1172 lines
51 KiB
Python
1172 lines
51 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
'''
|
|
###########################################################################
|
|
## CAMERAS CALIBRATION ##
|
|
###########################################################################
|
|
|
|
Use this module to calibrate your cameras and save results to a .toml file.
|
|
|
|
It either converts a Qualisys calibration .qca.txt file,
|
|
Or calibrates cameras from checkerboard images.
|
|
|
|
Checkerboard calibration is based on
|
|
https://docs.opencv.org/3.4.15/dc/dbb/tutorial_py_calibration.html.
|
|
/!\ Beware that corners must be detected on all frames, or else extrinsic
|
|
parameters may be wrong. Set show_corner_detection to 1 to verify.
|
|
|
|
INPUTS:
|
|
- a calibration file in the 'calibration' folder (.qca.txt extension)
|
|
- OR folders 'calibration\intrinsics' (populated with video or about 30 images) and 'calibration\extrinsics' (populated with video or one image)
|
|
- a Config.toml file in the 'User' folder
|
|
|
|
OUTPUTS:
|
|
- a calibration file in the 'calibration' folder (.toml extension)
|
|
|
|
'''
|
|
|
|
|
|
## INIT
|
|
import os
|
|
import logging
|
|
import numpy as np
|
|
os.environ["OPENCV_LOG_LEVEL"]="FATAL"
|
|
import cv2
|
|
import glob
|
|
import toml
|
|
import re
|
|
from lxml import etree
|
|
import warnings
|
|
import matplotlib.pyplot as plt
|
|
from mpl_interactions import zoom_factory, panhandler
|
|
|
|
from Pose2Sim.common import RT_qca2cv, rotate_cam, quat2mat, euclidean_distance, natural_sort
|
|
|
|
|
|
## AUTHORSHIP INFORMATION
|
|
__author__ = "David Pagnon"
|
|
__copyright__ = "Copyright 2021, Pose2Sim"
|
|
__credits__ = ["David Pagnon"]
|
|
__license__ = "BSD 3-Clause License"
|
|
__version__ = "0.3"
|
|
__maintainer__ = "David Pagnon"
|
|
__email__ = "contact@david-pagnon.com"
|
|
__status__ = "Development"
|
|
|
|
|
|
## FUNCTIONS
|
|
def calib_qca_fun(file_to_convert_path, binning_factor=1):
|
|
'''
|
|
Convert a Qualisys .qca.txt calibration file
|
|
Converts from camera view to object view, Pi rotates cameras,
|
|
and converts rotation with Rodrigues formula
|
|
|
|
INPUTS:
|
|
- file_to_convert_path: path of the .qca.text file to convert
|
|
- binning_factor: when filming in 540p, one out of 2 pixels is binned so that the full frame is used
|
|
|
|
OUTPUTS:
|
|
- ret: residual reprojection error in _mm_: list of floats
|
|
- C: camera name: list of strings
|
|
- S: image size: list of list of floats
|
|
- D: distorsion: list of arrays of floats
|
|
- K: intrinsic parameters: list of 3x3 arrays of floats
|
|
- R: extrinsic rotation: list of arrays of floats
|
|
- T: extrinsic translation: list of arrays of floats
|
|
|
|
'''
|
|
|
|
ret, C, S, D, K, R, T = read_qca(file_to_convert_path, binning_factor)
|
|
|
|
RT = [RT_qca2cv(r,t) for r, t in zip(R, T)]
|
|
R = [rt[0] for rt in RT]
|
|
T = [rt[1] for rt in RT]
|
|
|
|
RT = [rotate_cam(r, t, ang_x=np.pi, ang_y=0, ang_z=0) for r, t in zip(R, T)]
|
|
R = [rt[0] for rt in RT]
|
|
T = [rt[1] for rt in RT]
|
|
|
|
R = [np.array(cv2.Rodrigues(r)[0]).flatten() for r in R]
|
|
T = np.array(T)
|
|
|
|
return ret, C, S, D, K, R, T
|
|
|
|
|
|
def read_qca(qca_path, binning_factor):
|
|
'''
|
|
Reads a Qualisys .qca.txt calibration file
|
|
Returns 6 lists of size N (N=number of cameras)
|
|
|
|
INPUTS:
|
|
- qca_path: path to .qca.txt calibration file: string
|
|
- binning_factor: usually 1: integer
|
|
|
|
OUTPUTS:
|
|
- ret: residual reprojection error in _mm_: list of floats
|
|
- C: camera name: list of strings
|
|
- S: image size: list of list of floats
|
|
- D: distorsion: list of arrays of floats
|
|
- K: intrinsic parameters: list of 3x3 arrays of floats
|
|
- R: extrinsic rotation: list of 3x3 arrays of floats
|
|
- T: extrinsic translation: list of arrays of floats
|
|
'''
|
|
|
|
root = etree.parse(qca_path).getroot()
|
|
ret, C, S, D, K, R, T = [], [], [], [], [], [], []
|
|
vid_id = []
|
|
|
|
# Camera name
|
|
for i, tag in enumerate(root.findall('cameras/camera')):
|
|
ret += [float(tag.attrib.get('avg-residual'))/1000]
|
|
C += [tag.attrib.get('serial')]
|
|
if tag.attrib.get('model') in ('Miqus Video', 'Miqus Video UnderWater', 'none'):
|
|
vid_id += [i]
|
|
|
|
# Image size
|
|
for tag in root.findall('cameras/camera/fov_video'):
|
|
w = (float(tag.attrib.get('right')) - float(tag.attrib.get('left')) +1) /binning_factor
|
|
h = (float(tag.attrib.get('bottom')) - float(tag.attrib.get('top')) +1) /binning_factor
|
|
S += [[w, h]]
|
|
|
|
# Intrinsic parameters: distorsion and intrinsic matrix
|
|
for i, tag in enumerate(root.findall('cameras/camera/intrinsic')):
|
|
k1 = float(tag.get('radialDistortion1'))/64/binning_factor
|
|
k2 = float(tag.get('radialDistortion2'))/64/binning_factor
|
|
p1 = float(tag.get('tangentalDistortion1'))/64/binning_factor
|
|
p2 = float(tag.get('tangentalDistortion2'))/64/binning_factor
|
|
D+= [np.array([k1, k2, p1, p2])]
|
|
|
|
fu = float(tag.get('focalLengthU'))/64/binning_factor
|
|
fv = float(tag.get('focalLengthV'))/64/binning_factor
|
|
cu = float(tag.get('centerPointU'))/64/binning_factor \
|
|
- float(root.findall('cameras/camera/fov_video')[i].attrib.get('left'))
|
|
cv = float(tag.get('centerPointV'))/64/binning_factor \
|
|
- float(root.findall('cameras/camera/fov_video')[i].attrib.get('top'))
|
|
K += [np.array([fu, 0., cu, 0., fv, cv, 0., 0., 1.]).reshape(3,3)]
|
|
|
|
# Extrinsic parameters: rotation matrix and translation vector
|
|
for tag in root.findall('cameras/camera/transform'):
|
|
tx = float(tag.get('x'))/1000
|
|
ty = float(tag.get('y'))/1000
|
|
tz = float(tag.get('z'))/1000
|
|
r11 = float(tag.get('r11'))
|
|
r12 = float(tag.get('r12'))
|
|
r13 = float(tag.get('r13'))
|
|
r21 = float(tag.get('r21'))
|
|
r22 = float(tag.get('r22'))
|
|
r23 = float(tag.get('r23'))
|
|
r31 = float(tag.get('r31'))
|
|
r32 = float(tag.get('r32'))
|
|
r33 = float(tag.get('r33'))
|
|
|
|
# Rotation (by-column to by-line)
|
|
R += [np.array([r11, r12, r13, r21, r22, r23, r31, r32, r33]).reshape(3,3).T]
|
|
T += [np.array([tx, ty, tz])]
|
|
|
|
# Cameras names by natural order
|
|
C_vid = [C[v] for v in vid_id]
|
|
C_vid_id = [C_vid.index(c) for c in natural_sort(C_vid)]
|
|
C_id = [vid_id[c] for c in C_vid_id]
|
|
C = [C[c] for c in C_id]
|
|
ret = [ret[c] for c in C_id]
|
|
S = [S[c] for c in C_id]
|
|
D = [D[c] for c in C_id]
|
|
K = [K[c] for c in C_id]
|
|
R = [R[c] for c in C_id]
|
|
T = [T[c] for c in C_id]
|
|
|
|
return ret, C, S, D, K, R, T
|
|
|
|
|
|
def calib_optitrack_fun(config):
|
|
'''
|
|
Convert an Optitrack calibration file
|
|
|
|
INPUTS:
|
|
- a Config.toml file
|
|
|
|
OUTPUTS:
|
|
- ret: residual reprojection error in _mm_: list of floats
|
|
- C: camera name: list of strings
|
|
- S: image size: list of list of floats
|
|
- D: distorsion: list of arrays of floats
|
|
- K: intrinsic parameters: list of 3x3 arrays of floats
|
|
- R: extrinsic rotation: list of arrays of floats
|
|
- T: extrinsic translation: list of arrays of floats
|
|
|
|
'''
|
|
|
|
pass
|
|
|
|
|
|
def calib_vicon_fun(file_to_convert_path, binning_factor=1):
|
|
'''
|
|
Convert a Vicon .xcp calibration file
|
|
Converts from camera view to object view,
|
|
and converts rotation with Rodrigues formula
|
|
|
|
INPUTS:
|
|
- file_to_convert_path: path of the .qca.text file to convert
|
|
- binning_factor: always 1 with Vicon calibration
|
|
|
|
OUTPUTS:
|
|
- ret: residual reprojection error in _mm_: list of floats
|
|
- C: camera name: list of strings
|
|
- S: image size: list of list of floats
|
|
- D: distorsion: list of arrays of floats
|
|
- K: intrinsic parameters: list of 3x3 arrays of floats
|
|
- R: extrinsic rotation: list of arrays of floats
|
|
- T: extrinsic translation: list of arrays of floats
|
|
|
|
'''
|
|
|
|
ret, C, S, D, K, R, T = read_vicon(file_to_convert_path)
|
|
|
|
RT = [RT_qca2cv(r,t) for r, t in zip(R, T)]
|
|
R = [rt[0] for rt in RT]
|
|
T = [rt[1] for rt in RT]
|
|
|
|
R = [np.array(cv2.Rodrigues(r)[0]).flatten() for r in R]
|
|
T = np.array(T)
|
|
|
|
return ret, C, S, D, K, R, T
|
|
|
|
|
|
def read_vicon(vicon_path):
|
|
'''
|
|
Reads a Vicon .xcp calibration file
|
|
Returns 6 lists of size N (N=number of cameras)
|
|
|
|
INPUTS:
|
|
- vicon_path: path to .xcp calibration file: string
|
|
|
|
OUTPUTS:
|
|
- ret: residual reprojection error in _mm_: list of floats
|
|
- C: camera name: list of strings
|
|
- S: image size: list of list of floats
|
|
- D: distorsion: list of arrays of floats
|
|
- K: intrinsic parameters: list of 3x3 arrays of floats
|
|
- R: extrinsic rotation: list of 3x3 arrays of floats
|
|
- T: extrinsic translation: list of arrays of floats
|
|
'''
|
|
|
|
root = etree.parse(vicon_path).getroot()
|
|
ret, C, S, D, K, R, T = [], [], [], [], [], [], []
|
|
vid_id = []
|
|
|
|
# Camera name and image size
|
|
for i, tag in enumerate(root.findall('Camera')):
|
|
C += [tag.attrib.get('DEVICEID')]
|
|
S += [[float(t) for t in tag.attrib.get('SENSOR_SIZE').split()]]
|
|
ret += [float(tag.findall('KeyFrames/KeyFrame')[0].attrib.get('WORLD_ERROR'))]
|
|
# if tag.attrib.get('model') in ('Miqus Video', 'Miqus Video UnderWater', 'none'):
|
|
vid_id += [i]
|
|
|
|
# Intrinsic parameters: distorsion and intrinsic matrix
|
|
for cam_elem in root.findall('Camera'):
|
|
try:
|
|
dist = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('VICON_RADIAL2').split()[3:5]
|
|
except:
|
|
dist = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('VICON_RADIAL').split()
|
|
D += [[float(d) for d in dist] + [0.0, 0.0]]
|
|
|
|
fu = float(cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('FOCAL_LENGTH'))
|
|
fv = fu / float(cam_elem.attrib.get('PIXEL_ASPECT_RATIO'))
|
|
cam_center = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('PRINCIPAL_POINT').split()
|
|
cu, cv = [float(c) for c in cam_center]
|
|
K += [np.array([fu, 0., cu, 0., fv, cv, 0., 0., 1.]).reshape(3,3)]
|
|
|
|
# Extrinsic parameters: rotation matrix and translation vector
|
|
for cam_elem in root.findall('Camera'):
|
|
rot = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('ORIENTATION').split()
|
|
R_quat = [float(r) for r in rot]
|
|
R_mat = quat2mat(R_quat, scalar_idx=3)
|
|
R += [R_mat]
|
|
|
|
trans = cam_elem.findall('KeyFrames/KeyFrame')[0].attrib.get('POSITION').split()
|
|
T += [[float(t)/1000 for t in trans]]
|
|
|
|
# Cameras names by natural order
|
|
C_vid = [C[v] for v in vid_id]
|
|
C_vid_id = [C_vid.index(c) for c in natural_sort(C_vid)]
|
|
C_id = [vid_id[c] for c in C_vid_id]
|
|
C = [C[c] for c in C_id]
|
|
S = [S[c] for c in C_id]
|
|
D = [D[c] for c in C_id]
|
|
K = [K[c] for c in C_id]
|
|
R = [R[c] for c in C_id]
|
|
T = [T[c] for c in C_id]
|
|
|
|
return ret, C, S, D, K, R, T
|
|
|
|
|
|
def calib_board_fun(calib_dir, intrinsics_config_dict, extrinsics_config_dict):
|
|
'''
|
|
Calibrates intrinsic and extrinsic parameters
|
|
from images or videos of a checkerboard
|
|
or retrieve them from a file
|
|
|
|
INPUTS:
|
|
- calib_dir: directory containing intrinsic and extrinsic folders, each populated with camera directories
|
|
- intrinsics_config_dict: dictionary of intrinsics parameters (intrinsics_board_type, overwrite_intrinsics, show_detection_intrinsics, intrinsics_extension, extract_every_N_sec, intrinsics_corners_nb, intrinsics_square_size, intrinsics_marker_size, intrinsics_aruco_dict)
|
|
- extrinsics_config_dict: dictionary of extrinsics parameters (extrinsics_board_type, calculate_extrinsics, show_detection_extrinsics, extrinsics_extension, extrinsics_corners_nb, extrinsics_square_size, extrinsics_marker_size, extrinsics_aruco_dict, object_coords_3d)
|
|
|
|
OUTPUTS:
|
|
- ret: residual reprojection error in _px_: list of floats
|
|
- C: camera name: list of strings
|
|
- S: image size: list of list of floats
|
|
- D: distorsion: list of arrays of floats
|
|
- K: intrinsic parameters: list of 3x3 arrays of floats
|
|
- R: extrinsic rotation: list of arrays of floats (Rodrigues)
|
|
- T: extrinsic translation: list of arrays of floats
|
|
'''
|
|
|
|
ret, C, S, D, K, R, T = [], [], [], [], [], [], []
|
|
# retrieve intrinsics if calib_file found and if overwrite_intrinsics=False
|
|
overwrite_intrinsics = extrinsics_config_dict.get('overwrite_intrinsics')
|
|
try:
|
|
calib_file = glob.glob(os.path.join(calib_dir, f'Calib*.toml'))[0]
|
|
except:
|
|
pass
|
|
if not overwrite_intrinsics and 'calib_file' in locals():
|
|
logging.info(f'Preexisting intrinsics file found: {calib_file}. Retrieving intrinsics.')
|
|
calib_file = glob.glob(os.path.join(calib_dir, f'Calib*.toml'))[0]
|
|
calib_data = toml.load(calib_file)
|
|
K, D = [], []
|
|
for cam in calib_data:
|
|
if cam != 'metadata':
|
|
K += calib_data[cam]['matrix']
|
|
D += calib_data[cam]['distortions']
|
|
|
|
# calculate intrinsics otherwise
|
|
else:
|
|
logging.info(f'Calculating intrinsics.')
|
|
K, D = calibrate_intrinsics(calib_dir, intrinsics_config_dict)
|
|
|
|
# calculate extrinsics
|
|
calculate_extrinsic = extrinsics_config_dict.get('calculate_extrinsics')
|
|
if calculate_extrinsic:
|
|
R, T = calibrate_extrinsics(calib_dir, extrinsics_config_dict)
|
|
|
|
|
|
def calibrate_intrinsics(calib_dir, intrinsics_config_dict):
|
|
'''
|
|
Calculate intrinsic parameters
|
|
from images or videos of a checkerboard
|
|
Extract frames, then detect corners, then calibrate
|
|
|
|
INPUTS:
|
|
- calib_dir: directory containing intrinsic and extrinsic folders, each populated with camera directories
|
|
- intrinsics_config_dict: dictionary of intrinsics parameters (intrinsics_board_type, overwrite_intrinsics, show_detection_intrinsics, intrinsics_extension, extract_every_N_sec, intrinsics_corners_nb, intrinsics_square_size, intrinsics_marker_size, intrinsics_aruco_dict)
|
|
|
|
OUTPUTS:
|
|
- D: distorsion: list of arrays of floats
|
|
- K: intrinsic parameters: list of 3x3 arrays of floats
|
|
'''
|
|
|
|
try:
|
|
intrinsics_cam_listdirs_names = next(os.walk(os.path.join(calib_dir, 'intrinsics')))[1]
|
|
except StopIteration:
|
|
raise Exception(f'Error: No {os.path.join(calib_dir, "intrinsics")} folder found.')
|
|
intrinsics_board_type = intrinsics_config_dict.get('intrinsics_board_type')
|
|
intrinsics_extension = intrinsics_config_dict.get('intrinsics_extension')
|
|
extract_every_N_sec = intrinsics_config_dict.get('extract_every_N_sec')
|
|
overwrite_extraction = False
|
|
show_detection_intrinsics = intrinsics_config_dict.get('show_detection_intrinsics')
|
|
intrinsics_corners_nb = intrinsics_config_dict.get('intrinsics_corners_nb')
|
|
intrinsics_square_size = intrinsics_config_dict.get('intrinsics_square_size')
|
|
C, S, D, K, R, T = [], [], [], [], [], []
|
|
|
|
for i,cam in enumerate(intrinsics_cam_listdirs_names):
|
|
# Prepare object points
|
|
objp = np.zeros((intrinsics_corners_nb[0]*intrinsics_corners_nb[1],3), np.float32)
|
|
objp[:,:2] = np.mgrid[0:intrinsics_corners_nb[0],0:intrinsics_corners_nb[1]].T.reshape(-1,2)
|
|
objp[:,:2] = objp[:,0:2]*intrinsics_square_size
|
|
objpoints = [] # 3d points in world space
|
|
imgpoints = [] # 2d points in image plane
|
|
|
|
logging.info(f'\nCamera {cam}:')
|
|
img_vid_files = glob.glob(os.path.join(calib_dir, 'intrinsics', cam, f'*.{intrinsics_extension}'))
|
|
if img_vid_files == []:
|
|
raise ValueError(f'The folder {os.path.join(calib_dir, "intrinsics", cam)} does not exist or does not contain any files with extension .{intrinsics_extension}.')
|
|
img_vid_files = sorted(img_vid_files, key=lambda c: [int(n) for n in re.findall(r'\d+', c)]) #sorting paths with numbers
|
|
# extract frames from video if video
|
|
try:
|
|
# check if file is a video rather than an image
|
|
cap = cv2.VideoCapture(img_vid_files[0])
|
|
cap.read()
|
|
if cap.read()[0] == False:
|
|
raise ValueError('No video in the folder or wrong extension.')
|
|
# extract frames from video
|
|
extract_frames(img_vid_files[0], extract_every_N_sec, overwrite_extraction)
|
|
img_vid_files = glob.glob(os.path.join(calib_dir, 'intrinsics', cam, f'*.png'))
|
|
img_vid_files = sorted(img_vid_files, key=lambda c: [int(n) for n in re.findall(r'\d+', c)])
|
|
except:
|
|
pass
|
|
|
|
# find corners
|
|
for img_path in img_vid_files:
|
|
if show_detection_intrinsics == True:
|
|
imgp_confirmed, objp_confirmed = findCorners(img_path, intrinsics_corners_nb, objp=objp, show=show_detection_intrinsics)
|
|
if isinstance(imgp_confirmed, np.ndarray):
|
|
imgpoints.append(imgp_confirmed)
|
|
objpoints.append(objp_confirmed)
|
|
else:
|
|
imgp_confirmed = findCorners(img_path, intrinsics_corners_nb, objp=objp, show=show_detection_intrinsics)
|
|
if isinstance(imgp_confirmed, np.ndarray):
|
|
imgpoints.append(imgp_confirmed)
|
|
objpoints.append(objp)
|
|
if len(imgpoints) <= 10:
|
|
logging.info(f'Corners were detected only on {len(imgpoints)} images for camera {cam}. Calibration of intrinsic parameters may not be accurate with less than 20 good images of the board.')
|
|
|
|
# calculate intrinsics
|
|
img = cv2.imread(str(img_path))
|
|
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[1::-1],
|
|
None, None, flags=(cv2.CALIB_FIX_K3 + cv2.CALIB_FIX_PRINCIPAL_POINT))
|
|
h, w = [np.float32(i) for i in img.shape[:-1]]
|
|
C.append(f'cam_{str(i+1).zfill(2)}')
|
|
S.append([w, h])
|
|
D.append(dist[0])
|
|
K.append(mtx)
|
|
R.append([0,0,0])
|
|
T.append([0,0,0])
|
|
|
|
# Write calibration file with calculated intrinsic parameters and random extrinsicc parameters
|
|
calib_file = os.path.join(calib_dir, f'Calib_int{intrinsics_board_type}_extrandom.toml')
|
|
toml_write(calib_file, C, S, D, K, R, T)
|
|
|
|
return K, D
|
|
|
|
|
|
def calibrate_extrinsics(calib_dir, extrinsics_config_dict):
|
|
'''
|
|
Calibrates extrinsic parameters
|
|
from an image or the first frame of a video
|
|
of a checkerboard or of measured clues on the scene
|
|
|
|
INPUTS:
|
|
- calib_dir: directory containing intrinsic and extrinsic folders, each populated with camera directories
|
|
- extrinsics_config_dict: dictionary of extrinsics parameters (extrinsics_board_type, calculate_extrinsics, show_detection_extrinsics, extrinsics_extension, extrinsics_corners_nb, extrinsics_square_size, extrinsics_marker_size, extrinsics_aruco_dict, object_coords_3d)
|
|
|
|
OUTPUTS:
|
|
- R: extrinsic rotation: list of arrays of floats (Rodrigues)
|
|
- T: extrinsic translation: list of arrays of floats
|
|
'''
|
|
|
|
try:
|
|
extrinsics_cam_listdirs_names = next(os.walk(os.path.join(calib_dir, 'extrinsics')))[1]
|
|
except StopIteration:
|
|
raise Exception(f'Error: No {os.path.join(calib_dir, "extrinsics")} folder found.')
|
|
extrinsics_extension = extrinsics_config_dict.get('extrinsics_extension')
|
|
extrinsics_board_type = extrinsics_config_dict.get('extrinsics_board_type')
|
|
extrinsics_corners_nb = extrinsics_config_dict.get('extrinsics_corners_nb')
|
|
show_detection_extrinsics = True
|
|
|
|
for i,cam in enumerate(extrinsics_cam_listdirs_names):
|
|
logging.info(f'\nCamera {cam}:')
|
|
img_vid_files = glob.glob(os.path.join(calib_dir, 'extrinsics', cam, f'*.{extrinsics_extension}'))
|
|
if img_vid_files == []:
|
|
raise ValueError(f'The folder {os.path.join(calib_dir, "extrinsics", cam)} does not exist or does not contain any files with extension .{extrinsics_extension}.')
|
|
img_vid_files = sorted(img_vid_files, key=lambda c: [int(n) for n in re.findall(r'\d+', c)]) #sorting paths with numbers
|
|
|
|
|
|
if extrinsics_board_type == 'checkerboard':
|
|
# find corners
|
|
imgp = findCorners(img_vid_files[0], extrinsics_corners_nb, objp=[], show_detection_intrinsics=show_detection_intrinsics=)
|
|
# CHANGE FINDCORNERS: 'O' for okay and next, 'D' for delete, 'C' for click
|
|
# DEFINE OBJECT POINTS
|
|
|
|
# IF CORNERS NOT FOUND: RAISE ERROR: 'set "show_detection_extrinsics" to true to click corners by hand, or change extrinsic_board_type to "scene"'
|
|
|
|
if isinstance(imgp, np.ndarray):
|
|
objpoints.append(objp)
|
|
imgpoints.append(imgp)
|
|
|
|
|
|
|
|
|
|
elif extrinsics_board_type == 'scene':
|
|
|
|
|
|
if len(objp) <= 10:
|
|
logging.info(f'Only {len(objp)} reference points for camera {cam}. Calibration of extrinsic parameters may not be accurate with less than 10 refeence points.')
|
|
|
|
|
|
# try:
|
|
# intrinsics_cam_listdirs_names = next(os.walk(os.path.join(calib_dir, 'intrinsics')))[1]
|
|
# except StopIteration:
|
|
# raise Exception(f'Error: No {os.path.join(calib_dir, "intrinsics")} folder found.')
|
|
# intrinsics_board_type = intrinsics_config_dict.get('intrinsics_board_type')
|
|
# intrinsics_extension = intrinsics_config_dict.get('intrinsics_extension')
|
|
# extract_every_N_sec = intrinsics_config_dict.get('extract_every_N_sec')
|
|
# overwrite_extraction=False
|
|
# show_detection_intrinsics = intrinsics_config_dict.get('show_detection_intrinsics')
|
|
# intrinsics_corners_nb = intrinsics_config_dict.get('intrinsics_corners_nb')
|
|
# intrinsics_square_size = intrinsics_config_dict.get('intrinsics_square_size')
|
|
# C, S, D, K, R, T = [], [], [], [], [], []
|
|
|
|
# for i,cam in enumerate(intrinsics_cam_listdirs_names):
|
|
# # Prepare object points
|
|
# objp = np.zeros((intrinsics_corners_nb[0]*intrinsics_corners_nb[1],3), np.float32)
|
|
# objp[:,:2] = np.mgrid[0:intrinsics_corners_nb[0],0:intrinsics_corners_nb[1]].T.reshape(-1,2)
|
|
# objp[:,:2] = objp[:,0:2]*intrinsics_square_size
|
|
# objpoints = [] # 3d points in world space
|
|
# imgpoints = [] # 2d points in image plane
|
|
|
|
# print(f'\nCamera {cam}:')
|
|
# img_vid_files = glob.glob(os.path.join(calib_dir, 'intrinsics', cam, f'*.{intrinsics_extension}'))
|
|
# if img_vid_files == []:
|
|
# raise ValueError(f'The folder {os.path.join(calib_dir, "intrinsics", cam)} does not exist or does not contain any files with extension .{intrinsics_extension}.')
|
|
# img_vid_files = sorted(img_vid_files, key=lambda c: [int(n) for n in re.findall(r'\d+', c)]) #sorting paths with numbers
|
|
# # extract frames from video if video
|
|
# try:
|
|
# # check if file is a video rather than an image
|
|
# cap = cv2.VideoCapture(img_vid_files[0])
|
|
# cap.read()
|
|
# if cap.read()[0] == False:
|
|
# raise ValueError('No video in the folder or wrong extension.')
|
|
# ## extract frames from video
|
|
# extract_frames(img_vid_files[0], extract_every_N_sec, overwrite_extraction)
|
|
# img_vid_files = glob.glob(os.path.join(calib_dir, 'intrinsics', cam, f'*.png'))
|
|
# img_vid_files = sorted(img_vid_files, key=lambda c: [int(n) for n in re.findall(r'\d+', c)])
|
|
# except:
|
|
# pass
|
|
|
|
# # find corners
|
|
# for img_path in img_vid_files:
|
|
# imgp = findCorners(img_path, intrinsics_corners_nb, show_detection_intrinsics)
|
|
# if isinstance(imgp, np.ndarray):
|
|
# objpoints.append(objp)
|
|
# imgpoints.append(imgp)
|
|
# if len(imgpoints) <= 10:
|
|
# print(f'Corners were detected only on {len(imgpoints)} images for camera {cam}. Calibration of intrinsic parameters may not be accurate with less than 20 good images of the board.')
|
|
|
|
# # calculate intrinsics
|
|
# img = cv2.imread(str(img_path))
|
|
# ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[1::-1],
|
|
# None, None, flags=(cv2.CALIB_FIX_K3 + cv2.CALIB_FIX_PRINCIPAL_POINT))
|
|
# h, w = [np.float32(i) for i in img.shape[:-1]]
|
|
# C.append(f'cam_{str(i+1).zfill(2)}')
|
|
# S.append([w, h])
|
|
# D.append(dist[0])
|
|
# K.append(mtx)
|
|
# R.append([0,0,0])
|
|
# T.append([0,0,0])
|
|
|
|
# # Write calibration file with calculated intrinsic parameters and random extrinsicc parameters
|
|
# calib_file = os.path.join(calib_dir, f'Calib_int{intrinsics_board_type}_extrandom.toml')
|
|
# toml_write(calib_file, C, S, D, K, R, T)
|
|
|
|
# return K, D
|
|
|
|
|
|
|
|
|
|
project_dir = config.get('project').get('project_dir')
|
|
if project_dir == '': project_dir = os.getcwd()
|
|
calib_folder_name = config.get('project').get('calib_folder_name')
|
|
calib_dir = os.path.join(project_dir, calib_folder_name)
|
|
cam_listdirs_names = next(os.walk(calib_dir))[1]
|
|
|
|
corners_nb = config.get('calibration').get('checkerboard').get('corners_nb')
|
|
square_size = config.get('calibration').get('checkerboard').get('square_size')
|
|
square_size = [square_size, square_size] if isinstance(square_size, int)==True else square_size
|
|
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # stop refining after 30 iterations or if error less than 0.001px
|
|
|
|
frame_for_origin = config.get('calibration').get('checkerboard').get('frame_for_origin')
|
|
show = config.get('calibration').get('checkerboard').get('show_corner_detection')
|
|
from_vid_or_img = config.get('calibration').get('checkerboard').get('from_vid_or_img')
|
|
vid_snapshot_every_N_frames = config.get('calibration').get('checkerboard').get('vid_snapshot_every_N_frames')
|
|
vid_extension = config.get('calibration').get('checkerboard').get('vid_extension')
|
|
img_extension = config.get('calibration').get('checkerboard').get('img_extension')
|
|
|
|
ret, C, S, D, K, R, T = [], [], [], [], [], [], []
|
|
for cam in cam_listdirs_names:
|
|
print(f'\nCamera {cam}:')
|
|
# Prepare object points
|
|
objp = np.zeros((corners_nb[0]*corners_nb[1],3), np.float32)
|
|
objp[:,:2] = np.mgrid[0:corners_nb[0],0:corners_nb[1]].T.reshape(-1,2)
|
|
objp[:,0] = objp[:,0]*square_size[0]
|
|
objp[:,1] = objp[:,1]*square_size[1]
|
|
objpoints = [] # 3d points in world space
|
|
imgpoints = [] # 2d points in image plane
|
|
|
|
# Find corners in vid
|
|
# Try videocapture
|
|
if from_vid_or_img=='vid':
|
|
video = glob.glob(os.path.join(calib_dir, cam, '*.'+ vid_extension))[0]
|
|
cap = cv2.VideoCapture(video)
|
|
ret_vid, img = cap.read()
|
|
while ret_vid:
|
|
count = int(round(cap.get(1)))
|
|
ret_vid, img_vid = cap.read()
|
|
if count % vid_snapshot_every_N_frames == 0:
|
|
img = img_vid
|
|
imgp = findCorners(img, corners_nb, criteria, show)
|
|
if isinstance(imgp, np.ndarray):
|
|
objpoints.append(objp)
|
|
imgpoints.append(imgp)
|
|
cap.release()
|
|
|
|
# Find corners in images
|
|
elif from_vid_or_img=='img':
|
|
images = glob.glob(os.path.join(calib_dir, cam, '*.'+ img_extension))
|
|
images_sorted = sorted(images, key=lambda c: [int(n) for n in re.findall(r'\d+', c)]) #sorting paths with numbers
|
|
for image_f in images_sorted:
|
|
img = cv2.imread(image_f)
|
|
imgp = findCorners(img, corners_nb, criteria, show)
|
|
if isinstance(imgp, np.ndarray):
|
|
objpoints.append(objp)
|
|
imgpoints.append(imgp)
|
|
|
|
# Calibration
|
|
r, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img.shape[1::-1],
|
|
None, None, flags=(cv2.CALIB_FIX_K3 + cv2.CALIB_FIX_PRINCIPAL_POINT))
|
|
h, w = [np.float32(i) for i in img.shape[:-1]]
|
|
print(ret, repr(mtx), repr(dist))
|
|
print(w,h)
|
|
|
|
ret.append(r)
|
|
C.append(cam)
|
|
S.append([w, h])
|
|
D.append(dist[0])
|
|
K.append(mtx)
|
|
R.append(rvecs[frame_for_origin].squeeze())
|
|
T.append(tvecs[frame_for_origin].squeeze())
|
|
|
|
# Object view to camera view
|
|
RT = [rotate_cam(r, t, ang_x=np.pi, ang_y=0, ang_z=0) for r, t in zip(R, T)]
|
|
R = [rt[0] for rt in RT]
|
|
T = [rt[1] for rt in RT]
|
|
R = [np.array(cv2.Rodrigues(r)[0]).flatten() for r in R]
|
|
T = np.array(T)/1000
|
|
|
|
return ret, C, S, D, K, R, T
|
|
|
|
|
|
def extract_frames(video_path, extract_every_N_sec=1, overwrite_extraction=False):
|
|
'''
|
|
Extract frames if don't exist yet or if overwrite==True
|
|
|
|
INPUT:
|
|
- video_path: path to video whose frames need to be extracted
|
|
- extract_every_N_sec: extract one frame every N seconds (can be <1)
|
|
- overwrite_extraction: if True, overwrite even if frames have already been extracted
|
|
|
|
OUTPUT:
|
|
- extracted frames in folder
|
|
'''
|
|
|
|
if not os.path.exists(os.path.splitext(video_path)[0] + '_00000.png') or overwrite_extraction:
|
|
cap = cv2.VideoCapture(str(video_path))
|
|
if cap.isOpened():
|
|
fps = round(cap.get(cv2.CAP_PROP_FPS))
|
|
frame_nb = 0
|
|
logging.info(f'Extracting frames...')
|
|
while cap.isOpened():
|
|
ret, frame = cap.read()
|
|
if ret == True:
|
|
if frame_nb % (fps*extract_every_N_sec) == 0:
|
|
img_path = (os.path.splitext(video_path)[0] + '_' +str(frame_nb).zfill(5)+'.png')
|
|
cv2.imwrite(str(img_path), frame)
|
|
frame_nb+=1
|
|
else:
|
|
break
|
|
|
|
|
|
def findCorners(img_path, corner_nb, objp=[], show=True):
|
|
'''
|
|
Find corners in the photo of a checkerboard.
|
|
Press 'Y' to accept detection, 'N' to dismiss this image, 'C' to click points by hand.
|
|
Left click to add a point, right click to remove the last point.
|
|
Use mouse wheel to zoom in and out and to pan.
|
|
|
|
Make sure that:
|
|
- the checkerboard is surrounded by a white border
|
|
- rows != lines, and row is even if lines is odd (or conversely)
|
|
- it is flat and without reflections
|
|
- corner_nb correspond to _internal_ corners
|
|
|
|
INPUTS:
|
|
- img_path: path to image (or video)
|
|
- corner_nb: [H, W] internal corners in checkerboard: list of two integers [9,6]
|
|
- optionnal: show: choose whether to show corner detections
|
|
- optionnal: objp: array [3d corner coordinates]
|
|
|
|
OUTPUTS:
|
|
- imgp_confirmed: array of [[2d corner coordinates]]
|
|
- only if objp!=[]: objp_confirmed: array of [3d corner coordinates]
|
|
'''
|
|
|
|
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # stop refining after 30 iterations or if error less than 0.001px
|
|
|
|
# reads image if image, or first frame if video
|
|
try:
|
|
img = cv2.imread(img_path)
|
|
except:
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
cap = cv2.VideoCapture(img_path)
|
|
ret, img = cap.read()
|
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
|
# Find corners
|
|
ret, corners = cv2.findChessboardCorners(gray, corner_nb, None)
|
|
# If corners are found, refine corners
|
|
if ret == True:
|
|
imgp = cv2.cornerSubPix(gray, corners, (11,11), (-1,-1), criteria)
|
|
logging.info(f'{os.path.basename(img_path)}: Corners found.')
|
|
|
|
if show:
|
|
# Draw corners
|
|
cv2.drawChessboardCorners(img, corner_nb, imgp, ret)
|
|
# Add corner index
|
|
for i, corner in enumerate(imgp):
|
|
x, y = corner.ravel()
|
|
cv2.putText(img, str(i+1), (int(x)-5, int(y)-5), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 2)
|
|
cv2.putText(img, str(i+1), (int(x)-5, int(y)-5), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0), 1)
|
|
|
|
# Visualizer and key press event handler
|
|
for var_to_delete in ['imgp_confirmed', 'objp_confirmed']:
|
|
if var_to_delete in globals():
|
|
del globals()[var_to_delete]
|
|
imgp_objp_confirmed = imgp_objp_visualizer_clicker(img, imgp=imgp, objp=objp, img_path=img_path)
|
|
else:
|
|
imgp_objp_confirmed = imgp
|
|
|
|
# If corners are not found, dismiss or click points by hand
|
|
else:
|
|
logging.info(f'{os.path.basename(img_path)}: Corners not found.')
|
|
if show:
|
|
# Visualizer and key press event handler
|
|
imgp_objp_confirmed = imgp_objp_visualizer_clicker(img, imgp=[], objp=objp, img_path=img_path)
|
|
else:
|
|
imgp_objp_confirmed = []
|
|
|
|
# if len(imgp_objp_confirmed) == 1:
|
|
# imgp_confirmed = imgp_objp_confirmed
|
|
# objp_confirmed = objp
|
|
# else:
|
|
# imgp_confirmed, objp_confirmed = imgp_objp_confirmed
|
|
return imgp_objp_confirmed
|
|
|
|
|
|
def imgp_objp_visualizer_clicker(img, imgp=[], objp=[], img_path=''):
|
|
'''
|
|
Shows image img.
|
|
If imgp is given, displays them in green
|
|
If objp is given, can be displayed in a 3D plot if 'C' is pressed.
|
|
If img_path is given, just uses it to name the window
|
|
|
|
If 'Y' is pressed, closes all and returns confirmed imgp and (if given) objp
|
|
If 'N' is pressed, closes all and returns nothing
|
|
If 'C' is pressed, allows clicking imgp by hand. If objp is given:
|
|
Displays them in 3D as a helper.
|
|
Left click to add a point, right click to remove the last point.
|
|
Press 'H' to indicate that one of the objp is not visible on image
|
|
Closes all and returns imgp and objp if all points have been clicked
|
|
Allows for zooming and panning with middle click
|
|
|
|
INPUTS:
|
|
- img: image opened with openCV
|
|
- optional: imgp: detected image points, to be accepted or not. Array of [[2d corner coordinates]]
|
|
- optionnal: objp: array of [3d corner coordinates]
|
|
- optional: img_path: path to image
|
|
|
|
OUTPUTS:
|
|
- imgp_confirmed: image points that have been correctly identified. array of [[2d corner coordinates]]
|
|
- only if objp!=[]: objp_confirmed: array of [3d corner coordinates]
|
|
'''
|
|
|
|
def on_key(event):
|
|
'''
|
|
Handles key press events:
|
|
'Y' to return imgp, 'N' to dismiss image, 'C' to click points by hand.
|
|
Left click to add a point, 'H' to indicate it is not visible, right click to remove the last point.
|
|
'''
|
|
|
|
global imgp_confirmed, objp_confirmed, objp_confirmed_notok, scat, ax_3d, fig_3d, events, count
|
|
|
|
if event.key == 'y':
|
|
# If 'y', close all
|
|
# If points have been clicked, imgp_confirmed is returned, else imgp
|
|
# If objp is given, objp_confirmed is returned in addition
|
|
if 'scat' not in globals():
|
|
imgp_confirmed = imgp
|
|
objp_confirmed = objp
|
|
else:
|
|
imgp_confirmed = [imgp.astype('float32') for imgp in imgp_confirmed]
|
|
objp_confirmed = np.array(objp_confirmed)
|
|
# close all, del all global variables except imgp_confirmed and objp_confirmed
|
|
plt.close('all')
|
|
if len(objp) == 0:
|
|
if 'objp_confirmed' in globals():
|
|
del objp_confirmed
|
|
|
|
if event.key == 'n' or event.key == 'q':
|
|
# If 'n', close all and return nothing
|
|
plt.close('all')
|
|
imgp_confirmed = []
|
|
if len(objp) == 0:
|
|
objp_confirmed = []
|
|
|
|
if event.key == 'c':
|
|
# If 'c', allows retrieving imgp_confirmed by clicking them on the image
|
|
scat = ax.scatter([],[],s=100,marker='+',color='g')
|
|
plt.connect('button_press_event', on_click)
|
|
# If objp is given, display 3D object points in black
|
|
if len(objp) != 0 and not plt.fignum_exists(2):
|
|
fig_3d = plt.figure()
|
|
fig_3d.tight_layout()
|
|
fig_3d.canvas.manager.set_window_title('Object points to be clicked')
|
|
ax_3d = fig_3d.add_subplot(projection='3d')
|
|
plt.rc('xtick', labelsize=5)
|
|
plt.rc('ytick', labelsize=5)
|
|
for i, (xs,ys,zs) in enumerate(np.float32(objp)):
|
|
ax_3d.scatter(xs,ys,zs, marker='.', color='k')
|
|
ax_3d.text(xs,ys,zs, f'{str(i+1)}', size=10, zorder=1, color='k')
|
|
set_axes_equal(ax_3d)
|
|
if np.all(objp[:,2] == 0):
|
|
ax_3d.view_init(elev=90, azim=-90)
|
|
fig_3d.show()
|
|
|
|
if event.key == 'h':
|
|
# If 'h', indicates that one of the objp is not visible on image
|
|
# Displays it in red on 3D plot
|
|
if len(objp) != 0 and 'ax_3d' in globals():
|
|
count = [0 if 'count' not in globals() else count+1][0]
|
|
if 'events' not in globals():
|
|
# retrieve first objp_confirmed_notok and plot 3D
|
|
events = [event]
|
|
objp_confirmed_notok = objp[count]
|
|
ax_3d.scatter(*objp_confirmed_notok, marker='o', color='r')
|
|
fig_3d.canvas.draw()
|
|
elif count == len(objp)-1:
|
|
# if all objp have been clicked or indicated as not visible, close all
|
|
imgp_confirmed = [imgp.astype('float32') for imgp in imgp_confirmed]
|
|
plt.close('all')
|
|
for var_to_delete in ['events', 'count', 'scat', 'fig_3d', 'ax_3d', 'objp_confirmed_notok']:
|
|
if var_to_delete in globals():
|
|
del globals()[var_to_delete]
|
|
else:
|
|
# retrieve other objp_confirmed_notok and plot 3D
|
|
events.append(event)
|
|
objp_confirmed_notok = objp[count]
|
|
ax_3d.scatter(*objp_confirmed_notok, marker='o', color='r')
|
|
fig_3d.canvas.draw()
|
|
else:
|
|
pass
|
|
|
|
|
|
def on_click(event):
|
|
'''
|
|
Detect click position on image
|
|
If right click, last point is removed
|
|
'''
|
|
|
|
global imgp_confirmed, objp_confirmed, objp_confirmed_notok, scat, ax_3d, fig_3d, events, count, xydata
|
|
|
|
# Left click: Add clicked point to imgp_confirmed
|
|
# Display it on image and on 3D plot
|
|
if event.button == 1:
|
|
# To remember the event to cancel after right click
|
|
if 'events' in globals():
|
|
events.append(event)
|
|
else:
|
|
events = [event]
|
|
|
|
# Add clicked point to image
|
|
xydata = scat.get_offsets()
|
|
new_xydata = np.concatenate((xydata,[[event.xdata,event.ydata]]))
|
|
scat.set_offsets(new_xydata)
|
|
imgp_confirmed = np.expand_dims(scat.get_offsets(), axis=1)
|
|
plt.draw()
|
|
|
|
# Add clicked point to 3D object points if given
|
|
if len(objp) != 0:
|
|
count = [0 if 'count' not in globals() else count+1][0]
|
|
if count==0:
|
|
# retrieve objp_confirmed and plot 3D
|
|
objp_confirmed = [objp[count]]
|
|
ax_3d.scatter(*objp[count], marker='o', color='g')
|
|
fig_3d.canvas.draw()
|
|
elif count == len(objp)-1:
|
|
# retrieve objp_confirmed
|
|
objp_confirmed = [[objp[count]] if 'objp_confirmed' not in globals() else objp_confirmed+[objp[count]]][0]
|
|
imgp_confirmed = [imgp.astype('float32') for imgp in imgp_confirmed]
|
|
# close all, delete all
|
|
plt.close('all')
|
|
for var_to_delete in ['events', 'count', 'scat', 'scat_3d', 'fig_3d', 'ax_3d', 'objp_confirmed_notok']:
|
|
if var_to_delete in globals():
|
|
del globals()[var_to_delete]
|
|
else:
|
|
# retrieve objp_confirmed and plot 3D
|
|
objp_confirmed = [[objp[count]] if 'objp_confirmed' not in globals() else objp_confirmed+[objp[count]]][0]
|
|
ax_3d.scatter(*objp[count], marker='o', color='g')
|
|
fig_3d.canvas.draw()
|
|
|
|
# Right click:
|
|
# If last event was left click, remove last point and if objp given, from objp_confirmed
|
|
# If last event was 'H' and objp given, remove last point from objp_confirmed_notok
|
|
elif event.button == 3: # right click
|
|
# If last event was left click:
|
|
if 'button' in dir(events[-1]):
|
|
if events[-1].button == 1:
|
|
# Remove lastpoint from image
|
|
new_xydata = scat.get_offsets()[:-1]
|
|
scat.set_offsets(new_xydata)
|
|
plt.draw()
|
|
# Remove last point from imgp_confirmed
|
|
imgp_confirmed = imgp_confirmed[:-1]
|
|
if len(objp) != 0:
|
|
if count >= 1: count -= 1
|
|
# Remove last point from objp_confirmed
|
|
objp_confirmed = objp_confirmed[:-1]
|
|
# remove from plot
|
|
if len(ax_3d.collections) > len(objp):
|
|
ax_3d.collections[-1].remove()
|
|
fig_3d.canvas.draw()
|
|
|
|
# If last event was 'h' key
|
|
elif events[-1].key == 'h':
|
|
if len(objp) != 0:
|
|
if count >= 1: count -= 1
|
|
# Remove last point from objp_confirmed_notok
|
|
objp_confirmed_notok = objp_confirmed_notok[:-1]
|
|
# remove from plot
|
|
if len(ax_3d.collections) > len(objp):
|
|
ax_3d.collections[-1].remove()
|
|
fig_3d.canvas.draw()
|
|
|
|
|
|
def set_axes_equal(ax):
|
|
"""
|
|
Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
|
cubes as cubes, etc.
|
|
From https://stackoverflow.com/questions/13685386/how-to-set-the-equal-aspect-ratio-for-all-axes-x-y-z
|
|
|
|
Input
|
|
ax: a matplotlib axis, e.g., as output from plt.gca().
|
|
"""
|
|
|
|
x_limits = ax.get_xlim3d()
|
|
y_limits = ax.get_ylim3d()
|
|
z_limits = ax.get_zlim3d()
|
|
|
|
x_range = abs(x_limits[1] - x_limits[0])
|
|
x_middle = np.mean(x_limits)
|
|
y_range = abs(y_limits[1] - y_limits[0])
|
|
y_middle = np.mean(y_limits)
|
|
z_range = abs(z_limits[1] - z_limits[0])
|
|
z_middle = np.mean(z_limits)
|
|
|
|
# The plot bounding box is a sphere in the sense of the infinity
|
|
# norm, hence I call half the max range the plot radius.
|
|
plot_radius = 0.5*max([x_range, y_range, z_range])
|
|
|
|
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
|
|
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
|
|
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|
|
|
|
# Write instructions
|
|
cv2.putText(img, 'Type "Y" to accept point detection.', (20, 20), cv2.FONT_HERSHEY_SIMPLEX, .5, (255,255,255), 2, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, 'Type "Y" to accept point detection.', (20, 20), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0), 1, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, 'If points are wrongfully (or not) detected:', (20, 40), cv2.FONT_HERSHEY_SIMPLEX, .5, (255,255,255), 2, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, 'If points are wrongfully (or not) detected:', (20, 40), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0), 1, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, '- type "N" to dismiss this image,', (20, 60), cv2.FONT_HERSHEY_SIMPLEX, .5, (255,255,255), 2, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, '- type "N" to dismiss this image,', (20, 60), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0), 1, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, '- type "C" to click points by hand (beware of their order).', (20, 80), cv2.FONT_HERSHEY_SIMPLEX, .5, (255,255,255), 2, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, '- type "C" to click points by hand (beware of their order).', (20, 80), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0), 1, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, ' left click to add a point, right click to remove it, "H" to indicate it is not visible. ', (20, 100), cv2.FONT_HERSHEY_SIMPLEX, .5, (255,255,255), 2, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, ' left click to add a point, right click to remove it, "H" to indicate it is not visible. ', (20, 100), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0), 1, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, ' Confirm with "Y", cancel with "N".', (20, 120), cv2.FONT_HERSHEY_SIMPLEX, .5, (255,255,255), 2, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, ' Confirm with "Y", cancel with "N".', (20, 120), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0), 1, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, 'Use mouse wheel to zoom in and out and to pan', (20, 140), cv2.FONT_HERSHEY_SIMPLEX, .5, (255,255,255), 2, lineType = cv2.LINE_AA)
|
|
cv2.putText(img, 'Use mouse wheel to zoom in and out and to pan', (20, 140), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0), 1, lineType = cv2.LINE_AA)
|
|
|
|
# Put image in a matplotlib figure for more controls
|
|
plt.rcParams['toolbar'] = 'None'
|
|
fig, ax = plt.subplots()
|
|
fig = plt.gcf()
|
|
fig.canvas.manager.set_window_title(os.path.basename(img_path))
|
|
ax.axis("off")
|
|
for corner in imgp:
|
|
x, y = corner.ravel()
|
|
cv2.drawMarker(img, (int(x),int(y)), (128,128,128), cv2.MARKER_CROSS, 10, 2)
|
|
ax.imshow(img)
|
|
figManager = plt.get_current_fig_manager()
|
|
figManager.window.showMaximized()
|
|
plt.tight_layout()
|
|
|
|
# Allow for zoom and pan in image
|
|
zoom_factory(ax)
|
|
ph = panhandler(fig, button=2)
|
|
|
|
# Handles key presses to Accept, dismiss, or click points by hand
|
|
cid = fig.canvas.mpl_connect('key_press_event', on_key)
|
|
|
|
plt.draw()
|
|
plt.show(block=True)
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
plt.rcParams['toolbar'] = 'toolmanager'
|
|
|
|
for var_to_delete in ['events', 'count', 'scat', 'fig_3d', 'ax_3d', 'objp_confirmed_notok']:
|
|
if var_to_delete in globals():
|
|
del globals()[var_to_delete]
|
|
|
|
if 'imgp_confirmed' in globals() and 'objp_confirmed' in globals():
|
|
return imgp_confirmed, objp_confirmed
|
|
elif 'imgp_confirmed' in globals() and not 'objp_confirmed' in globals():
|
|
return imgp_confirmed
|
|
else:
|
|
return
|
|
|
|
|
|
def calib_points_fun(config):
|
|
'''
|
|
Not implemented yet
|
|
'''
|
|
pass
|
|
|
|
|
|
def toml_write(calib_path, C, S, D, K, R, T):
|
|
'''
|
|
Writes calibration parameters to a .toml file
|
|
|
|
INPUTS:
|
|
- calib_path: path to the output calibration file: string
|
|
- C: camera name: list of strings
|
|
- S: image size: list of list of floats
|
|
- D: distorsion: list of arrays of floats
|
|
- K: intrinsic parameters: list of 3x3 arrays of floats
|
|
- R: extrinsic rotation: list of arrays of floats (Rodrigues)
|
|
- T: extrinsic translation: list of arrays of floats
|
|
|
|
OUTPUTS:
|
|
- a .toml file cameras calibrations
|
|
'''
|
|
|
|
with open(os.path.join(calib_path), 'w+') as cal_f:
|
|
for c in range(len(C)):
|
|
cam=f'[cam_{c+1}]\n'
|
|
name = f'name = "{C[c]}"\n'
|
|
size = f'size = [ {S[c][0]}, {S[c][1]}]\n'
|
|
mat = f'matrix = [ [ {K[c][0,0]}, 0.0, {K[c][0,2]}], [ 0.0, {K[c][1,1]}, {K[c][1,2]}], [ 0.0, 0.0, 1.0]]\n'
|
|
dist = f'distortions = [ {D[c][0]}, {D[c][1]}, {D[c][2]}, {D[c][3]}]\n'
|
|
rot = f'rotation = [ {R[c][0]}, {R[c][1]}, {R[c][2]}]\n'
|
|
tran = f'translation = [ {T[c][0]}, {T[c][1]}, {T[c][2]}]\n'
|
|
fish = f'fisheye = false\n\n'
|
|
cal_f.write(cam + name + size + mat + dist + rot + tran + fish)
|
|
meta = '[metadata]\nadjusted = false\nerror = 0.0\n'
|
|
cal_f.write(meta)
|
|
|
|
|
|
def recap_calibrate(ret, calib_path, calib_full_type):
|
|
'''
|
|
Print a log message giving calibration results. Also stored in User/logs.txt.
|
|
|
|
OUTPUT:
|
|
- Message in console
|
|
'''
|
|
|
|
calib = toml.load(calib_path)
|
|
|
|
ret_m, ret_px = [], []
|
|
for c, cam in enumerate(calib.keys()):
|
|
if cam != 'metadata':
|
|
f_px = calib[cam]['matrix'][0][0]
|
|
Dm = euclidean_distance(calib[cam]['translation'], [0,0,0])
|
|
if calib_full_type=='convert_qualisys' or calib_full_type=='convert_vicon':
|
|
ret_m.append( np.around(ret[c], decimals=3) )
|
|
ret_px.append( np.around(ret[c] / (Dm*1000) * f_px, decimals=3) )
|
|
elif calib_full_type=='calculate_board':
|
|
ret_px.append( np.around(ret[c], decimals=3) )
|
|
ret_m.append( np.around(ret[c]*(Dm*1000) / f_px, decimals=3) )
|
|
|
|
logging.info(f'\n--> Residual (RMS) calibration errors for each camera are respectively {ret_px} px, \nwhich corresponds to {ret_m} mm.\n')
|
|
logging.info(f'Calibration file is stored at {calib_path}.')
|
|
|
|
|
|
def calibrate_cams_all(config):
|
|
'''
|
|
Either converts a preexisting calibration file,
|
|
or calculates calibration from scratch (from a board or from points).
|
|
Stores calibration in a .toml file
|
|
Prints recap.
|
|
|
|
INPUTS:
|
|
- a Config.toml file
|
|
|
|
OUTPUT:
|
|
- a .toml camera calibration file
|
|
'''
|
|
|
|
# Read config
|
|
project_dir = config.get('project').get('project_dir')
|
|
if project_dir == '': project_dir = os.getcwd()
|
|
calib_folder_name = config.get('project').get('calib_folder_name')
|
|
calib_dir = os.path.join(project_dir, calib_folder_name)
|
|
calib_type = config.get('calibration').get('calibration_type')
|
|
|
|
if calib_type=='convert':
|
|
convert_filetype = config.get('calibration').get('convert').get('convert_from')
|
|
if convert_filetype=='qualisys':
|
|
convert_ext = '.qca.txt'
|
|
binning_factor = config.get('calibration').get('convert').get('qualisys').get('binning_factor')
|
|
elif convert_filetype=='optitrack':
|
|
print('See Readme.md to retrieve calibration values.')
|
|
elif convert_filetype=='vicon':
|
|
convert_ext = '.xcp'
|
|
binning_factor = 1
|
|
print('Not supported yet')
|
|
|
|
file_to_convert_path = glob.glob(os.path.join(calib_dir, f'*{convert_ext}*'))[0]
|
|
calib_output_path = os.path.join(calib_dir, f'Calib_{convert_filetype}.toml')
|
|
|
|
calib_full_type = '_'.join([calib_type, convert_filetype])
|
|
args_calib_fun = [file_to_convert_path, binning_factor]
|
|
|
|
elif calib_type=='calculate':
|
|
calculate_method = config.get('calibration').get('calculate').get('calculate_method')
|
|
if calculate_method=='board':
|
|
intrinsics_board_type = config.get('calibration').get('calculate').get('board').get('intrinsics').get('intrinsics_board_type')
|
|
intrinsics_config_dict = config.get('calibration').get('calculate').get('board').get('intrinsics')
|
|
extrinsics_board_type = config.get('calibration').get('calculate').get('board').get('extrinsics').get('extrinsics_board_type')
|
|
extrinsics_config_dict = config.get('calibration').get('calculate').get('board').get('extrinsics')
|
|
calib_output_path = os.path.join(calib_dir, f'Calib_int{intrinsics_board_type}_ext{extrinsics_board_type}.toml')
|
|
|
|
calib_full_type = '_'.join([calib_type, calculate_method])
|
|
args_calib_fun = [calib_dir, intrinsics_config_dict, extrinsics_config_dict]
|
|
|
|
elif calculate_method=='points':
|
|
print('Not supported yet')
|
|
|
|
else:
|
|
print('Wrong calculate_method in Config.toml')
|
|
|
|
else:
|
|
print('Wrong calibration_type in Config.toml')
|
|
|
|
# Map calib function
|
|
calib_mapping = {
|
|
'convert_qualisys': calib_qca_fun,
|
|
'convert_optitrack': calib_optitrack_fun,
|
|
'convert_vicon': calib_vicon_fun,
|
|
'calculate_board': calib_board_fun,
|
|
'calculate_points': calib_points_fun
|
|
}
|
|
calib_fun = calib_mapping[calib_full_type]
|
|
|
|
# Calibrate
|
|
ret, C, S, D, K, R, T = calib_fun(*args_calib_fun)
|
|
|
|
# Write calibration file
|
|
toml_write(calib_output_path, C, S, D, K, R, T)
|
|
|
|
# Recap message
|
|
recap_calibrate(ret, calib_output_path, calib_full_type)
|