pose2sim/Pose2Sim/common.py
2023-07-19 11:37:20 +02:00

245 lines
6.7 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
###########################################################################
## OTHER SHARED UTILITIES ##
###########################################################################
Functions shared between modules, and other utilities
'''
## INIT
import toml
import numpy as np
import re
import cv2
import matplotlib as mpl
mpl.use('qt5agg')
mpl.rc('figure', max_open_warning=0)
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
from PyQt5.QtWidgets import QMainWindow, QApplication, QWidget, QTabWidget, QVBoxLayout
import sys
## AUTHORSHIP INFORMATION
__author__ = "David Pagnon"
__copyright__ = "Copyright 2021, Maya-Mocap"
__credits__ = ["David Pagnon"]
__license__ = "BSD 3-Clause License"
__version__ = '0.4'
__maintainer__ = "David Pagnon"
__email__ = "contact@david-pagnon.com"
__status__ = "Development"
## FUNCTIONS
def computeP(calib_file):
'''
Compute projection matrices from toml calibration file.
INPUT:
- calib_file: calibration .toml file.
OUTPUT:
- P: projection matrix as list of arrays
'''
K, R, T, Kh, H = [], [], [], [], []
P = []
calib = toml.load(calib_file)
for cam in list(calib.keys()):
if cam != 'metadata':
K = np.array(calib[cam]['matrix'])
Kh = np.block([K, np.zeros(3).reshape(3,1)])
R, _ = cv2.Rodrigues(np.array(calib[cam]['rotation']))
T = np.array(calib[cam]['translation'])
H = np.block([[R,T.reshape(3,1)], [np.zeros(3), 1 ]])
P.append(Kh.dot(H))
return P
def weighted_triangulation(P_all,x_all,y_all,likelihood_all):
'''
Triangulation with direct linear transform,
weighted with likelihood of joint pose estimation.
INPUTS:
- P_all: list of arrays. Projection matrices of all cameras
- x_all,y_all: x, y 2D coordinates to triangulate
- likelihood_all: likelihood of joint pose estimation
OUTPUT:
- Q: array of triangulated point (x,y,z,1.)
'''
A = np.empty((0,4))
for c in range(len(x_all)):
P_cam = P_all[c]
A = np.vstack((A, (P_cam[0] - x_all[c]*P_cam[2]) * likelihood_all[c] ))
A = np.vstack((A, (P_cam[1] - y_all[c]*P_cam[2]) * likelihood_all[c] ))
if np.shape(A)[0] >= 4:
S, U, Vt = cv2.SVDecomp(A)
V = Vt.T
Q = np.array([V[0][3]/V[3][3], V[1][3]/V[3][3], V[2][3]/V[3][3], 1])
else:
Q = np.array([0.,0.,0.,1])
return Q
def reprojection(P_all, Q):
'''
Reprojects 3D point on all cameras.
INPUTS:
- P_all: list of arrays. Projection matrix for all cameras
- Q: array of triangulated point (x,y,z,1.)
OUTPUTS:
- x_calc, y_calc: list of coordinates of point reprojected on all cameras
'''
x_calc, y_calc = [], []
for c in range(len(P_all)):
P_cam = P_all[c]
x_calc.append(P_cam[0].dot(Q) / P_cam[2].dot(Q))
y_calc.append(P_cam[1].dot(Q) / P_cam[2].dot(Q))
return x_calc, y_calc
def euclidean_distance(q1, q2):
'''
Euclidean distance between 2 points (N-dim).
INPUTS:
- q1: list of N_dimensional coordinates of point
- q2: idem
OUTPUTS:
- euc_dist: float. Euclidian distance between q1 and q2
'''
q1 = np.array(q1)
q2 = np.array(q2)
dist = q2 - q1
euc_dist = np.sqrt(np.sum( [d**2 for d in dist]))
return euc_dist
def RT_qca2cv(r, t):
'''
Converts rotation R and translation T
from Qualisys object centered perspective
to OpenCV camera centered perspective
and inversely.
Qc = RQ+T --> Q = R-1.Qc - R-1.T
'''
r = r.T
t = - r.dot(t)
return r, t
def rotate_cam(r, t, ang_x=0, ang_y=0, ang_z=0):
'''
Apply rotations around x, y, z in cameras coordinates
Angle in radians
'''
r,t = np.array(r), np.array(t)
if r.shape == (3,3):
rt_h = np.block([[r,t.reshape(3,1)], [np.zeros(3), 1 ]])
elif r.shape == (3,):
rt_h = np.block([[cv2.Rodrigues(r)[0],t.reshape(3,1)], [np.zeros(3), 1 ]])
r_ax_x = np.array([1,0,0, 0,np.cos(ang_x),-np.sin(ang_x), 0,np.sin(ang_x),np.cos(ang_x)]).reshape(3,3)
r_ax_y = np.array([np.cos(ang_y),0,np.sin(ang_y), 0,1,0, -np.sin(ang_y),0,np.cos(ang_y)]).reshape(3,3)
r_ax_z = np.array([np.cos(ang_z),-np.sin(ang_z),0, np.sin(ang_z),np.cos(ang_z),0, 0,0,1]).reshape(3,3)
r_ax = r_ax_z.dot(r_ax_y).dot(r_ax_x)
r_ax_h = np.block([[r_ax,np.zeros(3).reshape(3,1)], [np.zeros(3), 1]])
r_ax_h__rt_h = r_ax_h.dot(rt_h)
r = r_ax_h__rt_h[:3,:3]
t = r_ax_h__rt_h[:3,3]
return r, t
def natural_sort(list):
'''
Sorts list of strings with numbers in natural order
Example: ['item_1', 'item_2', 'item_10']
Taken from: https://stackoverflow.com/a/11150413/12196632
'''
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
return sorted(list, key=alphanum_key)
## CLASSES
class plotWindow():
'''
Display several figures in tabs
Taken from https://github.com/superjax/plotWindow/blob/master/plotWindow.py
USAGE:
pw = plotWindow()
f = plt.figure()
plt.plot(x1, y1)
pw.addPlot("1", f)
f = plt.figure()
plt.plot(x2, y2)
pw.addPlot("2", f)
'''
def __init__(self, parent=None):
self.app = QApplication(sys.argv)
self.MainWindow = QMainWindow()
self.MainWindow.__init__()
self.MainWindow.setWindowTitle("Multitabs figure")
self.canvases = []
self.figure_handles = []
self.toolbar_handles = []
self.tab_handles = []
self.current_window = -1
self.tabs = QTabWidget()
self.MainWindow.setCentralWidget(self.tabs)
self.MainWindow.resize(1280, 720)
self.MainWindow.show()
def addPlot(self, title, figure):
new_tab = QWidget()
layout = QVBoxLayout()
new_tab.setLayout(layout)
figure.subplots_adjust(left=0.1, right=0.99, bottom=0.1, top=0.91, wspace=0.2, hspace=0.2)
new_canvas = FigureCanvas(figure)
new_toolbar = NavigationToolbar(new_canvas, new_tab)
layout.addWidget(new_canvas)
layout.addWidget(new_toolbar)
self.tabs.addTab(new_tab, title)
self.toolbar_handles.append(new_toolbar)
self.canvases.append(new_canvas)
self.figure_handles.append(figure)
self.tab_handles.append(new_tab)
def show(self):
self.app.exec_()