2022-08-21 16:04:51 +08:00
|
|
|
|
import numpy as np
|
|
|
|
|
import cv2
|
|
|
|
|
from easymocap.datasets.base import crop_image
|
|
|
|
|
|
|
|
|
|
from easymocap.estimator.wrapper_base import bbox_from_keypoints
|
|
|
|
|
from easymocap.mytools.vis_base import merge, plot_keypoints_auto
|
|
|
|
|
from .debug_utils import log, mywarn, myerror
|
|
|
|
|
|
|
|
|
|
def batch_triangulate(keypoints_, Pall, min_view=2):
|
2022-10-25 20:57:27 +08:00
|
|
|
|
""" triangulate the keypoints of whole body
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
keypoints_ (nViews, nJoints, 3): 2D detections
|
2023-07-25 13:54:46 +08:00
|
|
|
|
Pall (nViews, 3, 4) | (nViews, nJoints, 3, 4): projection matrix of each view
|
2022-10-25 20:57:27 +08:00
|
|
|
|
min_view (int, optional): min view for visible points. Defaults to 2.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
keypoints3d: (nJoints, 4)
|
|
|
|
|
"""
|
2022-08-21 16:04:51 +08:00
|
|
|
|
# keypoints: (nViews, nJoints, 3)
|
|
|
|
|
# Pall: (nViews, 3, 4)
|
|
|
|
|
# A: (nJoints, nViewsx2, 4), x: (nJoints, 4, 1); b: (nJoints, nViewsx2, 1)
|
|
|
|
|
v = (keypoints_[:, :, -1]>0).sum(axis=0)
|
|
|
|
|
valid_joint = np.where(v >= min_view)[0]
|
|
|
|
|
keypoints = keypoints_[:, valid_joint]
|
|
|
|
|
conf3d = keypoints[:, :, -1].sum(axis=0)/v[valid_joint]
|
|
|
|
|
# P2: P矩阵的最后一行:(1, nViews, 1, 4)
|
2023-07-25 13:54:46 +08:00
|
|
|
|
if len(Pall.shape) == 3:
|
|
|
|
|
P0 = Pall[None, :, 0, :]
|
|
|
|
|
P1 = Pall[None, :, 1, :]
|
|
|
|
|
P2 = Pall[None, :, 2, :]
|
|
|
|
|
else:
|
|
|
|
|
P0 = Pall[:, :, 0, :].swapaxes(0, 1)
|
|
|
|
|
P1 = Pall[:, :, 1, :].swapaxes(0, 1)
|
|
|
|
|
P2 = Pall[:, :, 2, :].swapaxes(0, 1)
|
2022-08-21 16:04:51 +08:00
|
|
|
|
# uP2: x坐标乘上P2: (nJoints, nViews, 1, 4)
|
|
|
|
|
uP2 = keypoints[:, :, 0].T[:, :, None] * P2
|
|
|
|
|
vP2 = keypoints[:, :, 1].T[:, :, None] * P2
|
|
|
|
|
conf = keypoints[:, :, 2].T[:, :, None]
|
|
|
|
|
Au = conf * (uP2 - P0)
|
|
|
|
|
Av = conf * (vP2 - P1)
|
|
|
|
|
A = np.hstack([Au, Av])
|
|
|
|
|
u, s, v = np.linalg.svd(A)
|
|
|
|
|
X = v[:, -1, :]
|
|
|
|
|
X = X / X[:, 3:]
|
|
|
|
|
# out: (nJoints, 4)
|
|
|
|
|
result = np.zeros((keypoints_.shape[1], 4))
|
|
|
|
|
result[valid_joint, :3] = X[:, :3]
|
|
|
|
|
result[valid_joint, 3] = conf3d #* (conf[..., 0].sum(axis=-1)>min_view)
|
|
|
|
|
return result
|
|
|
|
|
|
2023-07-25 13:54:46 +08:00
|
|
|
|
def project_points(keypoints, RT, einsum=None):
|
2022-08-21 16:04:51 +08:00
|
|
|
|
homo = np.concatenate([keypoints[..., :3], np.ones_like(keypoints[..., :1])], axis=-1)
|
2023-07-25 13:54:46 +08:00
|
|
|
|
if einsum is None:
|
|
|
|
|
if len(homo.shape) == 2 and len(RT.shape) == 3:
|
|
|
|
|
kpts2d = np.einsum('vab,kb->vka', RT, homo)
|
|
|
|
|
elif len(homo.shape) == 2 and len(RT.shape) == 4:
|
|
|
|
|
kpts2d = np.einsum('vkab,kb->vka', RT, homo)
|
|
|
|
|
else:
|
|
|
|
|
import ipdb; ipdb.set_trace()
|
|
|
|
|
else:
|
|
|
|
|
kpts2d = np.einsum(einsum, RT, homo)
|
2022-08-21 16:04:51 +08:00
|
|
|
|
kpts2d[..., :2] /= kpts2d[..., 2:]
|
|
|
|
|
return kpts2d
|
|
|
|
|
|
|
|
|
|
def make_Cnk(n, k):
|
|
|
|
|
import itertools
|
|
|
|
|
res = {}
|
|
|
|
|
for n_ in range(3, n+1):
|
|
|
|
|
n_0 = [i for i in range(n_)]
|
|
|
|
|
for k_ in range(2, k+1):
|
|
|
|
|
res[(n_, k_)] = list(map(list, itertools.combinations(n_0, k_)))
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
MAX_VIEWS = 30
|
|
|
|
|
Cnk = make_Cnk(MAX_VIEWS, 3)
|
|
|
|
|
|
|
|
|
|
def robust_triangulate_point(kpts2d, Pall, dist_max, min_v = 3):
|
|
|
|
|
nV = kpts2d.shape[0]
|
|
|
|
|
if len(kpts2d) < min_v:# 重建失败
|
|
|
|
|
return [], None
|
|
|
|
|
# min_v = max(2, nV//2)
|
|
|
|
|
# 1. choose the combination of min_v
|
|
|
|
|
index_ = Cnk[(len(kpts2d), min(min_v, len(kpts2d)))]
|
|
|
|
|
# 2. proposals: store the reconstruction points of each proposal
|
|
|
|
|
proposals = np.zeros((len(index_), 4))
|
|
|
|
|
weight_self = np.zeros((nV, len(index_)))
|
|
|
|
|
for i, index in enumerate(index_):
|
|
|
|
|
weight_self[index, i] = 100.
|
|
|
|
|
point = batch_triangulate(kpts2d[index, :], Pall[index], min_view=min_v)
|
|
|
|
|
proposals[i] = point
|
|
|
|
|
# 3. project the proposals to each view
|
|
|
|
|
# and calculate the reprojection error
|
|
|
|
|
# (nViews, nProposals, 4)
|
|
|
|
|
kpts_repro = project_points(proposals, Pall)
|
|
|
|
|
conf = (proposals[None, :, -1] > 0) * (kpts2d[..., -1] > 0)
|
|
|
|
|
# err: (nViews, nProposals)
|
|
|
|
|
err = np.linalg.norm(kpts_repro[..., :2] - kpts2d[..., :2], axis=-1) * conf
|
|
|
|
|
valid = 1. - err/dist_max
|
|
|
|
|
valid[valid<0] = 0
|
|
|
|
|
# consider the weight of different view
|
|
|
|
|
# TODO:naive weight:
|
|
|
|
|
conf = kpts2d[..., -1]
|
|
|
|
|
weight = conf
|
|
|
|
|
# (valid > 0)*weight_self 一项用于强制要求使用到的两个视角都需要被用到
|
|
|
|
|
# 增加一项使用的视角数的加成
|
|
|
|
|
weight_sum = (weight * valid).sum(axis=0) + ((valid > 0)*weight_self).sum(axis=0) - min_v * 100
|
|
|
|
|
if weight_sum.max() < 0:# 重建失败
|
|
|
|
|
return [], None
|
|
|
|
|
best = weight_sum.argmax()
|
|
|
|
|
if (err[index_[best], best] > dist_max).any():
|
|
|
|
|
return [], None
|
|
|
|
|
# 对于选出来的proposal,寻找其大于0的其他视角
|
|
|
|
|
point = proposals[best]
|
|
|
|
|
best_add = np.where(valid[:, best])[0].tolist()
|
|
|
|
|
index = list(index_[best])
|
|
|
|
|
best_add.sort(key=lambda x:-weight[x])
|
|
|
|
|
for add in best_add:
|
|
|
|
|
if add in index:
|
|
|
|
|
continue
|
|
|
|
|
index.append(add)
|
|
|
|
|
point = batch_triangulate(kpts2d[index, :], Pall[index], min_view=min_v)
|
|
|
|
|
kpts_repro = project_points(point, Pall[index])
|
|
|
|
|
err = np.linalg.norm(kpts_repro[..., :2] - kpts2d[index, ..., :2], axis=-1)
|
|
|
|
|
if (err > dist_max).any():
|
|
|
|
|
index.remove(add)
|
|
|
|
|
break
|
|
|
|
|
return index, point
|
|
|
|
|
|
|
|
|
|
def remove_outview(kpts2d, out_view, debug):
|
|
|
|
|
if len(out_view) == 0:
|
|
|
|
|
return False
|
|
|
|
|
outv = out_view[0]
|
|
|
|
|
if debug:
|
|
|
|
|
mywarn('[triangulate] remove outview: {} from {}'.format(outv, out_view))
|
|
|
|
|
kpts2d[outv] = 0.
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
def remove_outjoint(kpts2d, Pall, out_joint, dist_max, min_view=3, debug=False):
|
|
|
|
|
if len(out_joint) == 0:
|
|
|
|
|
return False
|
|
|
|
|
if debug:
|
|
|
|
|
mywarn('[triangulate] remove outjoint: {}'.format(out_joint))
|
|
|
|
|
for nj in out_joint:
|
|
|
|
|
valid = np.where(kpts2d[:, nj, -1] > 0)[0]
|
|
|
|
|
if len(valid) < min_view:
|
|
|
|
|
# if less than 3 visible view, set these unvisible
|
|
|
|
|
kpts2d[:, nj, -1] = 0
|
|
|
|
|
continue
|
|
|
|
|
if len(valid) > MAX_VIEWS:
|
|
|
|
|
# only select max points
|
|
|
|
|
conf = -kpts2d[:, nj, -1]
|
|
|
|
|
valid = conf.argsort()[:MAX_VIEWS]
|
|
|
|
|
index_j, point = robust_triangulate_point(kpts2d[valid, nj:nj+1], Pall[valid], dist_max=dist_max, min_v=3)
|
|
|
|
|
index_j = valid[index_j]
|
|
|
|
|
# print('select {} for joint {}'.format(index_j, nj))
|
|
|
|
|
set0 = np.zeros(kpts2d.shape[0])
|
|
|
|
|
set0[index_j] = 1.
|
|
|
|
|
kpts2d[:, nj, -1] *= set0
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
def project_and_distance(kpts3d, RT, kpts2d):
|
|
|
|
|
kpts_proj = project_points(kpts3d, RT)
|
|
|
|
|
# 1. distance between input and projection
|
|
|
|
|
conf = (kpts3d[None, :, -1] > 0) * (kpts2d[:, :, -1] > 0)
|
|
|
|
|
dist = np.linalg.norm(kpts_proj[..., :2] - kpts2d[..., :2], axis=-1) * conf
|
|
|
|
|
return dist, conf
|
|
|
|
|
|
|
|
|
|
def iterative_triangulate(kpts2d, RT, previous=None,
|
|
|
|
|
min_conf=0.1, min_view=3, min_joints=3, dist_max=0.05, dist_vel=0.05,
|
|
|
|
|
thres_outlier_view=0.4, thres_outlier_joint=0.4, debug=False):
|
|
|
|
|
kpts2d = kpts2d.copy()
|
|
|
|
|
conf = kpts2d[..., -1]
|
|
|
|
|
kpts2d[conf<min_conf] = 0.
|
|
|
|
|
if debug:
|
|
|
|
|
log('[triangulate] kpts2d: {}'.format(kpts2d.shape))
|
|
|
|
|
# TODO: consider large motion
|
|
|
|
|
if previous is not None:
|
|
|
|
|
dist, conf = project_and_distance(previous, RT, kpts2d)
|
|
|
|
|
nottrack = (dist > dist_vel) & conf
|
|
|
|
|
if nottrack.sum() > 0:
|
|
|
|
|
kpts2d[nottrack] = 0.
|
|
|
|
|
if debug:
|
|
|
|
|
log('[triangulate] Remove with track {}'.format(np.where(nottrack)))
|
|
|
|
|
while True:
|
|
|
|
|
# 0. triangulate and project
|
|
|
|
|
kpts3d = batch_triangulate(kpts2d, RT, min_view=min_view)
|
|
|
|
|
dist, conf = project_and_distance(kpts3d, RT, kpts2d)
|
|
|
|
|
# 2. find the outlier
|
|
|
|
|
vv, jj = np.where(dist > dist_max)
|
|
|
|
|
if vv.shape[0] < 1:
|
|
|
|
|
if debug:
|
|
|
|
|
log('[triangulate] Not found outlier, break')
|
|
|
|
|
break
|
|
|
|
|
ratio_outlier_view = (dist>dist_max).sum(axis=1)/(1e-5 + conf.sum(axis=1))
|
|
|
|
|
ratio_outlier_joint = (dist>dist_max).sum(axis=0)/(1e-5 + conf.sum(axis=0))
|
|
|
|
|
# 3. find the totally wrong detections
|
|
|
|
|
out_view = np.where(ratio_outlier_view > thres_outlier_view)[0]
|
|
|
|
|
out_joint = np.where(ratio_outlier_joint > thres_outlier_joint)[0]
|
|
|
|
|
if len(out_view) > 1:
|
|
|
|
|
dist_view = dist.sum(axis=1)/(1e-5 + conf.sum(axis=1))
|
|
|
|
|
out_view = out_view.tolist()
|
|
|
|
|
out_view.sort(key=lambda x:-dist_view[x])
|
|
|
|
|
if debug: mywarn('[triangulate] Remove outlier view: {}'.format(ratio_outlier_view))
|
|
|
|
|
if remove_outview(kpts2d, out_view, debug): continue
|
|
|
|
|
if remove_outjoint(kpts2d, RT, out_joint, dist_max, debug=debug): continue
|
|
|
|
|
if debug:
|
|
|
|
|
log('[triangulate] Directly remove {}, {}'.format(vv, jj))
|
|
|
|
|
kpts2d[vv, jj, -1] = 0.
|
|
|
|
|
if debug:
|
|
|
|
|
log('[triangulate] finally {} valid points'.format((kpts3d[..., -1]>0).sum()))
|
|
|
|
|
if (kpts3d[..., -1]>0).sum() < min_joints:
|
|
|
|
|
kpts3d[..., -1] = 0.
|
|
|
|
|
kpts2d[..., -1] = 0.
|
|
|
|
|
return kpts3d, kpts2d
|
|
|
|
|
return kpts3d, kpts2d
|
|
|
|
|
|
|
|
|
|
class BaseTriangulator:
|
|
|
|
|
def __init__(self, config, debug, keys) -> None:
|
|
|
|
|
self.config = config
|
|
|
|
|
self.debug = debug
|
|
|
|
|
self.keys = keys
|
|
|
|
|
|
|
|
|
|
def project_and_check(self, kpts3d, kpts2d, RT):
|
|
|
|
|
kpts_proj = project_points(kpts3d, RT)
|
|
|
|
|
conf = (kpts3d[None, :, -1] > 0) * (kpts2d[:, :, -1] > 0)
|
|
|
|
|
dist = np.linalg.norm(kpts_proj[..., :2] - kpts2d[..., :2], axis=-1) * conf
|
|
|
|
|
return conf, dist
|
|
|
|
|
|
|
|
|
|
def triangulate_with_results(self, pid, data, results):
|
|
|
|
|
new = {'id': pid}
|
|
|
|
|
for key in self.keys:
|
|
|
|
|
key3d = key.replace('2d', '3d')
|
|
|
|
|
if len(results) == 0:
|
|
|
|
|
kpts3d, kpts2d = iterative_triangulate(data[key + '_unproj'], data['RT'],
|
|
|
|
|
debug=self.debug, **self.config[key])
|
|
|
|
|
else:
|
|
|
|
|
if len(results) == 1:
|
|
|
|
|
previous = results[-1][key3d] # TODO: mean previous frame
|
|
|
|
|
elif len(results) >= 2:
|
|
|
|
|
# TODO: mean previous velocity
|
|
|
|
|
previous0 = results[-2][key3d] # TODO: mean previous frame
|
|
|
|
|
previous1 = results[-1][key3d] # TODO: mean previous frame
|
|
|
|
|
vel = (previous1[:, :3] - previous0[:, :3])*((previous0[:, -1:]>0)&(previous0[:, -1:]>0))
|
|
|
|
|
previous = previous1.copy()
|
|
|
|
|
previous[:, :3] += vel
|
|
|
|
|
kpts3d, kpts2d = iterative_triangulate(data[key + '_unproj'], data['RT'],
|
|
|
|
|
debug=self.debug, previous=previous, **self.config[key])
|
|
|
|
|
vel = np.linalg.norm(kpts3d[:, :3] - previous[:, :3], axis=-1)
|
|
|
|
|
new[key] = np.concatenate([data[key+'_distort'][..., :-1], kpts2d[..., -1:]], axis=-1)
|
|
|
|
|
new[key3d] = kpts3d
|
|
|
|
|
return new
|
|
|
|
|
|
|
|
|
|
class SimpleTriangulator(BaseTriangulator):
|
|
|
|
|
def __init__(self, keys, debug, config,
|
2023-07-25 13:54:46 +08:00
|
|
|
|
pid=0, disable_previous=False) -> None:
|
2022-08-21 16:04:51 +08:00
|
|
|
|
super().__init__(config, debug, keys)
|
|
|
|
|
self.results = []
|
|
|
|
|
self.infos = []
|
|
|
|
|
self.dim_name = ['_joints', '_views']
|
|
|
|
|
self.pid = pid
|
2023-07-25 13:54:46 +08:00
|
|
|
|
self.disable_previous = disable_previous
|
2022-08-21 16:04:51 +08:00
|
|
|
|
|
|
|
|
|
def __call__(self, data, results=None):
|
|
|
|
|
info = {}
|
|
|
|
|
if results is None:
|
|
|
|
|
results = self.results
|
2023-07-25 13:54:46 +08:00
|
|
|
|
if self.disable_previous:
|
|
|
|
|
results = []
|
2022-08-21 16:04:51 +08:00
|
|
|
|
new = {'id': self.pid}
|
|
|
|
|
for key in self.keys:
|
|
|
|
|
if key not in data.keys(): continue
|
|
|
|
|
key3d = key.replace('2d', '3d')
|
|
|
|
|
if self.debug:
|
|
|
|
|
log('[triangulate] {}'.format(key))
|
|
|
|
|
if len(results) == 0:
|
|
|
|
|
kpts3d, kpts2d = iterative_triangulate(data[key + '_unproj'], data['RT'],
|
|
|
|
|
debug=self.debug, **self.config[key])
|
|
|
|
|
else:
|
|
|
|
|
if len(results) == 1:
|
|
|
|
|
previous = results[-1][key3d] # TODO: mean previous frame
|
|
|
|
|
elif len(results) >= 2:
|
|
|
|
|
# TODO: mean previous velocity
|
|
|
|
|
previous0 = results[-2][key3d] # TODO: mean previous frame
|
|
|
|
|
previous1 = results[-1][key3d] # TODO: mean previous frame
|
|
|
|
|
vel = (previous1[:, :3] - previous0[:, :3])*((previous0[:, -1:]>0)&(previous0[:, -1:]>0))
|
|
|
|
|
previous = previous1.copy()
|
|
|
|
|
previous[:, :3] += vel
|
|
|
|
|
kpts3d, kpts2d = iterative_triangulate(data[key + '_unproj'], data['RT'],
|
|
|
|
|
debug=self.debug, previous=previous, **self.config[key])
|
|
|
|
|
vel = np.linalg.norm(kpts3d[:, :3] - previous[:, :3], axis=-1)
|
|
|
|
|
new[key] = np.concatenate([data[key+'_distort'][..., :-1], kpts2d[..., -1:]], axis=-1)
|
|
|
|
|
new[key.replace('2d', '3d')] = kpts3d
|
|
|
|
|
if self.debug:
|
|
|
|
|
conf, dist = self.project_and_check(kpts3d, kpts2d, data['RT'])
|
|
|
|
|
for dim in [0, 1]:
|
|
|
|
|
info_dim = {
|
|
|
|
|
'valid': conf.sum(axis=dim),
|
|
|
|
|
'dist': 10000*dist.sum(axis=dim)/(1e-5 + conf.sum(axis=dim)),
|
|
|
|
|
}
|
|
|
|
|
info[key+self.dim_name[dim]] = info_dim
|
|
|
|
|
info[key+'_joints']['valid3d'] = kpts3d[:, -1] >0
|
|
|
|
|
results.append(new)
|
|
|
|
|
self.infos.append(info)
|
|
|
|
|
return [new]
|
|
|
|
|
|
|
|
|
|
def report(self):
|
|
|
|
|
if not self.debug:
|
|
|
|
|
return 0
|
|
|
|
|
from .debug_utils import print_table
|
|
|
|
|
for key in self.infos[0].keys():
|
|
|
|
|
metrics = list(self.infos[0][key].keys())
|
|
|
|
|
values = [np.mean(np.stack([info[key][metric] for info in self.infos]), axis=0) for metric in metrics]
|
|
|
|
|
metrics = [key] + metrics
|
|
|
|
|
values = [[i for i in range(values[0].shape[0])]] + values
|
|
|
|
|
print_table(metrics, values)
|
|
|
|
|
|
|
|
|
|
class SimpleTriangulatorMulti(SimpleTriangulator):
|
|
|
|
|
def __init__(self, pids, **cfg) -> None:
|
|
|
|
|
super().__init__(**cfg)
|
|
|
|
|
self.results = {}
|
|
|
|
|
|
|
|
|
|
def __call__(self, data, results=None):
|
|
|
|
|
res_now = []
|
|
|
|
|
for ipid, pid in enumerate(data['pid']):
|
|
|
|
|
if pid not in self.results.keys():
|
|
|
|
|
self.results[pid] = []
|
|
|
|
|
data_ = {'RT': data['RT']}
|
|
|
|
|
for key in self.keys:
|
|
|
|
|
data_[key+'_distort'] = data[key+'_distort'][:, ipid]
|
|
|
|
|
data_[key+'_unproj'] = data[key+'_unproj'][:, ipid]
|
|
|
|
|
data_[key] = data[key][:, ipid]
|
|
|
|
|
res = self.triangulate_with_results(pid, data_, self.results[pid])
|
|
|
|
|
self.results[pid].append(res)
|
|
|
|
|
res_now.append(res)
|
|
|
|
|
return res_now
|
|
|
|
|
|
|
|
|
|
def skew_op(x):
|
|
|
|
|
skew_op = lambda x: np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]])
|
|
|
|
|
res = np.zeros((3, 3), dtype=x.dtype)
|
|
|
|
|
# 0, -z, y
|
|
|
|
|
res[0, 1] = -x[2, 0]
|
|
|
|
|
res[0, 2] = x[1, 0]
|
|
|
|
|
# z, 0, -x
|
|
|
|
|
res[1, 0] = x[2, 0]
|
|
|
|
|
res[1, 2] = -x[0, 0]
|
|
|
|
|
# -y, x, 0
|
|
|
|
|
res[2, 0] = -x[1, 0]
|
|
|
|
|
res[2, 1] = x[0, 0]
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
def fundamental_op(K0, K1, R_0, T_0, R_1, T_1):
|
|
|
|
|
invK0 = np.linalg.inv(K0)
|
|
|
|
|
return invK0.T @ (R_0 @ R_1.T) @ K1.T @ skew_op(K1 @ R_1 @ R_0.T @ (T_0 - R_0 @ R_1.T @ T_1))
|
|
|
|
|
|
|
|
|
|
def drawlines(img1,img2,lines,pts1,pts2):
|
|
|
|
|
''' img1 - image on which we draw the epilines for the points in img2
|
|
|
|
|
lines - corresponding epilines '''
|
|
|
|
|
r,c = img1.shape[:2]
|
|
|
|
|
for r,pt1,pt2 in zip(lines,pts1,pts2):
|
|
|
|
|
pt1 = list(map(lambda x:int(x+0.5), pt1[:2].tolist()))
|
|
|
|
|
pt2 = list(map(lambda x:int(x+0.5), pt2[:2].tolist()))
|
|
|
|
|
if pt1[0] < 0 or pt1[1] < 0:
|
|
|
|
|
continue
|
|
|
|
|
color = tuple(np.random.randint(0,255,3).tolist())
|
|
|
|
|
x0,y0 = map(int, [0, -r[2]/r[1] ])
|
|
|
|
|
x1,y1 = map(int, [c, -(r[2]+r[0]*c)/r[1] ])
|
|
|
|
|
img1 = cv2.line(img1, (x0,y0), (x1,y1), color,1)
|
|
|
|
|
img1 = cv2.circle(img1,tuple(pt1),5,color,-1)
|
|
|
|
|
img2 = cv2.circle(img2,tuple(pt2),5,color,-1)
|
|
|
|
|
return img1,img2
|
|
|
|
|
|
|
|
|
|
def SimpleConstrain(dimGroups):
|
|
|
|
|
constrain = np.ones((dimGroups[-1], dimGroups[-1]))
|
|
|
|
|
for i in range(len(dimGroups)-1):
|
|
|
|
|
start, end = dimGroups[i], dimGroups[i+1]
|
|
|
|
|
constrain[start:end, start:end] = 0
|
|
|
|
|
N = constrain.shape[0]
|
|
|
|
|
constrain[range(N), range(N)] = 1
|
|
|
|
|
return constrain
|
|
|
|
|
|
|
|
|
|
def check_cluster(affinity, row, views, dimGroups, indices, p2dAssigned, visited):
|
|
|
|
|
affinity_row = affinity[row].copy()
|
|
|
|
|
# given affinity and row, select the combine of all possible set
|
|
|
|
|
cluster = np.where((affinity[row]>0)&(p2dAssigned==-1)&(visited==0))[0].tolist()
|
|
|
|
|
cluster.sort(key=lambda x:-affinity[row, x])
|
|
|
|
|
views_ = views[cluster]
|
|
|
|
|
view_count = np.bincount(views[cluster])
|
|
|
|
|
indices_all = [indices]
|
|
|
|
|
for col in cluster:
|
|
|
|
|
v = views[col]
|
|
|
|
|
nOld = len(indices_all)
|
|
|
|
|
if indices[v] != -1: # already assigned, copy and make new
|
|
|
|
|
for i in range(nOld):
|
|
|
|
|
ind = indices_all[i].copy()
|
|
|
|
|
ind[v] = col
|
|
|
|
|
indices_all.append(ind)
|
|
|
|
|
else: # not assigned, assign
|
|
|
|
|
for i in range(nOld):
|
|
|
|
|
indices_all[i][v] = col
|
|
|
|
|
return indices_all
|
|
|
|
|
|
|
|
|
|
def views_from_dimGroups(dimGroups):
|
2023-07-25 13:54:46 +08:00
|
|
|
|
views = np.zeros(dimGroups[-1], dtype=np.int)
|
2022-08-21 16:04:51 +08:00
|
|
|
|
for nv in range(len(dimGroups) - 1):
|
|
|
|
|
views[dimGroups[nv]:dimGroups[nv+1]] = nv
|
|
|
|
|
return views
|
|
|
|
|
|
|
|
|
|
class SimpleMatchAndTriangulator(SimpleTriangulator):
|
|
|
|
|
def __init__(self, num_joints, min_views, min_joints, cfg_svt, cfg_track, **cfg) -> None:
|
|
|
|
|
super().__init__(**cfg)
|
|
|
|
|
self.nJoints = num_joints
|
|
|
|
|
self.cfg_svt = cfg_svt
|
|
|
|
|
self.cfg_track = cfg_track
|
|
|
|
|
self.min_views = min_views
|
|
|
|
|
self.min_joints = min_joints
|
|
|
|
|
self.time = -1
|
|
|
|
|
self.max_id = 0
|
|
|
|
|
self.tracks = {}
|
|
|
|
|
self.loglevel_dict = {
|
|
|
|
|
'info': 0,
|
|
|
|
|
'warn': 1,
|
|
|
|
|
'error': 2,
|
|
|
|
|
}
|
|
|
|
|
self.loglevel = self.loglevel_dict['info'] # ['info', 'warn', 'error']
|
|
|
|
|
self.debug = False
|
|
|
|
|
self.data = None
|
|
|
|
|
self.people = None
|
|
|
|
|
|
|
|
|
|
def log(self, text):
|
|
|
|
|
if self.loglevel > 0:
|
|
|
|
|
return 0
|
|
|
|
|
log(text)
|
|
|
|
|
|
|
|
|
|
def warn(self, text):
|
|
|
|
|
if self.loglevel > 1:
|
|
|
|
|
return 0
|
|
|
|
|
mywarn(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def distance_by_epipolar(pts0, pts1, K0, K1, R0, T0, R1, T1):
|
|
|
|
|
F = fundamental_op(K0, K1, R0, T0, R1, T1)
|
|
|
|
|
# Find epilines corresponding to points in left image (first image) and
|
|
|
|
|
# drawing its lines on right image
|
|
|
|
|
lines0 = cv2.computeCorrespondEpilines(pts0[..., :2].reshape (-1,1,2), 2, F)
|
|
|
|
|
# Find epilines corresponding to points in right image (second image) and
|
|
|
|
|
# drawing its lines on left image
|
|
|
|
|
lines1 = cv2.computeCorrespondEpilines(pts1[..., :2].reshape(-1,1,2), 1, F)
|
|
|
|
|
if False:
|
|
|
|
|
H, W = 1080, 1920
|
|
|
|
|
img0 = np.zeros((H, W, 3), dtype=np.uint8) +255
|
|
|
|
|
img4, img3 = drawlines(img0.copy(), img0.copy(), lines0.reshape(-1, 3), pts1.reshape(-1, 3), pts0.reshape(-1,3))
|
|
|
|
|
img5,img6 = drawlines(img0.copy(), img0.copy(), lines1.reshape(-1, 3), pts0.reshape(-1,3), pts1.reshape(-1,3))
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
plt.subplot(121)
|
|
|
|
|
plt.imshow(img5)
|
|
|
|
|
plt.subplot(122)
|
|
|
|
|
plt.imshow(img4)
|
|
|
|
|
plt.show()
|
|
|
|
|
lines0 = lines0.reshape(pts0.shape)
|
|
|
|
|
lines1 = lines1.reshape(pts1.shape)
|
|
|
|
|
# dist: (D_v0, D_v1, nJoints)
|
2023-07-25 13:54:46 +08:00
|
|
|
|
# TODO: / sqrt(A^2 + B^2)
|
2022-08-21 16:04:51 +08:00
|
|
|
|
dist01 = np.abs(np.sum(lines0[:, None, :, :2] * pts1[None, :, :, :2], axis=-1) + lines0[:, None, :, 2])
|
|
|
|
|
conf = pts0[:, None, :, 2] * pts1[None, :, :, 2]
|
|
|
|
|
dist10 = np.abs(np.sum(lines1[:, None, :, :2] * pts0[None, :, :, :2], axis=-1) + lines1[:, None, :, 2])
|
|
|
|
|
|
|
|
|
|
dist = np.sum(dist01 * conf + dist10.transpose(1, 0, 2) * conf, axis=-1)/(conf.sum(axis=-1) + 1e-5)/2
|
|
|
|
|
return dist
|
|
|
|
|
|
|
|
|
|
def _simple_associate2d_triangulate(self, data, affinity, dimGroups, prev_id):
|
|
|
|
|
# sum1 = affinity.sum(axis=1)
|
|
|
|
|
# 注意:这里的排序应该是对每个视角,挑选最大的一个
|
|
|
|
|
sum1 = np.zeros((affinity.shape[0]))
|
|
|
|
|
for i in range(len(dimGroups)-1):
|
|
|
|
|
start, end = dimGroups[i], dimGroups[i+1]
|
|
|
|
|
if end == start:continue
|
|
|
|
|
sum1 += affinity[:, start:end].max(axis=-1)
|
|
|
|
|
n2d = affinity.shape[0]
|
|
|
|
|
nViews = len(dimGroups) - 1
|
2023-07-25 13:54:46 +08:00
|
|
|
|
idx_zero = np.zeros(nViews, dtype=np.int) - 1
|
2022-08-21 16:04:51 +08:00
|
|
|
|
views = views_from_dimGroups(dimGroups)
|
|
|
|
|
# the assigned results of each person
|
2023-07-25 13:54:46 +08:00
|
|
|
|
p2dAssigned = np.zeros(n2d, dtype=np.int) - 1
|
|
|
|
|
visited = np.zeros(n2d, dtype=np.int)
|
2022-08-21 16:04:51 +08:00
|
|
|
|
sortidx = np.argsort(-sum1)
|
|
|
|
|
pid = 0
|
|
|
|
|
k3dresults = []
|
|
|
|
|
for idx in sortidx:
|
|
|
|
|
if p2dAssigned[idx] != -1:
|
|
|
|
|
continue
|
|
|
|
|
if prev_id[idx] != -1:
|
|
|
|
|
results = [self.people[prev_id[idx]]]
|
|
|
|
|
else:
|
|
|
|
|
results = []
|
|
|
|
|
proposals = check_cluster(affinity, row=idx, views=views,
|
|
|
|
|
dimGroups=dimGroups, indices=idx_zero.copy(), p2dAssigned=p2dAssigned, visited=visited)
|
|
|
|
|
for indices in proposals:
|
|
|
|
|
if (indices > -1).sum() < self.min_views - (len(results)):
|
|
|
|
|
continue
|
|
|
|
|
# set keypoints2d
|
|
|
|
|
info = {'RT': data['RT']}
|
|
|
|
|
for name in ['keypoints2d', 'keypoints2d_unproj', 'keypoints2d_distort']:
|
|
|
|
|
info[name] = np.zeros((nViews, self.nJoints, 3), dtype=np.float32)
|
|
|
|
|
for nv in range(nViews):
|
|
|
|
|
if indices[nv] == -1: continue
|
|
|
|
|
for name in ['keypoints2d', 'keypoints2d_unproj', 'keypoints2d_distort']:
|
|
|
|
|
info[name][nv] = data[name][nv][indices[nv]-dimGroups[nv]]
|
|
|
|
|
|
|
|
|
|
res = super().__call__(info, results=results)[0]
|
|
|
|
|
|
|
|
|
|
k2d = res['keypoints2d']
|
|
|
|
|
valid_view = (k2d[..., 2] > 0).sum(axis=-1) > self.min_joints
|
|
|
|
|
# if valid_view.sum() < self.min_views - len(results): # 这里如果是有前一帧的话,len(results)会是2;不知道之前为啥有这个条件使用
|
|
|
|
|
if valid_view.sum() < self.min_views:
|
|
|
|
|
self.log('[associate] Skip proposal {}->{} with not enough valid view {}'.format(idx, indices, (k2d[..., 2] > 0).sum(axis=-1)))
|
|
|
|
|
continue
|
|
|
|
|
valid_joint = res['keypoints3d'][:, -1] > 0.1
|
|
|
|
|
if valid_joint.sum() < self.min_joints:
|
|
|
|
|
self.log('[associate] Skip proposal {}->{} as not enough joints'.format(idx, indices))
|
|
|
|
|
continue
|
|
|
|
|
indices[~valid_view] = -1
|
|
|
|
|
if (indices < 0).all():
|
|
|
|
|
import ipdb; ipdb.set_trace()
|
|
|
|
|
self.log('[associate] Add indices {}, valid {}'.format(indices, (k2d[..., 2] > 0).sum(axis=-1)))
|
|
|
|
|
res['id'] = pid
|
|
|
|
|
res['indices'] = indices
|
|
|
|
|
res['valid_view'] = valid_view
|
|
|
|
|
res['valid_joints'] = res['keypoints3d'][:, -1] > 0.1
|
|
|
|
|
k3dresults.append(res)
|
|
|
|
|
for nv in range(nViews):
|
|
|
|
|
if valid_view[nv] and indices[nv] != -1:
|
|
|
|
|
p2dAssigned[indices[nv]] = pid
|
|
|
|
|
visited[indices[nv]] = 1
|
|
|
|
|
pid += 1
|
|
|
|
|
break
|
|
|
|
|
visited[idx] = 1
|
|
|
|
|
self.log('[associate] {} points not visited, {} not assigned'.format(visited.shape[0] - visited.sum(), (p2dAssigned==-1).sum()))
|
|
|
|
|
k3dresults.sort(key=lambda x: -x['keypoints2d'][..., -1].sum())
|
|
|
|
|
return k3dresults
|
|
|
|
|
|
2023-07-25 13:54:46 +08:00
|
|
|
|
@staticmethod
|
|
|
|
|
def calculate_affinity_MxM(dims, dimGroups, data, key, DIST_MAX):
|
2022-08-21 16:04:51 +08:00
|
|
|
|
M = dimGroups[-1]
|
|
|
|
|
distance = np.zeros((M, M), dtype=np.float32)
|
|
|
|
|
nViews = len(dims)
|
|
|
|
|
for v0 in range(nViews-1):
|
|
|
|
|
for v1 in range(1, nViews):
|
|
|
|
|
# calculate distance between (v0, v1)
|
|
|
|
|
if v0 >= v1:
|
|
|
|
|
continue
|
|
|
|
|
if dims[v0] == 0 or dims[v1] == 0:
|
|
|
|
|
continue
|
|
|
|
|
if True:
|
2023-07-25 13:54:46 +08:00
|
|
|
|
pts0 = data[key][v0] # (nPerson0, nKeypoints, 3)
|
|
|
|
|
pts1 = data[key][v1] # (nPerson1, nKeypoints, 3)
|
|
|
|
|
K0, K1 = data['K'][v0], data['K'][v1] # K0, K1: (3, 3)
|
2022-08-21 16:04:51 +08:00
|
|
|
|
R0, T0 = data['Rc'][v0], data['Tc'][v0]
|
|
|
|
|
R1, T1 = data['Rc'][v1], data['Tc'][v1]
|
2023-07-25 13:54:46 +08:00
|
|
|
|
dist = SimpleMatchAndTriangulator.distance_by_epipolar(pts0, pts1, K0, K1, R0, T0, R1, T1)
|
2022-08-21 16:04:51 +08:00
|
|
|
|
dist /= (K0[0, 0] + K1[0, 0])/2
|
|
|
|
|
else:
|
|
|
|
|
dist = self.distance_by_ray(pts0, pts1, R0, T0, R1, T1)
|
|
|
|
|
distance[dimGroups[v0]:dimGroups[v0+1], dimGroups[v1]:dimGroups[v1+1]] = dist
|
|
|
|
|
distance[dimGroups[v1]:dimGroups[v1+1], dimGroups[v0]:dimGroups[v0+1]] = dist.T
|
2023-07-25 13:54:46 +08:00
|
|
|
|
|
2022-08-21 16:04:51 +08:00
|
|
|
|
for nv in range(nViews):
|
|
|
|
|
distance[dimGroups[nv]:dimGroups[nv+1], dimGroups[nv]:dimGroups[nv+1]] = DIST_MAX
|
|
|
|
|
distance -= np.eye(M) * DIST_MAX
|
|
|
|
|
aff = (DIST_MAX - distance)/DIST_MAX
|
|
|
|
|
aff = np.clip(aff, 0, 1)
|
|
|
|
|
return aff
|
|
|
|
|
|
2023-07-25 13:54:46 +08:00
|
|
|
|
def _calculate_affinity_MxM(self, dims, dimGroups, data, key):
|
|
|
|
|
DIST_MAX = self.cfg_track.track_dist_max
|
|
|
|
|
return self.calculate_affinity_MxM(dims, dimGroups, data, key, DIST_MAX=DIST_MAX)
|
|
|
|
|
|
2022-08-21 16:04:51 +08:00
|
|
|
|
def _calculate_affinity_MxN(self, dims, dimGroups, data, key, results):
|
|
|
|
|
M = dimGroups[-1]
|
|
|
|
|
N = len(results)
|
|
|
|
|
distance = np.zeros((M, N), dtype=np.float32)
|
|
|
|
|
nViews = len(dims)
|
|
|
|
|
k3d = np.stack([r['keypoints3d'] for r in results])
|
|
|
|
|
kpts_proj = project_points(k3d, data['KRT'], einsum='vab,pkb->vpka')
|
|
|
|
|
depth = kpts_proj[..., -1]
|
|
|
|
|
kpts_proj[depth<0] = -10000
|
|
|
|
|
for v in range(nViews):
|
|
|
|
|
if dims[v] == 0:
|
|
|
|
|
continue
|
|
|
|
|
focal = data['K'][v][0, 0]
|
|
|
|
|
pts2d = data[key][v][:, None]
|
|
|
|
|
pts_repro = kpts_proj[v][None]
|
|
|
|
|
conf = np.sqrt(pts2d[..., -1]*k3d[None, ..., -1])
|
|
|
|
|
diff = np.linalg.norm(pts2d[..., :2] - pts_repro[..., :2], axis=-1)
|
|
|
|
|
diff = np.sum(diff*conf, axis=-1)/(1e-5 + np.sum(conf, axis=-1))
|
|
|
|
|
dist = diff / focal
|
|
|
|
|
distance[dimGroups[v]:dimGroups[v+1], :] = dist
|
|
|
|
|
DIST_MAX = self.cfg_track.track_repro_max
|
|
|
|
|
aff = (DIST_MAX - distance)/DIST_MAX
|
|
|
|
|
aff = np.clip(aff, 0, 1)
|
|
|
|
|
return aff
|
|
|
|
|
|
|
|
|
|
def _svt_optimize_affinity(self, affinity, dimGroups):
|
|
|
|
|
# match SVT
|
|
|
|
|
import pymatchlr
|
|
|
|
|
observe = np.ones_like(affinity)
|
|
|
|
|
aff_svt = pymatchlr.matchSVT(affinity, dimGroups, SimpleConstrain(dimGroups), observe, self.cfg_svt)
|
|
|
|
|
aff_svt[aff_svt<self.cfg_svt.aff_min] = 0.
|
|
|
|
|
if False:
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
M = affinity.shape[0]
|
|
|
|
|
plt.subplot(121)
|
|
|
|
|
plt.imshow(affinity)
|
|
|
|
|
plt.hlines([i-0.5 for i in dimGroups[1:]], -0.5, M-0.5, 'w')
|
|
|
|
|
plt.vlines([i-0.5 for i in dimGroups[1:]], -0.5, M-0.5, 'w')
|
|
|
|
|
plt.subplot(122)
|
|
|
|
|
sum_row = aff_svt.sum(axis=1, keepdims=True)/(len(dimGroups) - 1)
|
|
|
|
|
plt.imshow(np.hstack([aff_svt, sum_row]))
|
|
|
|
|
plt.hlines([i-0.5 for i in dimGroups[1:]], -0.5, M-0.5, 'w')
|
|
|
|
|
plt.vlines([i-0.5 for i in dimGroups[1:]], -0.5, M-0.5, 'w')
|
|
|
|
|
plt.ioff()
|
|
|
|
|
plt.show()
|
|
|
|
|
return aff_svt
|
|
|
|
|
|
|
|
|
|
def _track_add(self, res):
|
|
|
|
|
pid = res['id']
|
|
|
|
|
if pid == -1:
|
|
|
|
|
pid = self.max_id
|
|
|
|
|
res['id'] = pid
|
|
|
|
|
self.max_id += 1
|
|
|
|
|
self.log('[{:06d}] Create track {} <- {}'.format(self.time, pid, res['indices']))
|
|
|
|
|
if False:
|
|
|
|
|
crops = []
|
|
|
|
|
data = self.data
|
|
|
|
|
kpts = np.vstack(data['keypoints2d'])
|
|
|
|
|
for nv in range(len(data['imgname'])):
|
|
|
|
|
img = cv2.imread(data['imgname'][nv])
|
|
|
|
|
if res['indices'][nv] == -1: continue
|
|
|
|
|
_kpts = kpts[res['indices'][nv]]
|
|
|
|
|
bbox = bbox_from_keypoints(_kpts)
|
|
|
|
|
plot_keypoints_auto(img, _kpts, pid)
|
|
|
|
|
crop = crop_image(img, bbox, crop_square=True)
|
|
|
|
|
crops.append(crop)
|
|
|
|
|
debug = merge(crops)
|
|
|
|
|
cv2.imwrite('debug/{:06d}.jpg'.format(pid), debug)
|
|
|
|
|
else:
|
|
|
|
|
self.max_id = max(self.max_id, pid+1)
|
|
|
|
|
self.log('[{:06d}] Initialize track {}, valid joints={}'.format(self.time, pid, (res['keypoints3d'][:, -1]>0.01).sum()))
|
|
|
|
|
self.tracks[pid] = {
|
|
|
|
|
'start_time': self.time,
|
|
|
|
|
'end_time': self.time+1,
|
|
|
|
|
'missing_frame': [],
|
|
|
|
|
'infos': [res]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def _track_update(self, res, pid):
|
|
|
|
|
res['id'] = pid
|
|
|
|
|
info = self.tracks[pid]
|
|
|
|
|
self.log('[{:06d}] Update track {} [{}->{}], valid joints={}'.format(self.time, pid, info['start_time'], info['end_time'], (res['keypoints3d'][:, -1]>0.1).sum()))
|
|
|
|
|
self.tracks[pid]['end_time'] = self.time + 1
|
|
|
|
|
self.tracks[pid]['infos'].append(res)
|
|
|
|
|
|
|
|
|
|
def _track_merge(self, res, pid):
|
|
|
|
|
res['id'] = -1
|
|
|
|
|
# TODO: merge
|
|
|
|
|
|
|
|
|
|
def _track_and_update(self, data, results):
|
|
|
|
|
cfg = self.cfg_track
|
|
|
|
|
self.time += 1
|
|
|
|
|
if self.time == 0:
|
|
|
|
|
# initialize the tracks
|
|
|
|
|
for res in results:
|
|
|
|
|
self._track_add(res)
|
|
|
|
|
return results
|
|
|
|
|
# filter the missing frames
|
|
|
|
|
for pid in list(self.tracks.keys()):
|
|
|
|
|
if self.time - self.tracks[pid]['end_time'] > cfg.max_missing_frame:
|
|
|
|
|
self.warn('[{:06d}] Remove track {}'.format(self.time, pid))
|
|
|
|
|
self.tracks.pop(pid)
|
|
|
|
|
# track the results with greedy matching
|
|
|
|
|
for idx_match, res in enumerate(results):
|
|
|
|
|
res['id'] = -1
|
|
|
|
|
# compute the distance
|
|
|
|
|
k3d = res['keypoints3d'][None]
|
|
|
|
|
pids_free = [pid for pid in self.tracks.keys() if self.tracks[pid]['end_time'] != self.time+1]
|
|
|
|
|
pids_used = [pid for pid in self.tracks.keys() if self.tracks[pid]['end_time'] == self.time+1]
|
|
|
|
|
def check_dist(k3d_check):
|
|
|
|
|
dist = np.linalg.norm(k3d[..., :3] - k3d_check[..., :3], axis=-1)
|
|
|
|
|
conf = np.sqrt(k3d[..., 3] * k3d_check[..., 3])
|
|
|
|
|
dist_mean = ((conf>0.1).sum(axis=-1) < self.min_joints)*cfg.track_dist_max + np.sum(dist * conf, axis=-1)/(1e-5 + np.sum(conf, axis=-1))
|
|
|
|
|
argmin = dist_mean.argmin()
|
|
|
|
|
dist_min = dist_mean[argmin]
|
|
|
|
|
return dist_mean, argmin, dist_min
|
|
|
|
|
# check free
|
|
|
|
|
NOT_VISITED = -2
|
|
|
|
|
NOT_FOUND = -1
|
|
|
|
|
flag_tracked, flag_current = NOT_VISITED, NOT_VISITED
|
|
|
|
|
if len(pids_free) > 0:
|
|
|
|
|
k3d_check = np.stack([self.tracks[pid]['infos'][-1]['keypoints3d'] for pid in pids_free])
|
|
|
|
|
dist_track, best, best_dist_track = check_dist(k3d_check)
|
|
|
|
|
if best_dist_track < cfg.track_dist_max:
|
|
|
|
|
flag_tracked = best
|
|
|
|
|
else:
|
|
|
|
|
flag_tracked = NOT_FOUND
|
|
|
|
|
# check used
|
|
|
|
|
if len(pids_used) > 0:
|
|
|
|
|
k3d_check = np.stack([self.tracks[pid]['infos'][-1]['keypoints3d'] for pid in pids_used])
|
|
|
|
|
dist_cur, best, best_dist_curr = check_dist(k3d_check)
|
|
|
|
|
if best_dist_curr < cfg.track_dist_max:
|
|
|
|
|
flag_current = best
|
|
|
|
|
else:
|
|
|
|
|
flag_current = NOT_FOUND
|
|
|
|
|
if flag_tracked >= 0 and (flag_current == NOT_VISITED or flag_current == NOT_FOUND):
|
|
|
|
|
self._track_update(res, pids_free[flag_tracked])
|
|
|
|
|
elif (flag_tracked == NOT_FOUND or flag_tracked==NOT_VISITED) and flag_current >= 0:
|
|
|
|
|
# 没有跟踪到,但是有当前帧的3D的,合并
|
|
|
|
|
self.log('[{:06d}] Merge track {} to {}'.format(self.time, idx_match, pids_used[flag_current]))
|
|
|
|
|
self._track_merge(res, pids_used[flag_current])
|
|
|
|
|
elif flag_tracked == NOT_FOUND and flag_current == NOT_FOUND:
|
|
|
|
|
# create a new track
|
|
|
|
|
self._track_add(res)
|
|
|
|
|
else:
|
|
|
|
|
# 丢弃
|
|
|
|
|
self.log('[{:06d}] Remove track {}. No close points'.format(self.time, idx_match))
|
|
|
|
|
|
|
|
|
|
for pid in list(self.tracks.keys()):
|
|
|
|
|
if self.tracks[pid]['end_time'] != self.time + 1:
|
|
|
|
|
self.warn('[{:06d}] Tracking {} missing'.format(self.time, pid))
|
|
|
|
|
results = [r for r in results if r['id']!=-1]
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
|
# match the data
|
|
|
|
|
self.data = data
|
|
|
|
|
key = 'keypoints2d'
|
|
|
|
|
dims = [d.shape[0] for d in data[key]]
|
|
|
|
|
dimGroups = np.cumsum([0] + dims)
|
|
|
|
|
# 1. compute affinity
|
|
|
|
|
affinity = self._calculate_affinity_MxM(dims, dimGroups, data, key)
|
|
|
|
|
N2D = affinity.shape[0]
|
|
|
|
|
if self.people is not None and len(self.people) > 0:
|
|
|
|
|
# add 3d affinity
|
|
|
|
|
_affinity = affinity
|
|
|
|
|
affinity_3d = self._calculate_affinity_MxN(dims, dimGroups, data, key, self.people)
|
|
|
|
|
affinity = np.concatenate([affinity, affinity_3d], axis=1)
|
|
|
|
|
eye3d = np.eye(affinity_3d.shape[1])
|
|
|
|
|
affinity = np.concatenate([affinity, np.hstack((affinity_3d.T, eye3d))], axis=0)
|
|
|
|
|
dimGroups = dimGroups.tolist()
|
|
|
|
|
dimGroups.append(dimGroups[-1]+affinity_3d.shape[1])
|
|
|
|
|
affinity = self._svt_optimize_affinity(affinity, dimGroups)
|
|
|
|
|
# affinity = self._svt_optimize_affinity(_affinity, dimGroups[:-1])
|
|
|
|
|
# recover
|
|
|
|
|
affinity_3d = np.hstack([np.ones((N2D, 1))*0.5, affinity[:N2D, N2D:]])
|
|
|
|
|
prev_id = affinity_3d.argmax(axis=-1) - 1
|
|
|
|
|
affinity = affinity[:N2D, :N2D]
|
|
|
|
|
dimGroups = np.array(dimGroups[:-1])
|
|
|
|
|
else:
|
|
|
|
|
affinity = self._svt_optimize_affinity(affinity, dimGroups)
|
|
|
|
|
prev_id = np.zeros(N2D) - 1
|
|
|
|
|
# 2. associate and triangulate
|
|
|
|
|
results = self._simple_associate2d_triangulate(data, affinity, dimGroups, prev_id)
|
|
|
|
|
# 3. track, filter and return
|
|
|
|
|
results = self._track_and_update(data, results)
|
|
|
|
|
results.sort(key=lambda x:x['id'])
|
|
|
|
|
self.people = results
|
2023-07-25 13:54:46 +08:00
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
def simple_match(data):
|
|
|
|
|
key = 'keypoints2d'
|
|
|
|
|
dims = [d.shape[0] for d in data[key]]
|
|
|
|
|
dimGroups = np.cumsum([0] + dims)
|
|
|
|
|
affinity = SimpleMatchAndTriangulator.calculate_affinity_MxM(dims, dimGroups, data, key, DIST_MAX=0.1)
|
|
|
|
|
import pymatchlr
|
|
|
|
|
observe = np.ones_like(affinity)
|
|
|
|
|
cfg_svt = {
|
|
|
|
|
'debug': 1,
|
|
|
|
|
'maxIter': 10,
|
|
|
|
|
'w_sparse': 0.1,
|
|
|
|
|
'w_rank': 50,
|
|
|
|
|
'tol': 0.0001,
|
|
|
|
|
'aff_min': 0.3,
|
|
|
|
|
}
|
|
|
|
|
affinity = pymatchlr.matchSVT(affinity, dimGroups, SimpleConstrain(dimGroups), observe, cfg_svt)
|
|
|
|
|
return affinity, dimGroups
|