pose2sim/Pose2Sim/augmenter.py
2024-01-09 20:15:12 +09:00

214 lines
9.5 KiB
Python

import os
import numpy as np
from . import utilsDataman
import copy
import tensorflow as tf
from .utils import TRC2numpy
import json
import os
import glob
# subject_height must be in meters
def get_midhip_data(trc_file):
try:
# OpenPose의 MidHip 데이터를 시도하여 찾습니다.
midhip_data = trc_file.marker("CHip")
if midhip_data is None or len(midhip_data) == 0:
raise ValueError("MidHip data is empty")
except (KeyError, ValueError):
# MidHip 데이터가 없는 경우, RHip과 LHip의 평균을 사용합니다.
rhip_data = trc_file.marker("RHip")
lhip_data = trc_file.marker("LHip")
midhip_data = (rhip_data + lhip_data) / 2
return midhip_data
def augmentTRC(config_dict):
# get parameters from Config.toml
project_dir = config_dict.get('project').get('project_dir')
session_dir = os.path.realpath(os.path.join(project_dir, '..', '..'))
pathInputTRCFile = os.path.realpath(os.path.join(project_dir, 'pose-3d'))
pathOutputTRCFile = os.path.realpath(os.path.join(project_dir, 'pose-3d'))
subject_height = config_dict.get('project').get('participant_height')
if subject_height is None or subject_height == 0:
raise ValueError("Subject height is not set or invalid in the config file.")
subject_mass = config_dict.get('project').get('participant_mass')
augmenterDir = os.path.join(session_dir, 'MarkerAugmenter')
augmenterModelName = config_dict.get('BODY_25_AUGMENTED').get('ModelName')
augmenter_model = config_dict.get('BODY_25_AUGMENTED').get('model')
offset = config_dict.get('BODY_25_AUGMENTED').get('offset')
# Apply all trc files
trc_files = [f for f in glob.glob(os.path.join(pathInputTRCFile, '*.trc')) if '_LSTM' not in f]
for pathInputTRCFile in trc_files:
pathOutputTRCFile = os.path.splitext(pathInputTRCFile)[0] + "_LSTM.trc"
# This is by default - might need to be adjusted in the future.
featureHeight = True
featureWeight = True
# Augmenter types
if augmenter_model == 'v0.0':
from .utils import getOpenPoseMarkers_fullBody
feature_markers_full, response_markers_full = getOpenPoseMarkers_fullBody()
augmenterModelType_all = [augmenter_model]
feature_markers_all = [feature_markers_full]
response_markers_all = [response_markers_full]
elif augmenter_model == 'v0.1' or augmenter_model == 'v0.2':
# Lower body
augmenterModelType_lower = '{}_lower'.format(augmenter_model)
from .utils import getOpenPoseMarkers_lowerExtremity
feature_markers_lower, response_markers_lower = getOpenPoseMarkers_lowerExtremity()
# Upper body
augmenterModelType_upper = '{}_upper'.format(augmenter_model)
from .utils import getMarkers_upperExtremity_noPelvis
feature_markers_upper, response_markers_upper = getMarkers_upperExtremity_noPelvis()
augmenterModelType_all = [augmenterModelType_lower, augmenterModelType_upper]
feature_markers_all = [feature_markers_lower, feature_markers_upper]
response_markers_all = [response_markers_lower, response_markers_upper]
else:
# Lower body
augmenterModelType_lower = '{}_lower'.format(augmenter_model)
from .utils import getOpenPoseMarkers_lowerExtremity2
feature_markers_lower, response_markers_lower = getOpenPoseMarkers_lowerExtremity2()
# Upper body
augmenterModelType_upper = '{}_upper'.format(augmenter_model)
from .utils import getMarkers_upperExtremity_noPelvis2
feature_markers_upper, response_markers_upper = getMarkers_upperExtremity_noPelvis2()
augmenterModelType_all = [augmenterModelType_lower, augmenterModelType_upper]
feature_markers_all = [feature_markers_lower, feature_markers_upper]
response_markers_all = [response_markers_lower, response_markers_upper]
print('Using augmenter model: {}'.format(augmenter_model))
# %% Process data.
# Import TRC file
trc_file = utilsDataman.TRCFile(pathInputTRCFile)
# Loop over augmenter types to handle separate augmenters for lower and
# upper bodies.
outputs_all = {}
n_response_markers_all = 0
for idx_augm, augmenterModelType in enumerate(augmenterModelType_all):
outputs_all[idx_augm] = {}
feature_markers = feature_markers_all[idx_augm]
response_markers = response_markers_all[idx_augm]
augmenterModelDir = os.path.join(augmenterDir, augmenterModelName,
augmenterModelType)
# %% Pre-process inputs.
# Step 1: import .trc file with OpenPose marker trajectories.
trc_data = TRC2numpy(pathInputTRCFile, feature_markers)
# # Add these lines to get RHip and LHip data and calculate midHip
# rhip_data = trc_file.marker("RHip") # Replace "RHip" with the actual name in your trc file
# lhip_data = trc_file.marker("LHip") # Replace "LHip" with the actual name in your trc file
# Calculate the midHip marker as the average of RHip and LHip
midhip_data = get_midhip_data(trc_file)
trc_data_data = trc_data[:,1:]
# Step 2: Normalize with reference marker position.
with open(os.path.join(augmenterModelDir, "metadata.json"), 'r') as f:
metadata = json.load(f)
# Use midhip_data as the reference marker data
referenceMarker_data = midhip_data # instead of trc_file.marker(referenceMarker)
norm_trc_data_data = np.zeros((trc_data_data.shape[0],
trc_data_data.shape[1]))
for i in range(0,trc_data_data.shape[1],3):
norm_trc_data_data[:,i:i+3] = (trc_data_data[:,i:i+3] -
referenceMarker_data)
# Step 3: Normalize with subject's height.
norm2_trc_data_data = copy.deepcopy(norm_trc_data_data)
norm2_trc_data_data = norm2_trc_data_data / subject_height
# Step 4: Add remaining features.
inputs = copy.deepcopy(norm2_trc_data_data)
if featureHeight:
inputs = np.concatenate(
(inputs, subject_height*np.ones((inputs.shape[0],1))), axis=1)
if featureWeight:
inputs = np.concatenate(
(inputs, subject_mass*np.ones((inputs.shape[0],1))), axis=1)
# Step 5: Pre-process data
pathMean = os.path.join(augmenterModelDir, "mean.npy")
pathSTD = os.path.join(augmenterModelDir, "std.npy")
if os.path.isfile(pathMean):
trainFeatures_mean = np.load(pathMean, allow_pickle=True)
inputs -= trainFeatures_mean
if os.path.isfile(pathSTD):
trainFeatures_std = np.load(pathSTD, allow_pickle=True)
inputs /= trainFeatures_std
# Step 6: Reshape inputs if necessary (eg, LSTM)
if augmenterModelName == "LSTM":
inputs = np.reshape(inputs, (1, inputs.shape[0], inputs.shape[1]))
# %% Load model and weights, and predict outputs.
json_file = open(os.path.join(augmenterModelDir, "model.json"), 'r')
pretrainedModel_json = json_file.read()
json_file.close()
model = tf.keras.models.model_from_json(pretrainedModel_json)
model.load_weights(os.path.join(augmenterModelDir, "weights.h5"))
outputs = model.predict(inputs)
# %% Post-process outputs.
# Step 1: Reshape if necessary (eg, LSTM)
if augmenterModelName == "LSTM":
outputs = np.reshape(outputs, (outputs.shape[1], outputs.shape[2]))
# Step 2: Un-normalize with subject's height.
unnorm_outputs = outputs * subject_height
# Step 2: Un-normalize with reference marker position.
unnorm2_outputs = np.zeros((unnorm_outputs.shape[0],
unnorm_outputs.shape[1]))
for i in range(0,unnorm_outputs.shape[1],3):
unnorm2_outputs[:,i:i+3] = (unnorm_outputs[:,i:i+3] +
referenceMarker_data)
# %% Add markers to .trc file.
for c, marker in enumerate(response_markers):
x = unnorm2_outputs[:,c*3]
y = unnorm2_outputs[:,c*3+1]
z = unnorm2_outputs[:,c*3+2]
trc_file.add_marker(marker, x, y, z)
# %% Gather data for computing minimum y-position.
outputs_all[idx_augm]['response_markers'] = response_markers
outputs_all[idx_augm]['response_data'] = unnorm2_outputs
n_response_markers_all += len(response_markers)
# %% Extract minimum y-position across response markers. This is used
# to align feet and floor when visualizing.
responses_all_conc = np.zeros((unnorm2_outputs.shape[0],
n_response_markers_all*3))
idx_acc_res = 0
for idx_augm in outputs_all:
idx_acc_res_end = (idx_acc_res +
(len(outputs_all[idx_augm]['response_markers']))*3)
responses_all_conc[:,idx_acc_res:idx_acc_res_end] = (
outputs_all[idx_augm]['response_data'])
idx_acc_res = idx_acc_res_end
# Minimum y-position across response markers.
min_y_pos = np.min(responses_all_conc[:,1::3])
# %% If offset
if offset:
trc_file.offset('y', -(min_y_pos-0.01))
# %% Return augmented .trc file
trc_file.write(pathOutputTRCFile)
return min_y_pos