img_extension')
ret, C, S, D, K, R, T = [], [], [], [], [], [], []
for cam in cam_listdirs_names:
print(f'\nCamera {cam}:')
# Prepare object points
objp = np.zeros((corners_nb[0]*corners_nb[1],3), np.float32)
objp[:,:2] = np.mgrid[0:corners_nb[0],0:corners_nb[1]].T.reshape(-1,2)
objp[:,0] = objp[:,0]*square_size[0]
objp[:,1] = objp[:,1]*square_size[1]
objpoints = [] # 3d points in world space
imgpoints = [] # 2d points in image plane
# Find corners in vid
if from_vid_or_img=='vid':
video = glob.glob(os.path.join(calib_dir, cam, '*.'+ vid_extension))[0]
cap = cv2.VideoCapture(video)
ret_vid, img = cap.read()
while ret_vid:
count = int(round(cap.get(1)))
ret_vid, img_vid = cap.read()
if count % vid_snapshot_every_N_frames == 0:
img = img_vid
imgp = findCorners(img, corners_nb, criteria, show)
if isinstance(imgp, np.ndarray):
objpoints.append(objp)
imgpoints.append(imgp)
cap.release()
# Find corners in images
elif from_vid_or_img=='img':
images = glob.glob(os.path.join(calib_dir, cam, '*.'+ img_extension))
images_sorted = sorted(images, key=lambda c: [int(n) for n in re.findall(r'\d+', c)]) #sorting paths with numbers
for image_f in images_sorted:
img = cv2.imread(image_f)
imgp = findCorners(img, corners_nb, criteria, show)
if isinstance(imgp, np.ndarray):
objpoints.append(objp)
imgpoints.append(imgp)
# Calibration
r, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[1::-1],
None, None, flags=(cv2.CALIB_FIX_K3 + cv2.CALIB_FIX_PRINCIPAL_POINT))
h, w = [np.float(i) for i in img.shape[:-1]]
ret.append(r)
C.append(cam)
S.append([w, h])
D.append(dist[0])
K.append(mtx)
R.append(rvecs[frame_for_origin].squeeze())
T.append(tvecs[frame_for_origin].squeeze())
# Object view to camera view
RT = [rotate_cam(r, t, ang_x=np.pi, ang_y=0, ang_z=0) for r, t in zip(R, T)]
R = [rt[0] for rt in RT]
T = [rt[1] for rt in RT]
R = [np.array(cv2.Rodrigues(r)[0]).flatten() for r in R]
T = np.array(T)/1000
return ret, C, S, D, K, R, T
def toml_write(calib_path, C, S, D, K, R, T):
'''
Writes calibration parameters to a .toml file
INPUTS:
- calib_path: path to the output calibration file: string
- C: camera name: list of strings
- S: image size: list of list of floats
- D: distorsion: list of arrays of floats
- K: intrinsic parameters: list of 3x3 arrays of floats
- R: extrinsic rotation: list of arrays of floats (Rodrigues)
- T: extrinsic translation: list of arrays of floats
OUTPUTS:
- a .toml file cameras calibrations
'''
with open(os.path.join(calib_path), 'w+') as cal_f:
for c in range(len(C)):
cam=f'[cam_{c+1}]\n'
name = f'name = "{C[c]}"\n'
size = f'size = [ {S[c][0]}, {S[c][1]}]\n'
mat = f'matrix = [ [ {K[c][0,0]}, 0.0, {K[c][0,2]}], [ 0.0, {K[c][1,1]}, {K[c][1,2]}], [ 0.0, 0.0, 1.0]]\n'
dist = f'distortions = [ {D[c][0]}, {D[c][1]}, {D[c][2]}, {D[c][3]}]\n'
rot = f'rotation = [ {R[c][0]}, {R[c][1]}, {R[c][2]}]\n'
tran = f'translation = [ {T[c][0]}, {T[c][1]}, {T[c][2]}]\n'
fish = f'fisheye = false\n\n'
cal_f.write(cam + name + size + mat + dist + rot + tran + fish)
meta = '[metadata]\nadjusted = false\nerror = 0.0\n'
cal_f.write(meta)
def calibrate(config):
'''
Choose whether to use qca or checkerboard calibration functions
INPUT:
- a Config.toml file
OUTPUTS:
- ret: residual reprojection error in _px_ (checkerboard) or in _mm_ (qca): list of floats
- C: camera name: list of strings
- S: image size: list of list of floats
- D: distorsion: list of arrays of floats
- K: intrinsic parameters: list of 3x3 arrays of floats
- R: extrinsic rotation: list of arrays of floats (Rodrigues)
- T: extrinsic translation: list of arrays of floats
'''
# Map calib function
calib_type = config.get('calibration').get('type')
calib_mapping = {
'qca': calib_qca_fun,
'checkerboard': calib_checkerboard_fun
}
calib_fun = calib_mapping[calib_type]
# Calibrate
ret, C, S, D, K, R, T = calib_fun(config)
return ret, C, S, D, K, R, T
def recap_calibrate(ret, calib_path, calib_type):
'''
Print a log message giving calibration results. Also stored in User/logs.txt.
OUTPUT:
- Message in console
'''
calib = toml.load(calib_path)
ret_m, ret_px = [], []
for c, cam in enumerate(calib.keys()):
if cam != 'metadata':
fm = calib[cam]['matrix'][0][0]
Dm = euclidean_distance(calib[cam]['translation'], [0,0,0])
if calib_type=='qca':
ret_m.append( np.around(ret[c]*1000, decimals=3) )
ret_px.append( np.around(ret[c] / Dm * fm, decimals=3) )
elif calib_type=='checkerboard':
ret_px.append( np.around(ret[c], decimals=3) )
ret_m.append( np.around(ret[c]*1000 * Dm / fm, decimals=3) )
logging.info(f'\n--> Residual (RMS) calibration errors for each camera are respectively {ret_px} px, which corresponds to {ret_m} mm.\n')
logging.info(f'Calibration file is stored at {calib_path}.')
def calibrate_cams_all(config):
'''
Either converts qca.txt calibration file,
or calibrates from a checkerboard.
Stores it in a .toml file
Prints recap.
INPUTS:
- a Config.toml file
OUTPUT:
- a .toml cameras calibration file
'''
# Read config
project_dir = config.get('project').get('project_dir')
if project_dir == '': project_dir = os.getcwd()
calib_folder_name = config.get('project').get('calib_folder_name')
calib_dir = os.path.join(project_dir, calib_folder_name)
calib_type = config.get('calibration').get('type')
if calib_type=='qca':
qca_path = glob.glob(os.path.join(calib_dir, '*.qca.txt'))[0]
calib_path = qca_path.replace('.qca.txt', '_qca.toml')
elif calib_type=='checkerboard':
calib_path = os.path.join(calib_dir, 'Calib_checkerboard.toml')
# Calibrate
ret, C, S, D, K, R, T = calibrate(config)
# Write calibration file
toml_write(calib_path, C, S, D, K, R, T)
# Recap message
recap_calibrate(ret, calib_path, calib_type)