EasyMocap/doc/installation.md

87 lines
3.0 KiB
Markdown
Raw Normal View History

2021-04-02 12:28:46 +08:00
<!--
* @Date: 2021-04-02 11:52:33
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
2021-08-28 20:50:20 +08:00
* @LastEditTime: 2021-07-22 20:58:33
2021-04-02 12:28:46 +08:00
* @FilePath: /EasyMocapRelease/doc/installation.md
-->
# EasyMocap - Installation
2021-04-14 15:22:51 +08:00
## 0. Download models
## 0.1 SMPL models
2021-04-02 12:28:46 +08:00
This step is the same as [smplx](https://github.com/vchoutas/smplx#model-loading).
To download the *SMPL* model go to [this](http://smpl.is.tue.mpg.de) (male and female models, version 1.0.0, 10 shape PCs) and [this](http://smplify.is.tue.mpg.de) (gender neutral model) project website and register to get access to the downloads section.
To download the *SMPL+H* model go to [this project website](http://mano.is.tue.mpg.de) and register to get access to the downloads section.
To download the *SMPL-X* model go to [this project website](https://smpl-x.is.tue.mpg.de) and register to get access to the downloads section.
**Place them as following:**
```bash
data
└── smplx
├── J_regressor_body25.npy
├── J_regressor_body25_smplh.txt
├── J_regressor_body25_smplx.txt
2021-06-28 12:14:56 +08:00
├── J_regressor_mano_LEFT.txt
├── J_regressor_mano_RIGHT.txt
2021-04-02 12:28:46 +08:00
├── smpl
│   ├── SMPL_FEMALE.pkl
│   ├── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
├── smplh
│   ├── MANO_LEFT.pkl
│   ├── MANO_RIGHT.pkl
│   ├── SMPLH_FEMALE.pkl
│   └── SMPLH_MALE.pkl
└── smplx
├── SMPLX_FEMALE.pkl
├── SMPLX_MALE.pkl
└── SMPLX_NEUTRAL.pkl
```
2021-04-14 15:22:51 +08:00
## 0.2 (Optional) SPIN model
This part is used in `1v1p*.py`. You can skip this step if you only use the multiple views dataset.
Download pretrained SPIN model [here](http://visiondata.cis.upenn.edu/spin/model_checkpoint.pt) and place it to `data/models/spin_checkpoints.pt`.
2021-06-28 12:14:56 +08:00
Fetch the extra data [here](http://visiondata.cis.upenn.edu/spin/data.tar.gz) and place the `smpl_mean_params.npz` to `data/models/smpl_mean_params.npz`.
2021-04-14 15:22:51 +08:00
## 0.3 (Optional) 2D model
You can skip this step if you use openpose as your human keypoints detector.
Download [yolov4.weights]() and place it into `data/models/yolov4.weights`.
Download pretrained HRNet [weight]() and place it into `data/models/pose_hrnet_w48_384x288.pth`.
```bash
data
└── models
├── smpl_mean_params.npz
├── spin_checkpoint.pt
├── pose_hrnet_w48_384x288.pth
└── yolov4.weights
```
## 2. Requirements
2021-04-02 12:28:46 +08:00
- python>=3.6
- torch==1.4.0
- torchvision==0.5.0
- opencv-python
2021-08-28 20:50:20 +08:00
- [pyrender](https://pyrender.readthedocs.io/en/latest/install/index.html#python-installation): for visualization, or [pyrender for server without a screen](https://pyrender.readthedocs.io/en/latest/install/index.html#getting-pyrender-working-with-osmesa).
2021-04-02 12:28:46 +08:00
- chumpy: for loading SMPL model
- OpenPose[4]: for 2D pose
2021-04-14 15:22:51 +08:00
Some of python libraries can be found in `requirements.txt`. You can test different version of PyTorch.
## 3. Install
```bash
python3 setup.py develop --user
```