240 lines
10 KiB
Python
240 lines
10 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
'''
|
|
###########################################################################
|
|
## AUGMENT MARKER DATA ##
|
|
###########################################################################
|
|
|
|
Augment trc 3D coordinates.
|
|
|
|
Estimate the position of 43 additional markers.
|
|
|
|
INPUTS:
|
|
- a trc file
|
|
- filtering parameters in Config.toml
|
|
|
|
OUTPUT:
|
|
- a filtered trc file
|
|
|
|
'''
|
|
|
|
|
|
## INIT
|
|
import os
|
|
import numpy as np
|
|
from Pose2Sim.MarkerAugmenter import utilsDataman
|
|
import copy
|
|
import tensorflow as tf
|
|
from Pose2Sim.MarkerAugmenter.utils import TRC2numpy
|
|
import json
|
|
import glob
|
|
import logging
|
|
|
|
|
|
## AUTHORSHIP INFORMATION
|
|
__author__ = "Antoine Falisse, adapted by HunMin Kim"
|
|
__copyright__ = "Copyright 2022, OpenCap"
|
|
__credits__ = ["Antoine Falisse", "HunMin Kim"]
|
|
__license__ = "Apache-2.0 License"
|
|
__version__ = '0.5'
|
|
__maintainer__ = "David Pagnon"
|
|
__email__ = "contact@david-pagnon.com"
|
|
__status__ = "Development"
|
|
|
|
|
|
## FUNCTIONS
|
|
# subject_height must be in meters
|
|
def get_midhip_data(trc_file):
|
|
try:
|
|
# Find MidHip data
|
|
midhip_data = trc_file.marker("CHip")
|
|
if midhip_data is None or len(midhip_data) == 0:
|
|
raise ValueError("MidHip data is empty")
|
|
except (KeyError, ValueError):
|
|
# If MidHip data is not found, calculate it from RHip and LHip
|
|
rhip_data = trc_file.marker("RHip")
|
|
lhip_data = trc_file.marker("LHip")
|
|
midhip_data = (rhip_data + lhip_data) / 2
|
|
|
|
return midhip_data
|
|
|
|
|
|
def augmentTRC(config_dict):
|
|
|
|
# get parameters from Config.toml
|
|
project_dir = config_dict.get('project').get('project_dir')
|
|
session_dir = os.path.realpath(os.path.join(project_dir, '..', '..'))
|
|
pathInputTRCFile = os.path.realpath(os.path.join(project_dir, 'pose-3d'))
|
|
pathOutputTRCFile = os.path.realpath(os.path.join(project_dir, 'pose-3d'))
|
|
pose_model = config_dict.get('pose').get('pose_model')
|
|
subject_height = config_dict.get('markerAugmentation').get('participant_height')
|
|
if subject_height is None or subject_height == 0 or subject_height==0:
|
|
raise ValueError("Subject height is not set or invalid in the config file.")
|
|
subject_mass = config_dict.get('markerAugmentation').get('participant_mass')
|
|
if not type(subject_height) == list:
|
|
subject_height = [subject_height]
|
|
subject_mass = [subject_mass]
|
|
augmenterDir = os.path.join(session_dir, '..', 'MarkerAugmenter')
|
|
augmenterModelName = 'LSTM'
|
|
augmenter_model = 'v0.3'
|
|
offset = True
|
|
|
|
if pose_model not in ['BODY_25', 'BODY_25B']:
|
|
raise ValueError('Marker augmentation is only supported with OpenPose BODY_25 and BODY_25B models.')
|
|
|
|
# Apply all trc files
|
|
trc_files = [f for f in glob.glob(os.path.join(pathInputTRCFile, '*.trc')) if 'filt' in f and '_LSTM' not in f]
|
|
for p, pathInputTRCFile in enumerate(trc_files):
|
|
pathOutputTRCFile = os.path.splitext(pathInputTRCFile)[0] + '_LSTM.trc'
|
|
|
|
# This is by default - might need to be adjusted in the future.
|
|
featureHeight = True
|
|
featureWeight = True
|
|
|
|
# Augmenter types
|
|
if augmenter_model == 'v0.3':
|
|
# Lower body
|
|
augmenterModelType_lower = '{}_lower'.format(augmenter_model)
|
|
from Pose2Sim.MarkerAugmenter.utils import getOpenPoseMarkers_lowerExtremity2
|
|
feature_markers_lower, response_markers_lower = getOpenPoseMarkers_lowerExtremity2()
|
|
# Upper body
|
|
augmenterModelType_upper = '{}_upper'.format(augmenter_model)
|
|
from Pose2Sim.MarkerAugmenter.utils import getMarkers_upperExtremity_noPelvis2
|
|
feature_markers_upper, response_markers_upper = getMarkers_upperExtremity_noPelvis2()
|
|
augmenterModelType_all = [augmenterModelType_lower, augmenterModelType_upper]
|
|
feature_markers_all = [feature_markers_lower, feature_markers_upper]
|
|
response_markers_all = [response_markers_lower, response_markers_upper]
|
|
else:
|
|
raise ValueError('Augmenter models other than 0.3 are not supported.')
|
|
logging.info('Using Stanford augmenter model: {}'.format(augmenter_model))
|
|
|
|
# %% Process data.
|
|
# Import TRC file
|
|
try:
|
|
trc_file = utilsDataman.TRCFile(pathInputTRCFile)
|
|
except:
|
|
raise ValueError('Cannot read TRC file. You may need to enable interpolation in Config.toml while triangulating.')
|
|
|
|
# Loop over augmenter types to handle separate augmenters for lower and
|
|
# upper bodies.
|
|
outputs_all = {}
|
|
n_response_markers_all = 0
|
|
for idx_augm, augmenterModelType in enumerate(augmenterModelType_all):
|
|
outputs_all[idx_augm] = {}
|
|
feature_markers = feature_markers_all[idx_augm]
|
|
response_markers = response_markers_all[idx_augm]
|
|
|
|
augmenterModelDir = os.path.join(augmenterDir, augmenterModelName,
|
|
augmenterModelType)
|
|
|
|
# %% Pre-process inputs.
|
|
# Step 1: import .trc file with OpenPose marker trajectories.
|
|
trc_data = TRC2numpy(pathInputTRCFile, feature_markers)
|
|
|
|
# Calculate the midHip marker as the average of RHip and LHip
|
|
midhip_data = get_midhip_data(trc_file)
|
|
|
|
trc_data_data = trc_data[:,1:]
|
|
|
|
# Step 2: Normalize with reference marker position.
|
|
with open(os.path.join(augmenterModelDir, "metadata.json"), 'r') as f:
|
|
metadata = json.load(f)
|
|
referenceMarker_data = midhip_data # instead of trc_file.marker(referenceMarker) # change by HunMin
|
|
norm_trc_data_data = np.zeros((trc_data_data.shape[0],
|
|
trc_data_data.shape[1]))
|
|
for i in range(0,trc_data_data.shape[1],3):
|
|
norm_trc_data_data[:,i:i+3] = (trc_data_data[:,i:i+3] -
|
|
referenceMarker_data)
|
|
|
|
|
|
# Step 3: Normalize with subject's height.
|
|
norm2_trc_data_data = copy.deepcopy(norm_trc_data_data)
|
|
norm2_trc_data_data = norm2_trc_data_data / subject_height[p]
|
|
|
|
# Step 4: Add remaining features.
|
|
inputs = copy.deepcopy(norm2_trc_data_data)
|
|
if featureHeight:
|
|
inputs = np.concatenate(
|
|
(inputs, subject_height[p]*np.ones((inputs.shape[0],1))), axis=1)
|
|
if featureWeight:
|
|
inputs = np.concatenate(
|
|
(inputs, subject_mass[p]*np.ones((inputs.shape[0],1))), axis=1)
|
|
|
|
# Step 5: Pre-process data
|
|
pathMean = os.path.join(augmenterModelDir, "mean.npy")
|
|
pathSTD = os.path.join(augmenterModelDir, "std.npy")
|
|
if os.path.isfile(pathMean):
|
|
trainFeatures_mean = np.load(pathMean, allow_pickle=True)
|
|
inputs -= trainFeatures_mean
|
|
if os.path.isfile(pathSTD):
|
|
trainFeatures_std = np.load(pathSTD, allow_pickle=True)
|
|
inputs /= trainFeatures_std
|
|
|
|
# Step 6: Reshape inputs if necessary (eg, LSTM)
|
|
if augmenterModelName == "LSTM":
|
|
inputs = np.reshape(inputs, (1, inputs.shape[0], inputs.shape[1]))
|
|
|
|
# %% Load model and weights, and predict outputs.
|
|
json_file = open(os.path.join(augmenterModelDir, "model.json"), 'r')
|
|
pretrainedModel_json = json_file.read()
|
|
json_file.close()
|
|
model = tf.keras.models.model_from_json(pretrainedModel_json)
|
|
model.load_weights(os.path.join(augmenterModelDir, "weights.h5"))
|
|
outputs = model.predict(inputs)
|
|
tf.keras.backend.clear_session()
|
|
|
|
# %% Post-process outputs.
|
|
# Step 1: Reshape if necessary (eg, LSTM)
|
|
if augmenterModelName == "LSTM":
|
|
outputs = np.reshape(outputs, (outputs.shape[1], outputs.shape[2]))
|
|
|
|
# Step 2: Un-normalize with subject's height.
|
|
unnorm_outputs = outputs * subject_height[p]
|
|
|
|
# Step 2: Un-normalize with reference marker position.
|
|
unnorm2_outputs = np.zeros((unnorm_outputs.shape[0],
|
|
unnorm_outputs.shape[1]))
|
|
for i in range(0,unnorm_outputs.shape[1],3):
|
|
unnorm2_outputs[:,i:i+3] = (unnorm_outputs[:,i:i+3] +
|
|
referenceMarker_data)
|
|
|
|
# %% Add markers to .trc file.
|
|
for c, marker in enumerate(response_markers):
|
|
x = unnorm2_outputs[:,c*3]
|
|
y = unnorm2_outputs[:,c*3+1]
|
|
z = unnorm2_outputs[:,c*3+2]
|
|
trc_file.add_marker(marker, x, y, z)
|
|
|
|
# %% Gather data for computing minimum y-position.
|
|
outputs_all[idx_augm]['response_markers'] = response_markers
|
|
outputs_all[idx_augm]['response_data'] = unnorm2_outputs
|
|
n_response_markers_all += len(response_markers)
|
|
|
|
# %% Extract minimum y-position across response markers. This is used
|
|
# to align feet and floor when visualizing.
|
|
responses_all_conc = np.zeros((unnorm2_outputs.shape[0],
|
|
n_response_markers_all*3))
|
|
idx_acc_res = 0
|
|
for idx_augm in outputs_all:
|
|
idx_acc_res_end = (idx_acc_res +
|
|
(len(outputs_all[idx_augm]['response_markers']))*3)
|
|
responses_all_conc[:,idx_acc_res:idx_acc_res_end] = (
|
|
outputs_all[idx_augm]['response_data'])
|
|
idx_acc_res = idx_acc_res_end
|
|
# Minimum y-position across response markers.
|
|
min_y_pos = np.min(responses_all_conc[:,1::3])
|
|
|
|
# %% If offset
|
|
if offset:
|
|
trc_file.offset('y', -(min_y_pos-0.01))
|
|
|
|
# %% Return augmented .trc file
|
|
trc_file.write(pathOutputTRCFile)
|
|
|
|
logging.info(f'Augmented marker coordinates are stored at {pathOutputTRCFile}.\n')
|
|
|
|
return min_y_pos
|
|
|