320 lines
14 KiB
Python
320 lines
14 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
'''
|
|
###########################################################################
|
|
## TRACKING OF PERSON OF INTEREST ##
|
|
###########################################################################
|
|
|
|
Openpose detects all people in the field of view.
|
|
Which is the one of interest?
|
|
|
|
This module tries all possible triangulations of a chosen anatomical
|
|
point. If "single_person" mode is used, it chooses the person for whom the
|
|
reprojection error is smallest. If multi-person is used, it selects all
|
|
persons with a reprojection error smaller than a threshold, and then
|
|
associates them across time frames by minimizing the displacement speed.
|
|
|
|
INPUTS:
|
|
- a calibration file (.toml extension)
|
|
- json files from each camera folders with several detected persons
|
|
- a Config.toml file
|
|
- a skeleton model
|
|
|
|
OUTPUTS:
|
|
- json files for each camera with only one person of interest
|
|
|
|
'''
|
|
|
|
|
|
## INIT
|
|
import os
|
|
import glob
|
|
import fnmatch
|
|
import numpy as np
|
|
import json
|
|
import itertools as it
|
|
import toml
|
|
from tqdm import tqdm
|
|
from anytree import RenderTree
|
|
from anytree.importer import DictImporter
|
|
import logging
|
|
|
|
from Pose2Sim.common import computeP, weighted_triangulation, reprojection, \
|
|
euclidean_distance, natural_sort
|
|
from Pose2Sim.skeletons import *
|
|
|
|
|
|
## AUTHORSHIP INFORMATION
|
|
__author__ = "David Pagnon"
|
|
__copyright__ = "Copyright 2021, Pose2Sim"
|
|
__credits__ = ["David Pagnon"]
|
|
__license__ = "BSD 3-Clause License"
|
|
__version__ = '0.4'
|
|
__maintainer__ = "David Pagnon"
|
|
__email__ = "contact@david-pagnon.com"
|
|
__status__ = "Development"
|
|
|
|
|
|
## FUNCTIONS
|
|
def persons_combinations(json_files_framef):
|
|
'''
|
|
Find all possible combinations of detected persons' ids.
|
|
Person's id when no person detected is set to -1.
|
|
|
|
INPUT:
|
|
- json_files_framef: list of strings
|
|
|
|
OUTPUT:
|
|
- personsIDs_comb: array, list of lists of int
|
|
'''
|
|
|
|
n_cams = len(json_files_framef)
|
|
|
|
# amount of persons detected for each cam
|
|
nb_persons_per_cam = []
|
|
for c in range(n_cams):
|
|
with open(json_files_framef[c], 'r') as js:
|
|
nb_persons_per_cam += [len(json.load(js)['people'])]
|
|
|
|
# persons_combinations
|
|
id_no_detect = [i for i, x in enumerate(nb_persons_per_cam) if x == 0] # ids of cameras that have not detected any person
|
|
nb_persons_per_cam = [x if x != 0 else 1 for x in nb_persons_per_cam] # temporarily replace persons count by 1 when no detection
|
|
range_persons_per_cam = [range(nb_persons_per_cam[c]) for c in range(n_cams)]
|
|
personsIDs_comb = np.array(list(it.product(*range_persons_per_cam)), float) # all possible combinations of persons' ids
|
|
personsIDs_comb[:,id_no_detect] = np.nan # -1 = persons' ids when no person detected
|
|
|
|
return personsIDs_comb
|
|
|
|
|
|
def best_persons_and_cameras_combination(config, json_files_framef, personsIDs_combinations, projection_matrices, tracked_keypoint_id):
|
|
'''
|
|
At the same time, chooses the right person among the multiple ones found by
|
|
OpenPose & excludes cameras with wrong 2d-pose estimation.
|
|
|
|
1. triangulate the tracked keypoint for all possible combinations of people,
|
|
2. compute difference between reprojection & original openpose detection,
|
|
3. take combination with smallest difference.
|
|
If error is too big, take off one or several of the cameras until err is
|
|
lower than "max_err_px".
|
|
|
|
INPUTS:
|
|
- a Config.toml file
|
|
- json_files_framef: list of strings
|
|
- personsIDs_combinations: array, list of lists of int
|
|
- projection_matrices: list of arrays
|
|
- tracked_keypoint_id: int
|
|
|
|
OUTPUTS:
|
|
- error_min: float
|
|
- persons_and_cameras_combination: array of ints
|
|
'''
|
|
|
|
error_threshold_tracking = config.get('personAssociation').get('reproj_error_threshold_association')
|
|
min_cameras_for_triangulation = config.get('triangulation').get('min_cameras_for_triangulation')
|
|
likelihood_threshold = config.get('triangulation').get('likelihood_threshold')
|
|
|
|
n_cams = len(json_files_framef)
|
|
error_min = np.inf
|
|
nb_cams_off = 0 # cameras will be taken-off until the reprojection error is under threshold
|
|
|
|
while error_min > error_threshold_tracking and n_cams - nb_cams_off >= min_cameras_for_triangulation:
|
|
# Try all persons combinations
|
|
for combination in personsIDs_combinations:
|
|
# Get x,y,likelihood values from files
|
|
x_files, y_files,likelihood_files = [], [], []
|
|
for index_cam, person_nb in enumerate(combination):
|
|
with open(json_files_framef[index_cam], 'r') as json_f:
|
|
js = json.load(json_f)
|
|
try:
|
|
x_files.append( js['people'][int(person_nb)]['pose_keypoints_2d'][tracked_keypoint_id*3] )
|
|
y_files.append( js['people'][int(person_nb)]['pose_keypoints_2d'][tracked_keypoint_id*3+1] )
|
|
likelihood_files.append( js['people'][int(person_nb)]['pose_keypoints_2d'][tracked_keypoint_id*3+2] )
|
|
except:
|
|
x_files.append(np.nan)
|
|
y_files.append(np.nan)
|
|
likelihood_files.append(np.nan)
|
|
|
|
# Replace likelihood by 0. if under likelihood_threshold
|
|
likelihood_files = [0. if lik < likelihood_threshold else lik for lik in likelihood_files]
|
|
|
|
# For each persons combination, create subsets with "nb_cams_off" cameras excluded
|
|
id_cams_off = list(it.combinations(range(len(combination)), nb_cams_off))
|
|
combinations_with_cams_off = np.array([combination.copy()]*len(id_cams_off))
|
|
for i, id in enumerate(id_cams_off):
|
|
combinations_with_cams_off[i,id] = np.nan
|
|
|
|
# Try all subsets
|
|
error_comb = []
|
|
for comb in combinations_with_cams_off:
|
|
# Filter x, y, likelihood, projection_matrices, with subset
|
|
x_files_filt = [x_files[i] for i in range(len(comb)) if not np.isnan(comb[i])]
|
|
y_files_filt = [y_files[i] for i in range(len(comb)) if not np.isnan(comb[i])]
|
|
likelihood_files_filt = [likelihood_files[i] for i in range(len(comb)) if not np.isnan(comb[i])]
|
|
projection_matrices_filt = [projection_matrices[i] for i in range(len(comb)) if not np.isnan(comb[i])]
|
|
|
|
# Triangulate 2D points
|
|
Q_comb = weighted_triangulation(projection_matrices_filt, x_files_filt, y_files_filt, likelihood_files_filt)
|
|
|
|
# Reprojection
|
|
x_calc, y_calc = reprojection(projection_matrices_filt, Q_comb)
|
|
|
|
# Reprojection error
|
|
error_comb_per_cam = []
|
|
for cam in range(len(x_calc)):
|
|
q_file = (x_files_filt[cam], y_files_filt[cam])
|
|
q_calc = (x_calc[cam], y_calc[cam])
|
|
error_comb_per_cam.append( euclidean_distance(q_file, q_calc) )
|
|
error_comb.append( np.mean(error_comb_per_cam) )
|
|
|
|
error_min = min(error_comb)
|
|
persons_and_cameras_combination = combinations_with_cams_off[np.argmin(error_comb)]
|
|
|
|
if error_min < error_threshold_tracking:
|
|
break
|
|
|
|
nb_cams_off += 1
|
|
|
|
return error_min, persons_and_cameras_combination
|
|
|
|
|
|
def recap_tracking(config, error, nb_cams_excluded):
|
|
'''
|
|
Print a message giving statistics on reprojection errors (in pixel and in m)
|
|
as well as the number of cameras that had to be excluded to reach threshold
|
|
conditions. Also stored in User/logs.txt.
|
|
|
|
INPUT:
|
|
- a Config.toml file
|
|
- error: dataframe
|
|
- nb_cams_excluded: dataframe
|
|
|
|
OUTPUT:
|
|
- Message in console
|
|
'''
|
|
|
|
# Read config
|
|
project_dir = config.get('project').get('project_dir')
|
|
session_dir = os.path.realpath(os.path.join(project_dir, '..', '..'))
|
|
tracked_keypoint = config.get('personAssociation').get('tracked_keypoint')
|
|
error_threshold_tracking = config.get('personAssociation').get('error_threshold_tracking')
|
|
poseTracked_dir = os.path.join(project_dir, 'pose-associated')
|
|
calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if ('Calib' or 'calib') in c][0]
|
|
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file
|
|
|
|
# Error
|
|
mean_error_px = np.around(np.mean(error), decimals=1)
|
|
|
|
calib = toml.load(calib_file)
|
|
calib_cam1 = calib[list(calib.keys())[0]]
|
|
fm = calib_cam1['matrix'][0][0]
|
|
Dm = euclidean_distance(calib_cam1['translation'], [0,0,0])
|
|
mean_error_mm = np.around(mean_error_px * Dm / fm * 1000, decimals=1)
|
|
|
|
# Excluded cameras
|
|
mean_cam_off_count = np.around(np.mean(nb_cams_excluded), decimals=2)
|
|
|
|
# Recap
|
|
logging.info(f'\n--> Mean reprojection error for {tracked_keypoint} point on all frames is {mean_error_px} px, which roughly corresponds to {mean_error_mm} mm. ')
|
|
logging.info(f'--> In average, {mean_cam_off_count} cameras had to be excluded to reach the demanded {error_threshold_tracking} px error threshold.')
|
|
logging.info(f'\nTracked json files are stored in {os.path.realpath(poseTracked_dir)}.')
|
|
|
|
|
|
def track_2d_all(config):
|
|
'''
|
|
For each frame,
|
|
- Find all possible combinations of detected persons
|
|
- Triangulate 'tracked_keypoint' for all combinations
|
|
- Reproject the point on all cameras
|
|
- Take combination with smallest reprojection error
|
|
- Write json file with only one detected person
|
|
Print recap message
|
|
|
|
INPUTS:
|
|
- a calibration file (.toml extension)
|
|
- json files from each camera folders with several detected persons
|
|
- a Config.toml file
|
|
- a skeleton model
|
|
|
|
OUTPUTS:
|
|
- json files for each camera with only one person of interest
|
|
'''
|
|
|
|
# Read config
|
|
project_dir = config.get('project').get('project_dir')
|
|
session_dir = os.path.realpath(os.path.join(project_dir, '..', '..'))
|
|
pose_model = config.get('pose').get('pose_model')
|
|
tracked_keypoint = config.get('personAssociation').get('tracked_keypoint')
|
|
frame_range = config.get('project').get('frame_range')
|
|
|
|
calib_dir = [os.path.join(session_dir, c) for c in os.listdir(session_dir) if ('Calib' or 'calib') in c][0]
|
|
calib_file = glob.glob(os.path.join(calib_dir, '*.toml'))[0] # lastly created calibration file
|
|
pose_dir = os.path.join(project_dir, 'pose')
|
|
poseTracked_dir = os.path.join(project_dir, 'pose-associated')
|
|
|
|
# projection matrix from toml calibration file
|
|
P = computeP(calib_file)
|
|
|
|
# selection of tracked keypoint id
|
|
try: # from skeletons.py
|
|
model = eval(pose_model)
|
|
except:
|
|
try: # from Config.toml
|
|
model = DictImporter().import_(config.get('pose').get(pose_model))
|
|
if model.id == 'None':
|
|
model.id = None
|
|
except:
|
|
raise NameError('Model not found in skeletons.py nor in Config.toml')
|
|
tracked_keypoint_id = [node.id for _, _, node in RenderTree(model) if node.name==tracked_keypoint][0]
|
|
|
|
# 2d-pose files selection
|
|
pose_listdirs_names = next(os.walk(pose_dir))[1]
|
|
pose_listdirs_names = natural_sort(pose_listdirs_names)
|
|
json_dirs_names = [k for k in pose_listdirs_names if 'json' in k]
|
|
json_files_names = [fnmatch.filter(os.listdir(os.path.join(pose_dir, js_dir)), '*.json') for js_dir in json_dirs_names]
|
|
json_files_names = [natural_sort(j) for j in json_files_names]
|
|
json_files = [[os.path.join(pose_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)]
|
|
|
|
# 2d-pose-associated files creation
|
|
if not os.path.exists(poseTracked_dir): os.mkdir(poseTracked_dir)
|
|
try: [os.mkdir(os.path.join(poseTracked_dir,k)) for k in json_dirs_names]
|
|
except: pass
|
|
json_tracked_files = [[os.path.join(poseTracked_dir, j_dir, j_file) for j_file in json_files_names[j]] for j, j_dir in enumerate(json_dirs_names)]
|
|
|
|
# person's tracking
|
|
f_range = [[min([len(j) for j in json_files])] if frame_range==[] else frame_range][0]
|
|
n_cams = len(json_dirs_names)
|
|
error_min_tot, cameras_off_tot = [], []
|
|
|
|
for f in tqdm(range(*f_range)):
|
|
json_files_f = [json_files[c][f] for c in range(n_cams)]
|
|
json_tracked_files_f = [json_tracked_files[c][f] for c in range(n_cams)]
|
|
|
|
# all possible combinations of persons
|
|
personsIDs_comb = persons_combinations(json_files_f)
|
|
|
|
# choose person of interest and exclude cameras with bad pose estimation
|
|
error_min, persons_and_cameras_combination = best_persons_and_cameras_combination(config, json_files_f, personsIDs_comb, P, tracked_keypoint_id)
|
|
error_min_tot.append(error_min)
|
|
cameras_off_count = np.count_nonzero(np.isnan(persons_and_cameras_combination))
|
|
cameras_off_tot.append(cameras_off_count)
|
|
|
|
# rewrite json files with only one person of interest
|
|
for cam_nb, person_id in enumerate(persons_and_cameras_combination):
|
|
with open(json_tracked_files_f[cam_nb], 'w') as json_tracked_f:
|
|
with open(json_files_f[cam_nb], 'r') as json_f:
|
|
js = json.load(json_f)
|
|
if not np.isnan(person_id):
|
|
js['people'] = [js['people'][int(person_id)]]
|
|
else:
|
|
js['people'] = []
|
|
json_tracked_f.write(json.dumps(js))
|
|
|
|
# recap message
|
|
recap_tracking(config, error_min_tot, cameras_off_tot)
|
|
|
|
|
|
|
|
|