remove deprecated folder code/
This commit is contained in:
parent
a8429df920
commit
81ef081211
@ -1,527 +0,0 @@
|
||||
'''
|
||||
@ Date: 2021-01-13 16:53:55
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-25 19:12:34
|
||||
@ FilePath: /EasyMocap/code/dataset/base.py
|
||||
'''
|
||||
import os
|
||||
import json
|
||||
from os.path import join
|
||||
from torch.utils.data.dataset import Dataset
|
||||
import cv2
|
||||
import os, sys
|
||||
import numpy as np
|
||||
code_path = join(os.path.dirname(__file__), '..')
|
||||
sys.path.append(code_path)
|
||||
|
||||
from mytools.camera_utils import read_camera, undistort, write_camera, get_fundamental_matrix
|
||||
from mytools.vis_base import merge, plot_bbox, plot_keypoints
|
||||
|
||||
def read_json(path):
|
||||
with open(path) as f:
|
||||
data = json.load(f)
|
||||
return data
|
||||
|
||||
def save_json(file, data):
|
||||
if not os.path.exists(os.path.dirname(file)):
|
||||
os.makedirs(os.path.dirname(file))
|
||||
with open(file, 'w') as f:
|
||||
json.dump(data, f, indent=4)
|
||||
|
||||
|
||||
def read_annot(annotname, mode='body25'):
|
||||
data = read_json(annotname)
|
||||
if not isinstance(data, list):
|
||||
data = data['annots']
|
||||
for i in range(len(data)):
|
||||
if 'id' not in data[i].keys():
|
||||
data[i]['id'] = data[i].pop('personID')
|
||||
if 'keypoints2d' in data[i].keys() and 'keypoints' not in data[i].keys():
|
||||
data[i]['keypoints'] = data[i].pop('keypoints2d')
|
||||
for key in ['bbox', 'keypoints', 'handl2d', 'handr2d', 'face2d']:
|
||||
if key not in data[i].keys():continue
|
||||
data[i][key] = np.array(data[i][key])
|
||||
if key == 'face2d':
|
||||
# TODO: Make parameters, 17 is the offset for the eye brows,
|
||||
# etc. 51 is the total number of FLAME compatible landmarks
|
||||
data[i][key] = data[i][key][17:17+51, :]
|
||||
if mode == 'body25':
|
||||
data[i]['keypoints'] = data[i]['keypoints']
|
||||
elif mode == 'body15':
|
||||
data[i]['keypoints'] = data[i]['keypoints'][:15, :]
|
||||
elif mode == 'total':
|
||||
data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d', 'face2d']])
|
||||
elif mode == 'bodyhand':
|
||||
data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d']])
|
||||
elif mode == 'bodyhandface':
|
||||
data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d', 'face2d']])
|
||||
data.sort(key=lambda x:x['id'])
|
||||
return data
|
||||
|
||||
def get_bbox_from_pose(pose_2d, img, rate = 0.1):
|
||||
# this function returns bounding box from the 2D pose
|
||||
# here use pose_2d[:, -1] instead of pose_2d[:, 2]
|
||||
# because when vis reprojection, the result will be (x, y, depth, conf)
|
||||
validIdx = pose_2d[:, -1] > 0
|
||||
if validIdx.sum() == 0:
|
||||
return [0, 0, 100, 100, 0]
|
||||
y_min = int(min(pose_2d[validIdx, 1]))
|
||||
y_max = int(max(pose_2d[validIdx, 1]))
|
||||
x_min = int(min(pose_2d[validIdx, 0]))
|
||||
x_max = int(max(pose_2d[validIdx, 0]))
|
||||
dx = (x_max - x_min)*rate
|
||||
dy = (y_max - y_min)*rate
|
||||
# 后面加上类别这些
|
||||
bbox = [x_min-dx, y_min-dy, x_max+dx, y_max+dy, 1]
|
||||
correct_bbox(img, bbox)
|
||||
return bbox
|
||||
|
||||
def correct_bbox(img, bbox):
|
||||
# this function corrects the bbox, which is out of image
|
||||
w = img.shape[0]
|
||||
h = img.shape[1]
|
||||
if bbox[2] <= 0 or bbox[0] >= h or bbox[1] >= w or bbox[3] <= 0:
|
||||
bbox[4] = 0
|
||||
return bbox
|
||||
class FileWriter:
|
||||
def __init__(self, output_path, config=None, basenames=[], cfg=None) -> None:
|
||||
self.out = output_path
|
||||
keys = ['keypoints3d', 'match', 'smpl', 'skel', 'repro', 'keypoints']
|
||||
output_dict = {key:join(self.out, key) for key in keys}
|
||||
# for key, p in output_dict.items():
|
||||
# os.makedirs(p, exist_ok=True)
|
||||
self.output_dict = output_dict
|
||||
|
||||
self.basenames = basenames
|
||||
if cfg is not None:
|
||||
print(cfg, file=open(join(output_path, 'exp.yml'), 'w'))
|
||||
self.save_origin = False
|
||||
self.config = config
|
||||
|
||||
def write_keypoints3d(self, results, nf):
|
||||
os.makedirs(self.output_dict['keypoints3d'], exist_ok=True)
|
||||
savename = join(self.output_dict['keypoints3d'], '{:06d}.json'.format(nf))
|
||||
save_json(savename, results)
|
||||
|
||||
def vis_detections(self, images, lDetections, nf, key='keypoints', to_img=True, vis_id=True):
|
||||
os.makedirs(self.output_dict[key], exist_ok=True)
|
||||
images_vis = []
|
||||
for nv, image in enumerate(images):
|
||||
img = image.copy()
|
||||
for det in lDetections[nv]:
|
||||
if key == 'match':
|
||||
pid = det['id_match']
|
||||
else:
|
||||
pid = det['id']
|
||||
if key not in det.keys():
|
||||
keypoints = det['keypoints']
|
||||
else:
|
||||
keypoints = det[key]
|
||||
if 'bbox' not in det.keys():
|
||||
bbox = get_bbox_from_pose(keypoints, img)
|
||||
else:
|
||||
bbox = det['bbox']
|
||||
plot_bbox(img, bbox, pid=pid, vis_id=vis_id)
|
||||
plot_keypoints(img, keypoints, pid=pid, config=self.config, use_limb_color=False, lw=2)
|
||||
images_vis.append(img)
|
||||
image_vis = merge(images_vis, resize=not self.save_origin)
|
||||
if to_img:
|
||||
savename = join(self.output_dict[key], '{:06d}.jpg'.format(nf))
|
||||
cv2.imwrite(savename, image_vis)
|
||||
return image_vis
|
||||
|
||||
def write_smpl(self, results, nf):
|
||||
os.makedirs(self.output_dict['smpl'], exist_ok=True)
|
||||
format_out = {'float_kind':lambda x: "%.3f" % x}
|
||||
filename = join(self.output_dict['smpl'], '{:06d}.json'.format(nf))
|
||||
with open(filename, 'w') as f:
|
||||
f.write('[\n')
|
||||
for idata, data in enumerate(results):
|
||||
f.write(' {\n')
|
||||
output = {}
|
||||
output['id'] = data['id']
|
||||
for key in ['Rh', 'Th', 'poses', 'expression', 'shapes']:
|
||||
if key not in data.keys():continue
|
||||
output[key] = np.array2string(data[key], max_line_width=1000, separator=', ', formatter=format_out)
|
||||
for key in output.keys():
|
||||
f.write(' \"{}\": {}'.format(key, output[key]))
|
||||
if key != 'shapes':
|
||||
f.write(',\n')
|
||||
else:
|
||||
f.write('\n')
|
||||
|
||||
f.write(' }')
|
||||
if idata != len(results) - 1:
|
||||
f.write(',\n')
|
||||
else:
|
||||
f.write('\n')
|
||||
f.write(']\n')
|
||||
|
||||
def vis_smpl(self, render_data_, nf, images, cameras, mode='smpl', add_back=False):
|
||||
out = join(self.out, mode)
|
||||
os.makedirs(out, exist_ok=True)
|
||||
from visualize.renderer import Renderer
|
||||
render = Renderer(height=1024, width=1024, faces=None)
|
||||
if isinstance(render_data_, list): # different view have different data
|
||||
for nv, render_data in enumerate(render_data_):
|
||||
render_results = render.render(render_data, cameras, images)
|
||||
image_vis = merge(render_results, resize=not self.save_origin)
|
||||
savename = join(out, '{:06d}_{:02d}.jpg'.format(nf, nv))
|
||||
cv2.imwrite(savename, image_vis)
|
||||
else:
|
||||
render_results = render.render(render_data_, cameras, images, add_back=add_back)
|
||||
image_vis = merge(render_results, resize=not self.save_origin)
|
||||
savename = join(out, '{:06d}.jpg'.format(nf))
|
||||
cv2.imwrite(savename, image_vis)
|
||||
|
||||
def readReasultsTxt(outname, isA4d=True):
|
||||
res_ = []
|
||||
with open(outname, "r") as file:
|
||||
lines = file.readlines()
|
||||
if len(lines) < 2:
|
||||
return res_
|
||||
nPerson, nJoints = int(lines[0]), int(lines[1])
|
||||
# 只包含每个人的结果
|
||||
lines = lines[1:]
|
||||
# 每个人的都写了关键点数量
|
||||
line_per_person = 1 + 1 + nJoints
|
||||
for i in range(nPerson):
|
||||
trackId = int(lines[i*line_per_person+1])
|
||||
content = ''.join(lines[i*line_per_person+2:i*line_per_person+2+nJoints])
|
||||
pose3d = np.fromstring(content, dtype=float, sep=' ').reshape((nJoints, 4))
|
||||
if isA4d:
|
||||
# association4d 的关节顺序和正常的定义不一样
|
||||
pose3d = pose3d[[4, 1, 5, 9, 13, 6, 10, 14, 0, 2, 7, 11, 3, 8, 12], :]
|
||||
res_.append({'id':trackId, 'keypoints3d':np.array(pose3d)})
|
||||
return res_
|
||||
|
||||
def readResultsJson(outname):
|
||||
with open(outname) as f:
|
||||
data = json.load(f)
|
||||
res_ = []
|
||||
for d in data:
|
||||
pose3d = np.array(d['keypoints3d'])
|
||||
if pose3d.shape[0] > 25:
|
||||
# 对于有手的情况,把手的根节点赋值成body25上的点
|
||||
pose3d[25, :] = pose3d[7, :]
|
||||
pose3d[46, :] = pose3d[4, :]
|
||||
res_.append({
|
||||
'id': d['id'] if 'id' in d.keys() else d['personID'],
|
||||
'keypoints3d': pose3d
|
||||
})
|
||||
return res_
|
||||
|
||||
class VideoBase(Dataset):
|
||||
"""Dataset for single sequence data
|
||||
"""
|
||||
def __init__(self, image_root, annot_root, out=None, config={}, mode='body15', no_img=False) -> None:
|
||||
self.image_root = image_root
|
||||
self.annot_root = annot_root
|
||||
self.mode = mode
|
||||
self.no_img = no_img
|
||||
self.config = config
|
||||
assert out is not None
|
||||
self.out = out
|
||||
self.writer = FileWriter(self.out, config=config)
|
||||
imgnames = sorted(os.listdir(self.image_root))
|
||||
self.imagelist = imgnames
|
||||
self.annotlist = sorted(os.listdir(self.annot_root))
|
||||
self.nFrames = len(self.imagelist)
|
||||
self.undis = False
|
||||
self.read_camera()
|
||||
|
||||
def read_camera(self):
|
||||
# 读入相机参数
|
||||
annname = join(self.annot_root, self.annotlist[0])
|
||||
data = read_json(annname)
|
||||
if 'K' not in data.keys():
|
||||
height, width = data['height'], data['width']
|
||||
focal = 1.2*max(height, width)
|
||||
K = np.array([focal, 0., width/2, 0., focal, height/2, 0. ,0., 1.]).reshape(3, 3)
|
||||
else:
|
||||
K = np.array(data['K']).reshape(3, 3)
|
||||
self.camera = {'K':K ,'R': np.eye(3), 'T': np.zeros((3, 1))}
|
||||
|
||||
def __getitem__(self, index: int):
|
||||
imgname = join(self.image_root, self.imagelist[index])
|
||||
annname = join(self.annot_root, self.annotlist[index])
|
||||
assert os.path.exists(imgname), imgname
|
||||
assert os.path.exists(annname), annname
|
||||
assert os.path.basename(imgname).split('.')[0] == os.path.basename(annname).split('.')[0], (imgname, annname)
|
||||
if not self.no_img:
|
||||
img = cv2.imread(imgname)
|
||||
else:
|
||||
img = None
|
||||
annot = read_annot(annname, self.mode)
|
||||
return img, annot
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.nFrames
|
||||
|
||||
def write_smpl(self, peopleDict, nf):
|
||||
results = []
|
||||
for pid, people in peopleDict.items():
|
||||
result = {'id': pid}
|
||||
result.update(people.body_params)
|
||||
results.append(result)
|
||||
self.writer.write_smpl(results, nf)
|
||||
|
||||
def vis_detections(self, image, detections, nf, to_img=True):
|
||||
return self.writer.vis_detections([image], [detections], nf,
|
||||
key='keypoints', to_img=to_img, vis_id=True)
|
||||
|
||||
def vis_repro(self, peopleDict, image, annots, nf):
|
||||
# 可视化重投影的关键点与输入的关键点
|
||||
detections = []
|
||||
for pid, data in peopleDict.items():
|
||||
keypoints3d = (data.keypoints3d @ self.camera['R'].T + self.camera['T'].T) @ self.camera['K'].T
|
||||
keypoints3d[:, :2] /= keypoints3d[:, 2:]
|
||||
keypoints3d = np.hstack([keypoints3d, data.keypoints3d[:, -1:]])
|
||||
det = {
|
||||
'id': pid,
|
||||
'repro': keypoints3d
|
||||
}
|
||||
detections.append(det)
|
||||
return self.writer.vis_detections([image], [detections], nf, key='repro',
|
||||
to_img=True, vis_id=False)
|
||||
|
||||
def vis_smpl(self, peopleDict, faces, image, nf, sub_vis=[],
|
||||
mode='smpl', extra_data=[], add_back=True,
|
||||
axis=np.array([1., 0., 0.]), degree=0., fix_center=None):
|
||||
# 为了统一接口,旋转视角的在此处实现,只在单视角的数据中使用
|
||||
# 通过修改相机参数实现
|
||||
# 相机参数的修正可以通过计算点的中心来获得
|
||||
# render the smpl to each view
|
||||
render_data = {}
|
||||
for pid, data in peopleDict.items():
|
||||
render_data[pid] = {
|
||||
'vertices': data.vertices, 'faces': faces,
|
||||
'vid': pid, 'name': 'human_{}_{}'.format(nf, pid)}
|
||||
for iid, extra in enumerate(extra_data):
|
||||
render_data[10000+iid] = {
|
||||
'vertices': extra['vertices'],
|
||||
'faces': extra['faces'],
|
||||
'colors': extra['colors'],
|
||||
'name': extra['name']
|
||||
}
|
||||
camera = {}
|
||||
for key in self.camera.keys():
|
||||
camera[key] = self.camera[key][None, :, :]
|
||||
# render another view point
|
||||
if np.abs(degree) > 1e-3:
|
||||
vertices_all = np.vstack([data.vertices for data in peopleDict.values()])
|
||||
if fix_center is None:
|
||||
center = np.mean(vertices_all, axis=0, keepdims=True)
|
||||
new_center = center.copy()
|
||||
new_center[:, 0:2] = 0
|
||||
else:
|
||||
center = fix_center.copy()
|
||||
new_center = fix_center.copy()
|
||||
new_center[:, 2] *= 1.5
|
||||
direc = np.array(axis)
|
||||
rot, _ = cv2.Rodrigues(direc*degree/90*np.pi/2)
|
||||
# If we rorate the data, it is like:
|
||||
# V = Rnew @ (V0 - center) + new_center
|
||||
# = Rnew @ V0 - Rnew @ center + new_center
|
||||
# combine with the camera
|
||||
# VV = Rc(Rnew @ V0 - Rnew @ center + new_center) + Tc
|
||||
# = Rc@Rnew @ V0 + Rc @ (new_center - Rnew@center) + Tc
|
||||
blank = np.zeros_like(image, dtype=np.uint8) + 255
|
||||
images = [image, blank]
|
||||
Rnew = camera['R'][0] @ rot
|
||||
Tnew = camera['R'][0] @ (new_center.T - rot @ center.T) + camera['T'][0]
|
||||
camera['K'] = np.vstack([camera['K'], camera['K']])
|
||||
camera['R'] = np.vstack([camera['R'], Rnew[None, :, :]])
|
||||
camera['T'] = np.vstack([camera['T'], Tnew[None, :, :]])
|
||||
else:
|
||||
images = [image]
|
||||
self.writer.vis_smpl(render_data, nf, images, camera, mode, add_back=add_back)
|
||||
|
||||
class MVBase(Dataset):
|
||||
""" Dataset for multiview data
|
||||
"""
|
||||
def __init__(self, root, cams=[], out=None, config={},
|
||||
image_root='images', annot_root='annots',
|
||||
mode='body25',
|
||||
undis=True, no_img=False) -> None:
|
||||
self.root = root
|
||||
self.image_root = join(root, image_root)
|
||||
self.annot_root = join(root, annot_root)
|
||||
self.mode = mode
|
||||
self.undis = undis
|
||||
self.no_img = no_img
|
||||
# use when debug
|
||||
self.ret_crop = False
|
||||
self.config = config
|
||||
# results path
|
||||
# the results store keypoints3d
|
||||
self.skel_path = None
|
||||
if out is None:
|
||||
out = join(root, 'output')
|
||||
self.out = out
|
||||
self.writer = FileWriter(self.out, config=config)
|
||||
|
||||
if len(cams) == 0:
|
||||
cams = sorted([i for i in os.listdir(self.image_root) if os.path.isdir(join(self.image_root, i))])
|
||||
if cams[0].isdigit(): # 对于使用数字命名的文件夹
|
||||
cams.sort(key=lambda x:int(x))
|
||||
self.cams = cams
|
||||
self.imagelist = {}
|
||||
self.annotlist = {}
|
||||
for cam in cams: #TODO: 增加start,end
|
||||
imgnames = sorted(os.listdir(join(self.image_root, cam)))
|
||||
self.imagelist[cam] = imgnames
|
||||
self.annotlist[cam] = sorted(os.listdir(join(self.annot_root, cam)))
|
||||
nFrames = min([len(val) for key, val in self.imagelist.items()])
|
||||
self.nFrames = nFrames
|
||||
self.nViews = len(cams)
|
||||
self.read_camera()
|
||||
|
||||
def read_camera(self):
|
||||
path = self.root
|
||||
# 读入相机参数
|
||||
intri_name = join(path, 'intri.yml')
|
||||
extri_name = join(path, 'extri.yml')
|
||||
if os.path.exists(intri_name) and os.path.exists(extri_name):
|
||||
self.cameras = read_camera(intri_name, extri_name, self.cams)
|
||||
self.cameras.pop('basenames')
|
||||
self.cameras_for_affinity = [[cam['invK'], cam['R'], cam['T']] for cam in [self.cameras[name] for name in self.cams]]
|
||||
self.Pall = [self.cameras[cam]['P'] for cam in self.cams]
|
||||
self.Fall = get_fundamental_matrix(self.cameras, self.cams)
|
||||
else:
|
||||
print('!!!there is no camera parameters, maybe bug', intri_name, extri_name)
|
||||
self.cameras = None
|
||||
|
||||
def undistort(self, images):
|
||||
if self.cameras is not None and len(images) > 0:
|
||||
images_ = []
|
||||
for nv in range(self.nViews):
|
||||
mtx = self.cameras[self.cams[nv]]['K']
|
||||
dist = self.cameras[self.cams[nv]]['dist']
|
||||
frame = cv2.undistort(images[nv], mtx, dist, None)
|
||||
images_.append(frame)
|
||||
else:
|
||||
images_ = images
|
||||
return images_
|
||||
|
||||
def undis_det(self, lDetections):
|
||||
for nv in range(len(lDetections)):
|
||||
camera = self.cameras[self.cams[nv]]
|
||||
for det in lDetections[nv]:
|
||||
det['bbox'] = undistort(camera, bbox=det['bbox'])
|
||||
keypoints = det['keypoints']
|
||||
det['keypoints'] = undistort(camera, keypoints=keypoints[None, :, :])[1][0]
|
||||
return lDetections
|
||||
|
||||
def __getitem__(self, index: int):
|
||||
images, annots = [], []
|
||||
for cam in self.cams:
|
||||
imgname = join(self.image_root, cam, self.imagelist[cam][index])
|
||||
annname = join(self.annot_root, cam, self.annotlist[cam][index])
|
||||
assert os.path.exists(imgname), imgname
|
||||
assert os.path.exists(annname), annname
|
||||
assert self.imagelist[cam][index].split('.')[0] == self.annotlist[cam][index].split('.')[0]
|
||||
if not self.no_img:
|
||||
img = cv2.imread(imgname)
|
||||
images.append(img)
|
||||
# TODO:这里直接取了0
|
||||
annot = read_annot(annname, self.mode)
|
||||
if self.ret_crop:
|
||||
for det in annot:
|
||||
bbox = det['bbox']
|
||||
l, t, r, b = det['bbox'][:4]
|
||||
l = max(0, int(l+0.5))
|
||||
t = max(0, int(t+0.5))
|
||||
r = min(img.shape[1], int(r+0.5))
|
||||
b = min(img.shape[0], int(b+0.5))
|
||||
det['bbox'][:4] = [l, t, r, b]
|
||||
crop_img = img[t:b, l:r, :]
|
||||
crop_img = cv2.resize(crop_img, (128, 256))
|
||||
det['crop'] = crop_img
|
||||
annots.append(annot)
|
||||
if self.undis:
|
||||
images = self.undistort(images)
|
||||
annots = self.undis_det(annots)
|
||||
return images, annots
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.nFrames
|
||||
|
||||
def vis_detections(self, images, lDetections, nf, to_img=True, sub_vis=[]):
|
||||
if len(sub_vis) != 0:
|
||||
valid_idx = [self.cams.index(i) for i in sub_vis]
|
||||
images = [images[i] for i in valid_idx]
|
||||
lDetections = [lDetections[i] for i in valid_idx]
|
||||
return self.writer.vis_detections(images, lDetections, nf,
|
||||
key='keypoints', to_img=to_img, vis_id=True)
|
||||
|
||||
def vis_match(self, images, lDetections, nf, to_img=True, sub_vis=[]):
|
||||
if len(sub_vis) != 0:
|
||||
valid_idx = [self.cams.index(i) for i in sub_vis]
|
||||
images = [images[i] for i in valid_idx]
|
||||
lDetections = [lDetections[i] for i in valid_idx]
|
||||
return self.writer.vis_detections(images, lDetections, nf,
|
||||
key='match', to_img=to_img, vis_id=True)
|
||||
|
||||
def write_keypoints3d(self, peopleDict, nf):
|
||||
results = []
|
||||
for pid, people in peopleDict.items():
|
||||
result = {'id': pid, 'keypoints3d': people.keypoints3d.tolist()}
|
||||
results.append(result)
|
||||
self.writer.write_keypoints3d(results, nf)
|
||||
|
||||
def write_smpl(self, peopleDict, nf):
|
||||
results = []
|
||||
for pid, people in peopleDict.items():
|
||||
result = {'id': pid}
|
||||
result.update(people.body_params)
|
||||
results.append(result)
|
||||
self.writer.write_smpl(results, nf)
|
||||
|
||||
def vis_smpl(self, peopleDict, faces, images, nf, sub_vis=[],
|
||||
mode='smpl', extra_data=[], add_back=True):
|
||||
# render the smpl to each view
|
||||
render_data = {}
|
||||
for pid, data in peopleDict.items():
|
||||
render_data[pid] = {
|
||||
'vertices': data.vertices, 'faces': faces,
|
||||
'vid': pid, 'name': 'human_{}_{}'.format(nf, pid)}
|
||||
for iid, extra in enumerate(extra_data):
|
||||
render_data[10000+iid] = {
|
||||
'vertices': extra['vertices'],
|
||||
'faces': extra['faces'],
|
||||
'colors': extra['colors'],
|
||||
'name': extra['name']
|
||||
}
|
||||
cameras = {'K': [], 'R':[], 'T':[]}
|
||||
if len(sub_vis) == 0:
|
||||
sub_vis = self.cams
|
||||
for key in cameras.keys():
|
||||
cameras[key] = [self.cameras[cam][key] for cam in sub_vis]
|
||||
images = [images[self.cams.index(cam)] for cam in sub_vis]
|
||||
self.writer.vis_smpl(render_data, nf, images, cameras, mode, add_back=add_back)
|
||||
|
||||
def read_skel(self, nf, mode='none'):
|
||||
if mode == 'a4d':
|
||||
outname = join(self.skel_path, '{}.txt'.format(nf))
|
||||
assert os.path.exists(outname), outname
|
||||
skels = readReasultsTxt(outname)
|
||||
elif mode == 'none':
|
||||
outname = join(self.skel_path, '{:06d}.json'.format(nf))
|
||||
assert os.path.exists(outname), outname
|
||||
skels = readResultsJson(outname)
|
||||
else:
|
||||
import ipdb; ipdb.set_trace()
|
||||
return skels
|
||||
|
||||
def read_smpl(self, nf):
|
||||
outname = join(self.skel_path, '{:06d}.json'.format(nf))
|
||||
assert os.path.exists(outname), outname
|
||||
datas = read_json(outname)
|
||||
outputs = []
|
||||
for data in datas:
|
||||
for key in ['Rh', 'Th', 'poses', 'shapes']:
|
||||
data[key] = np.array(data[key])
|
||||
outputs.append(data)
|
||||
return outputs
|
@ -1,654 +0,0 @@
|
||||
'''
|
||||
* @ Date: 2020-09-26 16:52:55
|
||||
* @ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-03-20 13:51:36
|
||||
@ FilePath: /EasyMocap/code/dataset/config.py
|
||||
'''
|
||||
import numpy as np
|
||||
|
||||
CONFIG = {}
|
||||
|
||||
CONFIG['smpl'] = {'nJoints': 24, 'kintree':
|
||||
[
|
||||
[ 0, 1 ],
|
||||
[ 0, 2 ],
|
||||
[ 0, 3 ],
|
||||
[ 1, 4 ],
|
||||
[ 2, 5 ],
|
||||
[ 3, 6 ],
|
||||
[ 4, 7 ],
|
||||
[ 5, 8 ],
|
||||
[ 6, 9 ],
|
||||
[ 7, 10],
|
||||
[ 8, 11],
|
||||
[ 9, 12],
|
||||
[ 9, 13],
|
||||
[ 9, 14],
|
||||
[12, 15],
|
||||
[13, 16],
|
||||
[14, 17],
|
||||
[16, 18],
|
||||
[17, 19],
|
||||
[18, 20],
|
||||
[19, 21],
|
||||
[20, 22],
|
||||
[21, 23],
|
||||
],
|
||||
'joint_names': [
|
||||
'hips', # 0
|
||||
'leftUpLeg', # 1
|
||||
'rightUpLeg', # 2
|
||||
'spine', # 3
|
||||
'leftLeg', # 4
|
||||
'rightLeg', # 5
|
||||
'spine1', # 6
|
||||
'leftFoot', # 7
|
||||
'rightFoot', # 8
|
||||
'spine2', # 9
|
||||
'leftToeBase', # 10
|
||||
'rightToeBase', # 11
|
||||
'neck', # 12
|
||||
'leftShoulder', # 13
|
||||
'rightShoulder', # 14
|
||||
'head', # 15
|
||||
'leftArm', # 16
|
||||
'rightArm', # 17
|
||||
'leftForeArm', # 18
|
||||
'rightForeArm', # 19
|
||||
'leftHand', # 20
|
||||
'rightHand', # 21
|
||||
'leftHandIndex1', # 22
|
||||
'rightHandIndex1', # 23
|
||||
]
|
||||
}
|
||||
|
||||
CONFIG['body25'] = {'nJoints': 25, 'kintree':
|
||||
[[ 1, 0],
|
||||
[ 2, 1],
|
||||
[ 3, 2],
|
||||
[ 4, 3],
|
||||
[ 5, 1],
|
||||
[ 6, 5],
|
||||
[ 7, 6],
|
||||
[ 8, 1],
|
||||
[ 9, 8],
|
||||
[10, 9],
|
||||
[11, 10],
|
||||
[12, 8],
|
||||
[13, 12],
|
||||
[14, 13],
|
||||
[15, 0],
|
||||
[16, 0],
|
||||
[17, 15],
|
||||
[18, 16],
|
||||
[19, 14],
|
||||
[20, 19],
|
||||
[21, 14],
|
||||
[22, 11],
|
||||
[23, 22],
|
||||
[24, 11]],
|
||||
'joint_names': [
|
||||
"Nose", "Neck", "RShoulder", "RElbow", "RWrist", "LShoulder", "LElbow", "LWrist", "MidHip", "RHip","RKnee","RAnkle","LHip","LKnee","LAnkle","REye","LEye","REar","LEar","LBigToe","LSmallToe","LHeel","RBigToe","RSmallToe","RHeel"]}
|
||||
|
||||
CONFIG['body25']['skeleton'] = \
|
||||
{
|
||||
( 0, 1): {'mean': 0.228, 'std': 0.046}, # Nose ->Neck
|
||||
( 1, 2): {'mean': 0.144, 'std': 0.029}, # Neck ->RShoulder
|
||||
( 2, 3): {'mean': 0.283, 'std': 0.057}, # RShoulder->RElbow
|
||||
( 3, 4): {'mean': 0.258, 'std': 0.052}, # RElbow ->RWrist
|
||||
( 1, 5): {'mean': 0.145, 'std': 0.029}, # Neck ->LShoulder
|
||||
( 5, 6): {'mean': 0.281, 'std': 0.056}, # LShoulder->LElbow
|
||||
( 6, 7): {'mean': 0.258, 'std': 0.052}, # LElbow ->LWrist
|
||||
( 1, 8): {'mean': 0.483, 'std': 0.097}, # Neck ->MidHip
|
||||
( 8, 9): {'mean': 0.106, 'std': 0.021}, # MidHip ->RHip
|
||||
( 9, 10): {'mean': 0.438, 'std': 0.088}, # RHip ->RKnee
|
||||
(10, 11): {'mean': 0.406, 'std': 0.081}, # RKnee ->RAnkle
|
||||
( 8, 12): {'mean': 0.106, 'std': 0.021}, # MidHip ->LHip
|
||||
(12, 13): {'mean': 0.438, 'std': 0.088}, # LHip ->LKnee
|
||||
(13, 14): {'mean': 0.408, 'std': 0.082}, # LKnee ->LAnkle
|
||||
( 0, 15): {'mean': 0.043, 'std': 0.009}, # Nose ->REye
|
||||
( 0, 16): {'mean': 0.043, 'std': 0.009}, # Nose ->LEye
|
||||
(15, 17): {'mean': 0.105, 'std': 0.021}, # REye ->REar
|
||||
(16, 18): {'mean': 0.104, 'std': 0.021}, # LEye ->LEar
|
||||
(14, 19): {'mean': 0.180, 'std': 0.036}, # LAnkle ->LBigToe
|
||||
(19, 20): {'mean': 0.038, 'std': 0.008}, # LBigToe ->LSmallToe
|
||||
(14, 21): {'mean': 0.044, 'std': 0.009}, # LAnkle ->LHeel
|
||||
(11, 22): {'mean': 0.182, 'std': 0.036}, # RAnkle ->RBigToe
|
||||
(22, 23): {'mean': 0.038, 'std': 0.008}, # RBigToe ->RSmallToe
|
||||
(11, 24): {'mean': 0.044, 'std': 0.009}, # RAnkle ->RHeel
|
||||
}
|
||||
|
||||
CONFIG['body15'] = {'nJoints': 15, 'kintree':
|
||||
[[ 1, 0],
|
||||
[ 2, 1],
|
||||
[ 3, 2],
|
||||
[ 4, 3],
|
||||
[ 5, 1],
|
||||
[ 6, 5],
|
||||
[ 7, 6],
|
||||
[ 8, 1],
|
||||
[ 9, 8],
|
||||
[10, 9],
|
||||
[11, 10],
|
||||
[12, 8],
|
||||
[13, 12],
|
||||
[14, 13],]}
|
||||
CONFIG['body15']['joint_names'] = CONFIG['body25']['joint_names'][:15]
|
||||
CONFIG['body15']['skeleton'] = {key: val for key, val in CONFIG['body25']['skeleton'].items() if key[0] < 15 and key[1] < 15}
|
||||
|
||||
CONFIG['hand'] = {'kintree':
|
||||
[[ 1, 0],
|
||||
[ 2, 1],
|
||||
[ 3, 2],
|
||||
[ 4, 3],
|
||||
[ 5, 0],
|
||||
[ 6, 5],
|
||||
[ 7, 6],
|
||||
[ 8, 7],
|
||||
[ 9, 0],
|
||||
[10, 9],
|
||||
[11, 10],
|
||||
[12, 11],
|
||||
[13, 0],
|
||||
[14, 13],
|
||||
[15, 14],
|
||||
[16, 15],
|
||||
[17, 0],
|
||||
[18, 17],
|
||||
[19, 18],
|
||||
[20, 19]]
|
||||
}
|
||||
|
||||
CONFIG['bodyhand'] = {'kintree':
|
||||
[[ 1, 0],
|
||||
[ 2, 1],
|
||||
[ 3, 2],
|
||||
[ 4, 3],
|
||||
[ 5, 1],
|
||||
[ 6, 5],
|
||||
[ 7, 6],
|
||||
[ 8, 1],
|
||||
[ 9, 8],
|
||||
[10, 9],
|
||||
[11, 10],
|
||||
[12, 8],
|
||||
[13, 12],
|
||||
[14, 13],
|
||||
[15, 0],
|
||||
[16, 0],
|
||||
[17, 15],
|
||||
[18, 16],
|
||||
[19, 14],
|
||||
[20, 19],
|
||||
[21, 14],
|
||||
[22, 11],
|
||||
[23, 22],
|
||||
[24, 11],
|
||||
[26, 7], # handl
|
||||
[27, 26],
|
||||
[28, 27],
|
||||
[29, 28],
|
||||
[30, 7],
|
||||
[31, 30],
|
||||
[32, 31],
|
||||
[33, 32],
|
||||
[34, 7],
|
||||
[35, 34],
|
||||
[36, 35],
|
||||
[37, 36],
|
||||
[38, 7],
|
||||
[39, 38],
|
||||
[40, 39],
|
||||
[41, 40],
|
||||
[42, 7],
|
||||
[43, 42],
|
||||
[44, 43],
|
||||
[45, 44],
|
||||
[47, 4], # handr
|
||||
[48, 47],
|
||||
[49, 48],
|
||||
[50, 49],
|
||||
[51, 4],
|
||||
[52, 51],
|
||||
[53, 52],
|
||||
[54, 53],
|
||||
[55, 4],
|
||||
[56, 55],
|
||||
[57, 56],
|
||||
[58, 57],
|
||||
[59, 4],
|
||||
[60, 59],
|
||||
[61, 60],
|
||||
[62, 61],
|
||||
[63, 4],
|
||||
[64, 63],
|
||||
[65, 64],
|
||||
[66, 65]
|
||||
],
|
||||
'nJoints': 67,
|
||||
'skeleton':{
|
||||
( 0, 1): {'mean': 0.251, 'std': 0.050},
|
||||
( 1, 2): {'mean': 0.169, 'std': 0.034},
|
||||
( 2, 3): {'mean': 0.292, 'std': 0.058},
|
||||
( 3, 4): {'mean': 0.275, 'std': 0.055},
|
||||
( 1, 5): {'mean': 0.169, 'std': 0.034},
|
||||
( 5, 6): {'mean': 0.295, 'std': 0.059},
|
||||
( 6, 7): {'mean': 0.278, 'std': 0.056},
|
||||
( 1, 8): {'mean': 0.566, 'std': 0.113},
|
||||
( 8, 9): {'mean': 0.110, 'std': 0.022},
|
||||
( 9, 10): {'mean': 0.398, 'std': 0.080},
|
||||
(10, 11): {'mean': 0.402, 'std': 0.080},
|
||||
( 8, 12): {'mean': 0.111, 'std': 0.022},
|
||||
(12, 13): {'mean': 0.395, 'std': 0.079},
|
||||
(13, 14): {'mean': 0.403, 'std': 0.081},
|
||||
( 0, 15): {'mean': 0.053, 'std': 0.011},
|
||||
( 0, 16): {'mean': 0.056, 'std': 0.011},
|
||||
(15, 17): {'mean': 0.107, 'std': 0.021},
|
||||
(16, 18): {'mean': 0.107, 'std': 0.021},
|
||||
(14, 19): {'mean': 0.180, 'std': 0.036},
|
||||
(19, 20): {'mean': 0.055, 'std': 0.011},
|
||||
(14, 21): {'mean': 0.065, 'std': 0.013},
|
||||
(11, 22): {'mean': 0.169, 'std': 0.034},
|
||||
(22, 23): {'mean': 0.052, 'std': 0.010},
|
||||
(11, 24): {'mean': 0.061, 'std': 0.012},
|
||||
( 7, 26): {'mean': 0.045, 'std': 0.009},
|
||||
(26, 27): {'mean': 0.042, 'std': 0.008},
|
||||
(27, 28): {'mean': 0.035, 'std': 0.007},
|
||||
(28, 29): {'mean': 0.029, 'std': 0.006},
|
||||
( 7, 30): {'mean': 0.102, 'std': 0.020},
|
||||
(30, 31): {'mean': 0.040, 'std': 0.008},
|
||||
(31, 32): {'mean': 0.026, 'std': 0.005},
|
||||
(32, 33): {'mean': 0.023, 'std': 0.005},
|
||||
( 7, 34): {'mean': 0.101, 'std': 0.020},
|
||||
(34, 35): {'mean': 0.043, 'std': 0.009},
|
||||
(35, 36): {'mean': 0.029, 'std': 0.006},
|
||||
(36, 37): {'mean': 0.024, 'std': 0.005},
|
||||
( 7, 38): {'mean': 0.097, 'std': 0.019},
|
||||
(38, 39): {'mean': 0.041, 'std': 0.008},
|
||||
(39, 40): {'mean': 0.027, 'std': 0.005},
|
||||
(40, 41): {'mean': 0.024, 'std': 0.005},
|
||||
( 7, 42): {'mean': 0.095, 'std': 0.019},
|
||||
(42, 43): {'mean': 0.033, 'std': 0.007},
|
||||
(43, 44): {'mean': 0.020, 'std': 0.004},
|
||||
(44, 45): {'mean': 0.018, 'std': 0.004},
|
||||
( 4, 47): {'mean': 0.043, 'std': 0.009},
|
||||
(47, 48): {'mean': 0.041, 'std': 0.008},
|
||||
(48, 49): {'mean': 0.034, 'std': 0.007},
|
||||
(49, 50): {'mean': 0.028, 'std': 0.006},
|
||||
( 4, 51): {'mean': 0.101, 'std': 0.020},
|
||||
(51, 52): {'mean': 0.041, 'std': 0.008},
|
||||
(52, 53): {'mean': 0.026, 'std': 0.005},
|
||||
(53, 54): {'mean': 0.024, 'std': 0.005},
|
||||
( 4, 55): {'mean': 0.100, 'std': 0.020},
|
||||
(55, 56): {'mean': 0.044, 'std': 0.009},
|
||||
(56, 57): {'mean': 0.029, 'std': 0.006},
|
||||
(57, 58): {'mean': 0.023, 'std': 0.005},
|
||||
( 4, 59): {'mean': 0.096, 'std': 0.019},
|
||||
(59, 60): {'mean': 0.040, 'std': 0.008},
|
||||
(60, 61): {'mean': 0.028, 'std': 0.006},
|
||||
(61, 62): {'mean': 0.023, 'std': 0.005},
|
||||
( 4, 63): {'mean': 0.094, 'std': 0.019},
|
||||
(63, 64): {'mean': 0.032, 'std': 0.006},
|
||||
(64, 65): {'mean': 0.020, 'std': 0.004},
|
||||
(65, 66): {'mean': 0.018, 'std': 0.004},
|
||||
}
|
||||
}
|
||||
|
||||
CONFIG['bodyhandface'] = {'kintree':
|
||||
[[ 1, 0],
|
||||
[ 2, 1],
|
||||
[ 3, 2],
|
||||
[ 4, 3],
|
||||
[ 5, 1],
|
||||
[ 6, 5],
|
||||
[ 7, 6],
|
||||
[ 8, 1],
|
||||
[ 9, 8],
|
||||
[10, 9],
|
||||
[11, 10],
|
||||
[12, 8],
|
||||
[13, 12],
|
||||
[14, 13],
|
||||
[15, 0],
|
||||
[16, 0],
|
||||
[17, 15],
|
||||
[18, 16],
|
||||
[19, 14],
|
||||
[20, 19],
|
||||
[21, 14],
|
||||
[22, 11],
|
||||
[23, 22],
|
||||
[24, 11],
|
||||
[26, 7], # handl
|
||||
[27, 26],
|
||||
[28, 27],
|
||||
[29, 28],
|
||||
[30, 7],
|
||||
[31, 30],
|
||||
[32, 31],
|
||||
[33, 32],
|
||||
[34, 7],
|
||||
[35, 34],
|
||||
[36, 35],
|
||||
[37, 36],
|
||||
[38, 7],
|
||||
[39, 38],
|
||||
[40, 39],
|
||||
[41, 40],
|
||||
[42, 7],
|
||||
[43, 42],
|
||||
[44, 43],
|
||||
[45, 44],
|
||||
[47, 4], # handr
|
||||
[48, 47],
|
||||
[49, 48],
|
||||
[50, 49],
|
||||
[51, 4],
|
||||
[52, 51],
|
||||
[53, 52],
|
||||
[54, 53],
|
||||
[55, 4],
|
||||
[56, 55],
|
||||
[57, 56],
|
||||
[58, 57],
|
||||
[59, 4],
|
||||
[60, 59],
|
||||
[61, 60],
|
||||
[62, 61],
|
||||
[63, 4],
|
||||
[64, 63],
|
||||
[65, 64],
|
||||
[66, 65],
|
||||
[ 67, 68],
|
||||
[ 68, 69],
|
||||
[ 69, 70],
|
||||
[ 70, 71],
|
||||
[ 72, 73],
|
||||
[ 73, 74],
|
||||
[ 74, 75],
|
||||
[ 75, 76],
|
||||
[ 77, 78],
|
||||
[ 78, 79],
|
||||
[ 79, 80],
|
||||
[ 81, 82],
|
||||
[ 82, 83],
|
||||
[ 83, 84],
|
||||
[ 84, 85],
|
||||
[ 86, 87],
|
||||
[ 87, 88],
|
||||
[ 88, 89],
|
||||
[ 89, 90],
|
||||
[ 90, 91],
|
||||
[ 91, 86],
|
||||
[ 92, 93],
|
||||
[ 93, 94],
|
||||
[ 94, 95],
|
||||
[ 95, 96],
|
||||
[ 96, 97],
|
||||
[ 97, 92],
|
||||
[ 98, 99],
|
||||
[ 99, 100],
|
||||
[100, 101],
|
||||
[101, 102],
|
||||
[102, 103],
|
||||
[103, 104],
|
||||
[104, 105],
|
||||
[105, 106],
|
||||
[106, 107],
|
||||
[107, 108],
|
||||
[108, 109],
|
||||
[109, 98],
|
||||
[110, 111],
|
||||
[111, 112],
|
||||
[112, 113],
|
||||
[113, 114],
|
||||
[114, 115],
|
||||
[115, 116],
|
||||
[116, 117],
|
||||
[117, 110]
|
||||
],
|
||||
'nJoints': 118,
|
||||
'skeleton':{
|
||||
( 0, 1): {'mean': 0.251, 'std': 0.050},
|
||||
( 1, 2): {'mean': 0.169, 'std': 0.034},
|
||||
( 2, 3): {'mean': 0.292, 'std': 0.058},
|
||||
( 3, 4): {'mean': 0.275, 'std': 0.055},
|
||||
( 1, 5): {'mean': 0.169, 'std': 0.034},
|
||||
( 5, 6): {'mean': 0.295, 'std': 0.059},
|
||||
( 6, 7): {'mean': 0.278, 'std': 0.056},
|
||||
( 1, 8): {'mean': 0.566, 'std': 0.113},
|
||||
( 8, 9): {'mean': 0.110, 'std': 0.022},
|
||||
( 9, 10): {'mean': 0.398, 'std': 0.080},
|
||||
(10, 11): {'mean': 0.402, 'std': 0.080},
|
||||
( 8, 12): {'mean': 0.111, 'std': 0.022},
|
||||
(12, 13): {'mean': 0.395, 'std': 0.079},
|
||||
(13, 14): {'mean': 0.403, 'std': 0.081},
|
||||
( 0, 15): {'mean': 0.053, 'std': 0.011},
|
||||
( 0, 16): {'mean': 0.056, 'std': 0.011},
|
||||
(15, 17): {'mean': 0.107, 'std': 0.021},
|
||||
(16, 18): {'mean': 0.107, 'std': 0.021},
|
||||
(14, 19): {'mean': 0.180, 'std': 0.036},
|
||||
(19, 20): {'mean': 0.055, 'std': 0.011},
|
||||
(14, 21): {'mean': 0.065, 'std': 0.013},
|
||||
(11, 22): {'mean': 0.169, 'std': 0.034},
|
||||
(22, 23): {'mean': 0.052, 'std': 0.010},
|
||||
(11, 24): {'mean': 0.061, 'std': 0.012},
|
||||
( 7, 26): {'mean': 0.045, 'std': 0.009},
|
||||
(26, 27): {'mean': 0.042, 'std': 0.008},
|
||||
(27, 28): {'mean': 0.035, 'std': 0.007},
|
||||
(28, 29): {'mean': 0.029, 'std': 0.006},
|
||||
( 7, 30): {'mean': 0.102, 'std': 0.020},
|
||||
(30, 31): {'mean': 0.040, 'std': 0.008},
|
||||
(31, 32): {'mean': 0.026, 'std': 0.005},
|
||||
(32, 33): {'mean': 0.023, 'std': 0.005},
|
||||
( 7, 34): {'mean': 0.101, 'std': 0.020},
|
||||
(34, 35): {'mean': 0.043, 'std': 0.009},
|
||||
(35, 36): {'mean': 0.029, 'std': 0.006},
|
||||
(36, 37): {'mean': 0.024, 'std': 0.005},
|
||||
( 7, 38): {'mean': 0.097, 'std': 0.019},
|
||||
(38, 39): {'mean': 0.041, 'std': 0.008},
|
||||
(39, 40): {'mean': 0.027, 'std': 0.005},
|
||||
(40, 41): {'mean': 0.024, 'std': 0.005},
|
||||
( 7, 42): {'mean': 0.095, 'std': 0.019},
|
||||
(42, 43): {'mean': 0.033, 'std': 0.007},
|
||||
(43, 44): {'mean': 0.020, 'std': 0.004},
|
||||
(44, 45): {'mean': 0.018, 'std': 0.004},
|
||||
( 4, 47): {'mean': 0.043, 'std': 0.009},
|
||||
(47, 48): {'mean': 0.041, 'std': 0.008},
|
||||
(48, 49): {'mean': 0.034, 'std': 0.007},
|
||||
(49, 50): {'mean': 0.028, 'std': 0.006},
|
||||
( 4, 51): {'mean': 0.101, 'std': 0.020},
|
||||
(51, 52): {'mean': 0.041, 'std': 0.008},
|
||||
(52, 53): {'mean': 0.026, 'std': 0.005},
|
||||
(53, 54): {'mean': 0.024, 'std': 0.005},
|
||||
( 4, 55): {'mean': 0.100, 'std': 0.020},
|
||||
(55, 56): {'mean': 0.044, 'std': 0.009},
|
||||
(56, 57): {'mean': 0.029, 'std': 0.006},
|
||||
(57, 58): {'mean': 0.023, 'std': 0.005},
|
||||
( 4, 59): {'mean': 0.096, 'std': 0.019},
|
||||
(59, 60): {'mean': 0.040, 'std': 0.008},
|
||||
(60, 61): {'mean': 0.028, 'std': 0.006},
|
||||
(61, 62): {'mean': 0.023, 'std': 0.005},
|
||||
( 4, 63): {'mean': 0.094, 'std': 0.019},
|
||||
(63, 64): {'mean': 0.032, 'std': 0.006},
|
||||
(64, 65): {'mean': 0.020, 'std': 0.004},
|
||||
(65, 66): {'mean': 0.018, 'std': 0.004},
|
||||
(67, 68): {'mean': 0.012, 'std': 0.002},
|
||||
(68, 69): {'mean': 0.013, 'std': 0.003},
|
||||
(69, 70): {'mean': 0.014, 'std': 0.003},
|
||||
(70, 71): {'mean': 0.012, 'std': 0.002},
|
||||
(72, 73): {'mean': 0.014, 'std': 0.003},
|
||||
(73, 74): {'mean': 0.014, 'std': 0.003},
|
||||
(74, 75): {'mean': 0.015, 'std': 0.003},
|
||||
(75, 76): {'mean': 0.013, 'std': 0.003},
|
||||
(77, 78): {'mean': 0.014, 'std': 0.003},
|
||||
(78, 79): {'mean': 0.014, 'std': 0.003},
|
||||
(79, 80): {'mean': 0.015, 'std': 0.003},
|
||||
(81, 82): {'mean': 0.009, 'std': 0.002},
|
||||
(82, 83): {'mean': 0.010, 'std': 0.002},
|
||||
(83, 84): {'mean': 0.010, 'std': 0.002},
|
||||
(84, 85): {'mean': 0.010, 'std': 0.002},
|
||||
(86, 87): {'mean': 0.009, 'std': 0.002},
|
||||
(87, 88): {'mean': 0.009, 'std': 0.002},
|
||||
(88, 89): {'mean': 0.008, 'std': 0.002},
|
||||
(89, 90): {'mean': 0.008, 'std': 0.002},
|
||||
(90, 91): {'mean': 0.009, 'std': 0.002},
|
||||
(86, 91): {'mean': 0.008, 'std': 0.002},
|
||||
(92, 93): {'mean': 0.009, 'std': 0.002},
|
||||
(93, 94): {'mean': 0.009, 'std': 0.002},
|
||||
(94, 95): {'mean': 0.009, 'std': 0.002},
|
||||
(95, 96): {'mean': 0.009, 'std': 0.002},
|
||||
(96, 97): {'mean': 0.009, 'std': 0.002},
|
||||
(92, 97): {'mean': 0.009, 'std': 0.002},
|
||||
(98, 99): {'mean': 0.016, 'std': 0.003},
|
||||
(99, 100): {'mean': 0.013, 'std': 0.003},
|
||||
(100, 101): {'mean': 0.008, 'std': 0.002},
|
||||
(101, 102): {'mean': 0.008, 'std': 0.002},
|
||||
(102, 103): {'mean': 0.012, 'std': 0.002},
|
||||
(103, 104): {'mean': 0.014, 'std': 0.003},
|
||||
(104, 105): {'mean': 0.015, 'std': 0.003},
|
||||
(105, 106): {'mean': 0.012, 'std': 0.002},
|
||||
(106, 107): {'mean': 0.009, 'std': 0.002},
|
||||
(107, 108): {'mean': 0.009, 'std': 0.002},
|
||||
(108, 109): {'mean': 0.013, 'std': 0.003},
|
||||
(98, 109): {'mean': 0.016, 'std': 0.003},
|
||||
(110, 111): {'mean': 0.021, 'std': 0.004},
|
||||
(111, 112): {'mean': 0.009, 'std': 0.002},
|
||||
(112, 113): {'mean': 0.008, 'std': 0.002},
|
||||
(113, 114): {'mean': 0.019, 'std': 0.004},
|
||||
(114, 115): {'mean': 0.018, 'std': 0.004},
|
||||
(115, 116): {'mean': 0.008, 'std': 0.002},
|
||||
(116, 117): {'mean': 0.009, 'std': 0.002},
|
||||
(110, 117): {'mean': 0.020, 'std': 0.004},
|
||||
}
|
||||
}
|
||||
|
||||
face_kintree_without_contour = [[ 0, 1],
|
||||
[ 1, 2],
|
||||
[ 2, 3],
|
||||
[ 3, 4],
|
||||
[ 5, 6],
|
||||
[ 6, 7],
|
||||
[ 7, 8],
|
||||
[ 8, 9],
|
||||
[10, 11],
|
||||
[11, 12],
|
||||
[12, 13],
|
||||
[14, 15],
|
||||
[15, 16],
|
||||
[16, 17],
|
||||
[17, 18],
|
||||
[19, 20],
|
||||
[20, 21],
|
||||
[21, 22],
|
||||
[22, 23],
|
||||
[23, 24],
|
||||
[24, 19],
|
||||
[25, 26],
|
||||
[26, 27],
|
||||
[27, 28],
|
||||
[28, 29],
|
||||
[29, 30],
|
||||
[30, 25],
|
||||
[31, 32],
|
||||
[32, 33],
|
||||
[33, 34],
|
||||
[34, 35],
|
||||
[35, 36],
|
||||
[36, 37],
|
||||
[37, 38],
|
||||
[38, 39],
|
||||
[39, 40],
|
||||
[40, 41],
|
||||
[41, 42],
|
||||
[42, 31],
|
||||
[43, 44],
|
||||
[44, 45],
|
||||
[45, 46],
|
||||
[46, 47],
|
||||
[47, 48],
|
||||
[48, 49],
|
||||
[49, 50],
|
||||
[50, 43]]
|
||||
|
||||
CONFIG['face'] = {'kintree':[ [0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12],[12,13],[13,14],[14,15],[15,16], #outline (ignored)
|
||||
[17,18],[18,19],[19,20],[20,21], #right eyebrow
|
||||
[22,23],[23,24],[24,25],[25,26], #left eyebrow
|
||||
[27,28],[28,29],[29,30], #nose upper part
|
||||
[31,32],[32,33],[33,34],[34,35], #nose lower part
|
||||
[36,37],[37,38],[38,39],[39,40],[40,41],[41,36], #right eye
|
||||
[42,43],[43,44],[44,45],[45,46],[46,47],[47,42], #left eye
|
||||
[48,49],[49,50],[50,51],[51,52],[52,53],[53,54],[54,55],[55,56],[56,57],[57,58],[58,59],[59,48], #Lip outline
|
||||
[60,61],[61,62],[62,63],[63,64],[64,65],[65,66],[66,67],[67,60] #Lip inner line
|
||||
]}
|
||||
|
||||
CONFIG['h36m'] = {
|
||||
'kintree': [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [9, 10], [8, 11], [11, 12], [
|
||||
12, 13], [8, 14], [14, 15], [15, 16]],
|
||||
'color': ['r', 'r', 'r', 'g', 'g', 'g', 'k', 'k', 'k', 'k', 'g', 'g', 'g', 'r', 'r', 'r'],
|
||||
'joint_names': [
|
||||
'hip', # 0
|
||||
'LHip', # 1
|
||||
'LKnee', # 2
|
||||
'LAnkle', # 3
|
||||
'RHip', # 4
|
||||
'RKnee', # 5
|
||||
'RAnkle', # 6
|
||||
'Spine (H36M)', # 7
|
||||
'Neck', # 8
|
||||
'Head (H36M)', # 9
|
||||
'headtop', # 10
|
||||
'LShoulder', # 11
|
||||
'LElbow', # 12
|
||||
'LWrist', # 13
|
||||
'RShoulder', # 14
|
||||
'RElbow', # 15
|
||||
'RWrist', # 16
|
||||
],
|
||||
'nJoints': 17}
|
||||
|
||||
NJOINTS_BODY = 25
|
||||
NJOINTS_HAND = 21
|
||||
NJOINTS_FACE = 70
|
||||
NLIMBS_BODY = len(CONFIG['body25']['kintree'])
|
||||
NLIMBS_HAND = len(CONFIG['hand']['kintree'])
|
||||
NLIMBS_FACE = len(CONFIG['face']['kintree'])
|
||||
|
||||
def getKintree(name='total'):
|
||||
if name == 'total':
|
||||
# order: body25, face, rhand, lhand
|
||||
kintree = CONFIG['body25']['kintree'] + CONFIG['hand']['kintree'] + CONFIG['hand']['kintree'] + CONFIG['face']['kintree']
|
||||
kintree = np.array(kintree)
|
||||
kintree[NLIMBS_BODY:NLIMBS_BODY + NLIMBS_HAND] += NJOINTS_BODY
|
||||
kintree[NLIMBS_BODY + NLIMBS_HAND:NLIMBS_BODY + 2*NLIMBS_HAND] += NJOINTS_BODY + NJOINTS_HAND
|
||||
kintree[NLIMBS_BODY + 2*NLIMBS_HAND:] += NJOINTS_BODY + 2*NJOINTS_HAND
|
||||
elif name == 'smplh':
|
||||
# order: body25, lhand, rhand
|
||||
kintree = CONFIG['body25']['kintree'] + CONFIG['hand']['kintree'] + CONFIG['hand']['kintree']
|
||||
kintree = np.array(kintree)
|
||||
kintree[NLIMBS_BODY:NLIMBS_BODY + NLIMBS_HAND] += NJOINTS_BODY
|
||||
kintree[NLIMBS_BODY + NLIMBS_HAND:NLIMBS_BODY + 2*NLIMBS_HAND] += NJOINTS_BODY + NJOINTS_HAND
|
||||
return kintree
|
||||
CONFIG['total'] = {}
|
||||
CONFIG['total']['kintree'] = getKintree('total')
|
||||
CONFIG['total']['nJoints'] = 137
|
||||
|
||||
COCO17_IN_BODY25 = [0,16,15,18,17,5,2,6,3,7,4,12,9,13,10,14,11]
|
||||
|
||||
def coco17tobody25(points2d):
|
||||
dim = 3
|
||||
if len(points2d.shape) == 2:
|
||||
points2d = points2d[None, :, :]
|
||||
dim = 2
|
||||
kpts = np.zeros((points2d.shape[0], 25, 3))
|
||||
kpts[:, COCO17_IN_BODY25, :2] = points2d[:, :, :2]
|
||||
kpts[:, COCO17_IN_BODY25, 2:3] = points2d[:, :, 2:3]
|
||||
kpts[:, 8, :2] = kpts[:, [9, 12], :2].mean(axis=1)
|
||||
kpts[:, 8, 2] = kpts[:, [9, 12], 2].min(axis=1)
|
||||
kpts[:, 1, :2] = kpts[:, [2, 5], :2].mean(axis=1)
|
||||
kpts[:, 1, 2] = kpts[:, [2, 5], 2].min(axis=1)
|
||||
if dim == 2:
|
||||
kpts = kpts[0]
|
||||
return kpts
|
||||
|
@ -1,106 +0,0 @@
|
||||
'''
|
||||
@ Date: 2021-01-12 17:12:50
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-21 14:51:45
|
||||
@ FilePath: /EasyMocap/code/dataset/mv1pmf.py
|
||||
'''
|
||||
import os
|
||||
import ipdb
|
||||
import torch
|
||||
from os.path import join
|
||||
import numpy as np
|
||||
import cv2
|
||||
from .base import MVBase
|
||||
|
||||
class MV1PMF(MVBase):
|
||||
def __init__(self, root, cams=[], pid=0, out=None, config={},
|
||||
image_root='images', annot_root='annots', mode='body15',
|
||||
undis=True, no_img=False) -> None:
|
||||
super().__init__(root, cams, out, config, image_root, annot_root,
|
||||
mode, undis, no_img)
|
||||
self.pid = pid
|
||||
|
||||
def write_keypoints3d(self, keypoints3d, nf):
|
||||
results = [{'id': 0, 'keypoints3d': keypoints3d.tolist()}]
|
||||
self.writer.write_keypoints3d(results, nf)
|
||||
|
||||
def write_smpl(self, params, nf, images=[], to_img=False):
|
||||
result = {'id': 0}
|
||||
result.update(params)
|
||||
self.writer.write_smpl([result], nf)
|
||||
|
||||
def vis_smpl(self, vertices, faces, images, nf, sub_vis=[],
|
||||
mode='smpl', extra_data=[], add_back=True):
|
||||
render_data = {}
|
||||
if len(vertices.shape) == 3:
|
||||
vertices = vertices[0]
|
||||
pid = self.pid
|
||||
render_data[pid] = {'vertices': vertices, 'faces': faces,
|
||||
'vid': pid, 'name': 'human_{}_{}'.format(nf, pid)}
|
||||
cameras = {'K': [], 'R':[], 'T':[]}
|
||||
if len(sub_vis) == 0:
|
||||
sub_vis = self.cams
|
||||
for key in cameras.keys():
|
||||
cameras[key] = [self.cameras[cam][key] for cam in sub_vis]
|
||||
images = [images[self.cams.index(cam)] for cam in sub_vis]
|
||||
self.writer.vis_smpl(render_data, nf, images, cameras, mode, add_back=add_back)
|
||||
|
||||
def vis_detections(self, images, annots, nf, to_img=True, sub_vis=[]):
|
||||
lDetections = []
|
||||
for nv in range(len(images)):
|
||||
det = {
|
||||
'id': self.pid,
|
||||
'bbox': annots['bbox'][nv],
|
||||
'keypoints': annots['keypoints'][nv]
|
||||
}
|
||||
lDetections.append([det])
|
||||
if len(sub_vis) != 0:
|
||||
valid_idx = [self.cams.index(i) for i in sub_vis]
|
||||
images = [images[i] for i in valid_idx]
|
||||
lDetections = [lDetections[i] for i in valid_idx]
|
||||
return self.writer.vis_detections(images, lDetections, nf,
|
||||
key='keypoints', to_img=to_img, vis_id=False)
|
||||
|
||||
def vis_repro(self, images, annots, kpts_repro, nf, to_img=True, sub_vis=[]):
|
||||
lDetections = []
|
||||
for nv in range(len(images)):
|
||||
det = {
|
||||
'id': -1,
|
||||
'repro': kpts_repro[nv]
|
||||
}
|
||||
lDetections.append([det])
|
||||
if len(sub_vis) != 0:
|
||||
valid_idx = [self.cams.index(i) for i in sub_vis]
|
||||
images = [images[i] for i in valid_idx]
|
||||
lDetections = [lDetections[i] for i in valid_idx]
|
||||
return self.writer.vis_detections(images, lDetections, nf, key='repro',
|
||||
to_img=to_img, vis_id=False)
|
||||
|
||||
def __getitem__(self, index: int):
|
||||
images, annots_all = super().__getitem__(index)
|
||||
annots = {'bbox': [], 'keypoints': []}
|
||||
for nv, cam in enumerate(self.cams):
|
||||
data = [d for d in annots_all[nv] if d['id'] == self.pid]
|
||||
if len(data) == 1:
|
||||
data = data[0]
|
||||
bbox = data['bbox']
|
||||
keypoints = data['keypoints']
|
||||
else:
|
||||
print('not found pid {} in {}, {}'.format(self.pid, index, nv))
|
||||
if self.add_hand_face:
|
||||
keypoints = np.zeros((137, 3))
|
||||
else:
|
||||
keypoints = np.zeros((25, 3))
|
||||
bbox = np.array([0, 0, 100., 100., 0.])
|
||||
annots['bbox'].append(bbox)
|
||||
annots['keypoints'].append(keypoints)
|
||||
for key in ['bbox', 'keypoints']:
|
||||
annots[key] = np.stack(annots[key])
|
||||
return images, annots
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
root = '/home/qian/zjurv2/mnt/data/ftp/Human/vis/lightstage/CoreView_302_sync/'
|
||||
dataset = MV1PMF(root)
|
||||
images, annots = dataset[0]
|
@ -1,97 +0,0 @@
|
||||
'''
|
||||
@ Date: 2021-01-12 17:08:25
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-24 20:57:35
|
||||
@ FilePath: /EasyMocapRelease/code/demo_mv1pmf_skel.py
|
||||
'''
|
||||
# show skeleton and reprojection
|
||||
from dataset.mv1pmf import MV1PMF
|
||||
from dataset.config import CONFIG
|
||||
from mytools.reconstruction import simple_recon_person, projectN3
|
||||
# from mytools.robust_triangulate import robust_triangulate
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
from smplmodel import check_keypoints
|
||||
|
||||
def smooth_skeleton(skeleton):
|
||||
# nFrames, nJoints, 4: [[(x, y, z, c)]]
|
||||
nFrames = skeleton.shape[0]
|
||||
span = 2
|
||||
# results = np.zeros((nFrames-2*span, skeleton.shape[1], skeleton.shape[2]))
|
||||
origin = skeleton[span:nFrames-span, :, :].copy()
|
||||
conf = origin[:, :, 3:4].copy()
|
||||
skel = origin[:, :, :3] * conf
|
||||
base_start = span
|
||||
for i in range(-span, span+1):
|
||||
sample = skeleton[base_start+i:base_start+i+skel.shape[0], :, :]
|
||||
skel += sample[:, :, :3] * sample[:, :, 3:]
|
||||
conf += sample[:, :, 3:]
|
||||
not_f, not_j, _ = np.where(conf<0.1)
|
||||
skel[not_f, not_j, :] = 0.
|
||||
conf[not_f, not_j, :] = 1.
|
||||
skel = skel/conf
|
||||
skeleton[span:nFrames-span, :, :3] = skel
|
||||
return skeleton
|
||||
|
||||
def get_limb_length(config, keypoints):
|
||||
skeleton = {}
|
||||
for i, j_ in config['kintree']:
|
||||
if j_ == 25:
|
||||
j = 7
|
||||
elif j_ == 46:
|
||||
j = 4
|
||||
else:
|
||||
j = j_
|
||||
key = tuple(sorted([i, j]))
|
||||
length, confs = 0, 0
|
||||
for nf in range(keypoints.shape[0]):
|
||||
limb_length = np.linalg.norm(keypoints[nf, i, :3] - keypoints[nf, j, :3])
|
||||
conf = keypoints[nf, [i, j], -1].min()
|
||||
length += limb_length * conf
|
||||
confs += conf
|
||||
limb_length = length/confs
|
||||
skeleton[key] = {'mean': limb_length, 'std': limb_length*0.2}
|
||||
print('{')
|
||||
for key, val in skeleton.items():
|
||||
res = ' ({:2d}, {:2d}): {{\'mean\': {:.3f}, \'std\': {:.3f}}}, '.format(*key, val['mean'], val['std'])
|
||||
if 'joint_names' in config.keys():
|
||||
res += '# {:9s}->{:9s}'.format(config['joint_names'][key[0]], config['joint_names'][key[1]])
|
||||
print(res)
|
||||
print('}')
|
||||
|
||||
def mv1pmf_skel(path, sub, out, mode, args):
|
||||
MIN_CONF_THRES = 0.3
|
||||
no_img = not (args.vis_det or args.vis_repro)
|
||||
config = CONFIG[mode]
|
||||
dataset = MV1PMF(path, cams=sub, config=config, mode=mode,
|
||||
undis=args.undis, no_img=no_img, out=out)
|
||||
kp3ds = []
|
||||
start, end = args.start, min(args.end, len(dataset))
|
||||
for nf in tqdm(range(start, end), desc='triangulation'):
|
||||
images, annots = dataset[nf]
|
||||
conf = annots['keypoints'][..., -1]
|
||||
conf[conf < MIN_CONF_THRES] = 0
|
||||
annots['keypoints'] = check_keypoints(annots['keypoints'], WEIGHT_DEBUFF=1)
|
||||
keypoints3d, _, kpts_repro = simple_recon_person(annots['keypoints'], dataset.Pall, config=config, ret_repro=True)
|
||||
# keypoints3d, _, kpts_repro = robust_triangulate(annots['keypoints'], dataset.Pall, config=config, ret_repro=True)
|
||||
kp3ds.append(keypoints3d)
|
||||
if args.vis_det:
|
||||
dataset.vis_detections(images, annots, nf, sub_vis=args.sub_vis)
|
||||
if args.vis_repro:
|
||||
dataset.vis_repro(images, annots, kpts_repro, nf, sub_vis=args.sub_vis)
|
||||
# smooth the skeleton
|
||||
kp3ds = np.stack(kp3ds)
|
||||
# 计算一下骨长
|
||||
# get_limb_length(config, kp3ds)
|
||||
# if args.smooth:
|
||||
# kp3ds = smooth_skeleton(kp3ds)
|
||||
for nf in tqdm(range(kp3ds.shape[0]), desc='dump'):
|
||||
dataset.write_keypoints3d(kp3ds[nf], nf + start)
|
||||
|
||||
if __name__ == "__main__":
|
||||
from mytools.cmd_loader import load_parser
|
||||
parser = load_parser()
|
||||
|
||||
args = parser.parse_args()
|
||||
mv1pmf_skel(args.path, args.sub, args.out, args.body, args)
|
@ -1,138 +0,0 @@
|
||||
'''
|
||||
@ Date: 2021-01-12 17:08:25
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-25 19:32:44
|
||||
@ FilePath: /EasyMocapRelease/code/demo_mv1pmf_smpl.py
|
||||
'''
|
||||
# show skeleton and reprojection
|
||||
import pyrender # first import the pyrender
|
||||
from pyfitting.optimize_simple import optimizeShape, optimizePose
|
||||
from dataset.mv1pmf import MV1PMF
|
||||
from dataset.config import CONFIG
|
||||
from mytools.utils import Timer
|
||||
from smplmodel import select_nf, init_params, Config, load_model, check_keypoints
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
|
||||
def load_weight_shape():
|
||||
weight = {'s3d': 1., 'reg_shapes': 5e-3}
|
||||
return weight
|
||||
|
||||
def load_weight_pose(model):
|
||||
if model == 'smpl':
|
||||
weight = {
|
||||
'k3d': 1., 'reg_poses_zero': 1e-2, 'smooth_body': 1e-2
|
||||
}
|
||||
elif model == 'smplh':
|
||||
weight = {
|
||||
'k3d': 1., 'reg_poses_zero': 1e-3,
|
||||
'smooth_body': 1e-2, 'smooth_hand': 1e-2
|
||||
}
|
||||
elif model == 'smplx':
|
||||
weight = {
|
||||
'k3d': 1., 'reg_poses_zero': 1e-3,
|
||||
'reg_expression': 1e-2,
|
||||
'smooth_body': 1e-2, 'smooth_hand': 1e-2
|
||||
}
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return weight
|
||||
|
||||
def print_mean_skel(mode):
|
||||
with Timer('Loading {}, {}'.format(args.model, args.gender)):
|
||||
body_model = load_model(args.gender, model_type=args.model)
|
||||
params_init = init_params(nFrames=1, model_type=args.model)
|
||||
skel = body_model(return_verts=False, return_tensor=False, **params_init)[0]
|
||||
# skel: nJoints, 3
|
||||
config = CONFIG[mode]
|
||||
skeleton = {}
|
||||
for i, j_ in config['kintree']:
|
||||
if j_ == 25:
|
||||
j = 7
|
||||
elif j_ == 46:
|
||||
j = 4
|
||||
else:
|
||||
j = j_
|
||||
key = tuple(sorted([i, j]))
|
||||
limb_length = np.linalg.norm(skel[i] - skel[j])
|
||||
skeleton[key] = {'mean': limb_length, 'std': limb_length*0.2}
|
||||
print('{')
|
||||
for key, val in skeleton.items():
|
||||
res = ' ({:2d}, {:2d}): {{\'mean\': {:.3f}, \'std\': {:.3f}}}, '.format(*key, val['mean'], val['std'])
|
||||
if 'joint_names' in config.keys():
|
||||
res += '# {:9s}->{:9s}'.format(config['joint_names'][key[0]], config['joint_names'][key[1]])
|
||||
print(res)
|
||||
print('}')
|
||||
|
||||
def mv1pmf_smpl(path, sub, out, mode, args):
|
||||
config = CONFIG[mode]
|
||||
no_img = True
|
||||
dataset = MV1PMF(path, cams=sub, config=CONFIG[mode], mode=args.body,
|
||||
undis=args.undis, no_img=no_img, out=out)
|
||||
if args.skel is None:
|
||||
from demo_mv1pmf_skel import mv1pmf_skel
|
||||
mv1pmf_skel(path, sub, out, mode, args)
|
||||
args.skel = join(out, 'keypoints3d')
|
||||
dataset.skel_path = args.skel
|
||||
kp3ds = []
|
||||
start, end = args.start, min(args.end, len(dataset))
|
||||
dataset.no_img = True
|
||||
annots_all = []
|
||||
for nf in tqdm(range(start, end), desc='loading'):
|
||||
images, annots = dataset[nf]
|
||||
infos = dataset.read_skel(nf)
|
||||
kp3ds.append(infos[0]['keypoints3d'])
|
||||
annots_all.append(annots)
|
||||
kp3ds = np.stack(kp3ds)
|
||||
kp3ds = check_keypoints(kp3ds, 1)
|
||||
# optimize the human shape
|
||||
with Timer('Loading {}, {}'.format(args.model, args.gender)):
|
||||
body_model = load_model(args.gender, model_type=args.model)
|
||||
params_init = init_params(nFrames=1, model_type=args.model)
|
||||
weight = load_weight_shape()
|
||||
if args.model in ['smpl', 'smplh', 'smplx']:
|
||||
# when use SMPL model, optimize the shape only with first 14 limbs
|
||||
params_shape = optimizeShape(body_model, params_init, kp3ds, weight_loss=weight, kintree=CONFIG['body15']['kintree'])
|
||||
else:
|
||||
params_shape = optimizeShape(body_model, params_init, kp3ds, weight_loss=weight, kintree=config['kintree'])
|
||||
# optimize 3D pose
|
||||
cfg = Config()
|
||||
cfg.VERBOSE = args.verbose
|
||||
cfg.MODEL = args.model
|
||||
params = init_params(nFrames=kp3ds.shape[0], model_type=args.model)
|
||||
params['shapes'] = params_shape['shapes'].copy()
|
||||
weight = load_weight_pose(args.model)
|
||||
with Timer('Optimize global RT'):
|
||||
cfg.OPT_R = True
|
||||
cfg.OPT_T = True
|
||||
params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg)
|
||||
with Timer('Optimize Pose/{} frames'.format(end-start)):
|
||||
cfg.OPT_POSE = True
|
||||
params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg)
|
||||
if args.model in ['smplh', 'smplx']:
|
||||
cfg.OPT_HAND = True
|
||||
params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg)
|
||||
if args.model == 'smplx':
|
||||
cfg.OPT_EXPR = True
|
||||
params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg)
|
||||
# TODO:optimize 2D pose
|
||||
# write out the results
|
||||
dataset.no_img = not args.vis_smpl
|
||||
for nf in tqdm(range(start, end), desc='render'):
|
||||
images, annots = dataset[nf]
|
||||
dataset.write_smpl(select_nf(params, nf-start), nf)
|
||||
if args.vis_smpl:
|
||||
vertices = body_model(return_verts=True, return_tensor=False, **select_nf(params, nf-start))
|
||||
dataset.vis_smpl(vertices=vertices, faces=body_model.faces, images=images, nf=nf, sub_vis=args.sub_vis, add_back=True)
|
||||
|
||||
if __name__ == "__main__":
|
||||
from mytools.cmd_loader import load_parser
|
||||
parser = load_parser()
|
||||
parser.add_argument('--skel', type=str, default=None,
|
||||
help='path to keypoints3d')
|
||||
parser.add_argument('--vis_smpl', action='store_true')
|
||||
args = parser.parse_args()
|
||||
# print_mean_skel(args.body)
|
||||
mv1pmf_smpl(args.path, args.sub, args.out, args.body, args)
|
@ -1,306 +0,0 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import os
|
||||
|
||||
class FileStorage(object):
|
||||
def __init__(self, filename, isWrite=False):
|
||||
version = cv2.__version__
|
||||
self.version = '.'.join(version.split('.')[:2])
|
||||
if isWrite:
|
||||
self.fs = cv2.FileStorage(filename, cv2.FILE_STORAGE_WRITE)
|
||||
else:
|
||||
self.fs = cv2.FileStorage(filename, cv2.FILE_STORAGE_READ)
|
||||
|
||||
def __del__(self):
|
||||
cv2.FileStorage.release(self.fs)
|
||||
|
||||
def write(self, key, value, dt='mat'):
|
||||
if dt == 'mat':
|
||||
cv2.FileStorage.write(self.fs, key, value)
|
||||
elif dt == 'list':
|
||||
# import ipdb;ipdb.set_trace()
|
||||
if self.version == '4.4': # 4.4
|
||||
# self.fs.write(key, '[')
|
||||
# for elem in value:
|
||||
# self.fs.write('none', elem)
|
||||
# self.fs.write('none', ']')
|
||||
# import ipdb; ipdb.set_trace()
|
||||
self.fs.startWriteStruct(key, cv2.FileNode_SEQ)
|
||||
for elem in value:
|
||||
self.fs.write('', elem)
|
||||
self.fs.endWriteStruct()
|
||||
else: # 3.4
|
||||
self.fs.write(key, '[')
|
||||
for elem in value:
|
||||
self.fs.write('none', elem)
|
||||
self.fs.write('none', ']')
|
||||
|
||||
def read(self, key, dt='mat'):
|
||||
if dt == 'mat':
|
||||
output = self.fs.getNode(key).mat()
|
||||
elif dt == 'list':
|
||||
results = []
|
||||
n = self.fs.getNode(key)
|
||||
for i in range(n.size()):
|
||||
val = n.at(i).string()
|
||||
if val == '':
|
||||
val = str(int(n.at(i).real()))
|
||||
if val != 'none':
|
||||
results.append(val)
|
||||
output = results
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return output
|
||||
|
||||
def close(self):
|
||||
self.__del__(self)
|
||||
|
||||
def _FindChessboardCorners(img, patternSize = (9, 6)):
|
||||
if len(img.shape) == 3:
|
||||
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||
|
||||
retval, corners = cv2.findChessboardCorners(img, patternSize,
|
||||
flags=cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_NORMALIZE_IMAGE)
|
||||
if not retval:
|
||||
return False, False
|
||||
corners = cv2.cornerSubPix(img, corners, (11, 11), (-1, -1), criteria)
|
||||
return True, corners
|
||||
|
||||
def FindChessboardCorners(image_names, patternSize=(9, 6), gridSize=0.1, debug=False, remove=False, resize_rate = 1):
|
||||
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
|
||||
object_points = np.zeros((patternSize[1]*patternSize[0], 3), np.float32)
|
||||
object_points[:,:2] = np.mgrid[0:patternSize[0], 0:patternSize[1]].T.reshape(-1,2)
|
||||
object_points = object_points * gridSize
|
||||
# Arrays to store object points and image points from all the images.
|
||||
infos = []
|
||||
for fname in tqdm(image_names, desc='detecting chessboard'):
|
||||
assert os.path.exists(fname), fname
|
||||
tmpname = fname+'.corners.txt'
|
||||
img = cv2.imread(fname)
|
||||
img = cv2.resize(img, None, fx=resize_rate, fy=resize_rate)
|
||||
if debug:
|
||||
if img.shape[0] > 1000:
|
||||
show = cv2.resize(img, None, fx=0.5, fy=0.5)
|
||||
else:
|
||||
show = img
|
||||
cv2.imshow('img', show)
|
||||
cv2.waitKey(10)
|
||||
|
||||
|
||||
if os.path.exists(tmpname) and not debug:
|
||||
ret = True
|
||||
tmp = np.loadtxt(tmpname)
|
||||
if len(tmp.shape) < 2:
|
||||
ret = False
|
||||
else:
|
||||
corners = tmp.reshape((-1, 1, 2))
|
||||
corners = np.ascontiguousarray(corners.astype(np.float32))
|
||||
else:
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
# Find the chess board corners
|
||||
ret, corners = _FindChessboardCorners(gray, patternSize)
|
||||
if not ret:
|
||||
ret, corners = _FindChessboardCorners(gray, patternSize, False)
|
||||
print('Not found in adaptive mode, but retry = {}'.format(ret))
|
||||
# If found, add object points, image points (after refining them)
|
||||
if ret:
|
||||
np.savetxt(tmpname, corners[:, 0])
|
||||
else:
|
||||
np.savetxt(tmpname, np.empty((0, 2), dtype=np.float32))
|
||||
if ret:
|
||||
infos.append({
|
||||
'point_object': object_points,
|
||||
'point_image': corners,
|
||||
'image': img,
|
||||
'image_name': fname
|
||||
})
|
||||
if debug:
|
||||
show = img.copy()
|
||||
show = cv2.drawChessboardCorners(show, patternSize, corners, ret)
|
||||
if show.shape[0] > 1000:
|
||||
show = cv2.resize(show, None, fx=0.5, fy=0.5)
|
||||
cv2.imshow('img', show)
|
||||
cv2.waitKey(10)
|
||||
elif remove:
|
||||
os.remove(fname)
|
||||
os.remove(tmpname)
|
||||
return infos
|
||||
|
||||
|
||||
def safe_mkdir(path):
|
||||
if not os.path.exists(path):
|
||||
os.makedirs(path)
|
||||
|
||||
def read_intri(intri_name):
|
||||
assert os.path.exists(intri_name), intri_name
|
||||
intri = FileStorage(intri_name)
|
||||
camnames = intri.read('names', dt='list')
|
||||
from collections import OrderedDict
|
||||
cameras = OrderedDict()
|
||||
for key in camnames:
|
||||
cam = {}
|
||||
cam['K'] = intri.read('K_{}'.format(key))
|
||||
cam['invK'] = np.linalg.inv(cam['K'])
|
||||
cam['dist'] = intri.read('dist_{}'.format(key))
|
||||
cameras[key] = cam
|
||||
return cameras
|
||||
|
||||
def write_extri(camera, path, base='extri.yml'):
|
||||
extri_name = os.path.join(path, base)
|
||||
extri = FileStorage(extri_name, True)
|
||||
results = {}
|
||||
camnames = [key_.split('.')[0] for key_ in camera.keys()]
|
||||
extri.write('names', camnames, 'list')
|
||||
for key_, val in camera.items():
|
||||
key = key_.split('.')[0]
|
||||
extri.write('R_{}'.format(key), val['Rvec'])
|
||||
extri.write('Rot_{}'.format(key), val['R'])
|
||||
extri.write('T_{}'.format(key), val['T'])
|
||||
return 0
|
||||
|
||||
def read_camera(intri_name, extri_name, cam_names=[0,1,2,3]):
|
||||
assert os.path.exists(intri_name), intri_name
|
||||
assert os.path.exists(extri_name), extri_name
|
||||
|
||||
intri = FileStorage(intri_name)
|
||||
extri = FileStorage(extri_name)
|
||||
cams, P = {}, {}
|
||||
for cam in cam_names:
|
||||
# 内参只读子码流的
|
||||
cams[cam] = {}
|
||||
cams[cam]['K'] = intri.read('K_{}'.format( cam))
|
||||
cams[cam]['invK'] = np.linalg.inv(cams[cam]['K'])
|
||||
Rvec = extri.read('R_{}'.format(cam))
|
||||
Tvec = extri.read('T_{}'.format(cam))
|
||||
R = cv2.Rodrigues(Rvec)[0]
|
||||
RT = np.hstack((R, Tvec))
|
||||
|
||||
cams[cam]['RT'] = RT
|
||||
cams[cam]['R'] = R
|
||||
cams[cam]['T'] = Tvec
|
||||
P[cam] = cams[cam]['K'] @ cams[cam]['RT']
|
||||
cams[cam]['P'] = P[cam]
|
||||
|
||||
cams[cam]['dist'] = intri.read('dist_{}'.format(cam))
|
||||
cams['basenames'] = cam_names
|
||||
return cams
|
||||
|
||||
def write_camera(camera, path):
|
||||
from os.path import join
|
||||
intri_name = join(path, 'intri.yml')
|
||||
extri_name = join(path, 'extri.yml')
|
||||
intri = FileStorage(intri_name, True)
|
||||
extri = FileStorage(extri_name, True)
|
||||
results = {}
|
||||
camnames = [key_.split('.')[0] for key_ in camera.keys()]
|
||||
intri.write('names', camnames, 'list')
|
||||
extri.write('names', camnames, 'list')
|
||||
for key_, val in camera.items():
|
||||
if key_ == 'basenames':
|
||||
continue
|
||||
key = key_.split('.')[0]
|
||||
intri.write('K_{}'.format(key), val['K'])
|
||||
intri.write('dist_{}'.format(key), val['dist'])
|
||||
if 'Rvec' not in val.keys():
|
||||
val['Rvec'] = cv2.Rodrigues(val['R'])[0]
|
||||
extri.write('R_{}'.format(key), val['Rvec'])
|
||||
extri.write('Rot_{}'.format(key), val['R'])
|
||||
extri.write('T_{}'.format(key), val['T'])
|
||||
|
||||
def undistort(camera, frame=None, keypoints=None, output=None, bbox=None):
|
||||
# bbox: 1, 7
|
||||
mtx = camera['K']
|
||||
dist = camera['dist']
|
||||
if frame is not None:
|
||||
frame = cv2.undistort(frame, mtx, dist, None)
|
||||
if output is not None:
|
||||
output = cv2.undistort(output, mtx, dist, None)
|
||||
if keypoints is not None:
|
||||
for nP in range(keypoints.shape[0]):
|
||||
kpts = keypoints[nP][:, None, :2]
|
||||
kpts = np.ascontiguousarray(kpts)
|
||||
kpts = cv2.undistortPoints(kpts, mtx, dist, P=mtx)
|
||||
keypoints[nP, :, :2] = kpts[:, 0]
|
||||
if bbox is not None:
|
||||
kpts = np.zeros((2, 1, 2))
|
||||
kpts[0, 0, 0] = bbox[0]
|
||||
kpts[0, 0, 1] = bbox[1]
|
||||
kpts[1, 0, 0] = bbox[2]
|
||||
kpts[1, 0, 1] = bbox[3]
|
||||
kpts = cv2.undistortPoints(kpts, mtx, dist, P=mtx)
|
||||
bbox[0] = kpts[0, 0, 0]
|
||||
bbox[1] = kpts[0, 0, 1]
|
||||
bbox[2] = kpts[1, 0, 0]
|
||||
bbox[3] = kpts[1, 0, 1]
|
||||
return bbox
|
||||
return frame, keypoints, output
|
||||
|
||||
def get_bbox(points_set, H, W, thres=0.1, scale=1.2):
|
||||
bboxes = np.zeros((points_set.shape[0], 6))
|
||||
for iv in range(points_set.shape[0]):
|
||||
pose = points_set[iv, :, :]
|
||||
use_idx = pose[:,2] > thres
|
||||
if np.sum(use_idx) < 1:
|
||||
continue
|
||||
ll, rr = np.min(pose[use_idx, 0]), np.max(pose[use_idx, 0])
|
||||
bb, tt = np.min(pose[use_idx, 1]), np.max(pose[use_idx, 1])
|
||||
center = (int((ll + rr) / 2), int((bb + tt) / 2))
|
||||
length = [int(scale*(rr-ll)/2), int(scale*(tt-bb)/2)]
|
||||
l = max(0, center[0] - length[0])
|
||||
r = min(W, center[0] + length[0]) # img.shape[1]
|
||||
b = max(0, center[1] - length[1])
|
||||
t = min(H, center[1] + length[1]) # img.shape[0]
|
||||
conf = pose[:, 2].mean()
|
||||
cls_conf = pose[use_idx, 2].mean()
|
||||
bboxes[iv, 0] = l
|
||||
bboxes[iv, 1] = r
|
||||
bboxes[iv, 2] = b
|
||||
bboxes[iv, 3] = t
|
||||
bboxes[iv, 4] = conf
|
||||
bboxes[iv, 5] = cls_conf
|
||||
return bboxes
|
||||
|
||||
def filterKeypoints(keypoints, thres = 0.1, min_width=40, \
|
||||
min_height=40, min_area= 50000, min_count=6):
|
||||
add_list = []
|
||||
# TODO:并行化
|
||||
for ik in range(keypoints.shape[0]):
|
||||
pose = keypoints[ik]
|
||||
vis_count = np.sum(pose[:15, 2] > thres) #TODO:
|
||||
if vis_count < min_count:
|
||||
continue
|
||||
ll, rr = np.min(pose[pose[:,2]>thres,0]), np.max(pose[pose[:,2]>thres,0])
|
||||
bb, tt = np.min(pose[pose[:,2]>thres,1]), np.max(pose[pose[:,2]>thres,1])
|
||||
center = (int((ll+rr)/2), int((bb+tt)/2))
|
||||
length = [int(1.2*(rr-ll)/2), int(1.2*(tt-bb)/2)]
|
||||
l = center[0] - length[0]
|
||||
r = center[0] + length[0]
|
||||
b = center[1] - length[1]
|
||||
t = center[1] + length[1]
|
||||
if (r - l) < min_width:
|
||||
continue
|
||||
if (t - b) < min_height:
|
||||
continue
|
||||
if (r - l)*(t - b) < min_area:
|
||||
continue
|
||||
add_list.append(ik)
|
||||
keypoints = keypoints[add_list, :, :]
|
||||
return keypoints, add_list
|
||||
|
||||
|
||||
def get_fundamental_matrix(cameras, basenames):
|
||||
skew_op = lambda x: np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]])
|
||||
fundamental_op = lambda K_0, R_0, T_0, K_1, R_1, T_1: np.linalg.inv(K_0).T @ (
|
||||
R_0 @ R_1.T) @ K_1.T @ skew_op(K_1 @ R_1 @ R_0.T @ (T_0 - R_0 @ R_1.T @ T_1))
|
||||
fundamental_RT_op = lambda K_0, RT_0, K_1, RT_1: fundamental_op (K_0, RT_0[:, :3], RT_0[:, 3], K_1,
|
||||
RT_1[:, :3], RT_1[:, 3] )
|
||||
F = np.zeros((len(basenames), len(basenames), 3, 3)) # N x N x 3 x 3 matrix
|
||||
F = {(icam, jcam): np.zeros((3, 3)) for jcam in basenames for icam in basenames}
|
||||
for icam in basenames:
|
||||
for jcam in basenames:
|
||||
F[(icam, jcam)] += fundamental_RT_op(cameras[icam]['K'], cameras[icam]['RT'], cameras[jcam]['K'], cameras[jcam]['RT'])
|
||||
if F[(icam, jcam)].sum() == 0:
|
||||
F[(icam, jcam)] += 1e-12 # to avoid nan
|
||||
return F
|
@ -1,44 +0,0 @@
|
||||
'''
|
||||
@ Date: 2021-01-15 12:09:27
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-24 20:57:22
|
||||
@ FilePath: /EasyMocapRelease/code/mytools/cmd_loader.py
|
||||
'''
|
||||
|
||||
import argparse
|
||||
|
||||
def load_parser():
|
||||
parser = argparse.ArgumentParser('EasyMocap commond line tools')
|
||||
parser.add_argument('path', type=str)
|
||||
parser.add_argument('--out', type=str, default=None)
|
||||
parser.add_argument('--annot', type=str, default=None)
|
||||
parser.add_argument('--sub', type=str, nargs='+', default=[],
|
||||
help='the sub folder lists when in video mode')
|
||||
parser.add_argument('--start', type=int, default=0,
|
||||
help='frame start')
|
||||
parser.add_argument('--end', type=int, default=10000,
|
||||
help='frame end')
|
||||
parser.add_argument('--step', type=int, default=1,
|
||||
help='frame step')
|
||||
#
|
||||
# keypoints and body model
|
||||
#
|
||||
parser.add_argument('--body', type=str, default='body25', choices=['body15', 'body25', 'bodyhand', 'bodyhandface', 'total'])
|
||||
parser.add_argument('--model', type=str, default='smpl', choices=['smpl', 'smplh', 'smplx', 'mano'])
|
||||
parser.add_argument('--gender', type=str, default='neutral',
|
||||
choices=['neutral', 'male', 'female'])
|
||||
#
|
||||
# visualization part
|
||||
#
|
||||
parser.add_argument('--vis_det', action='store_true')
|
||||
parser.add_argument('--vis_repro', action='store_true')
|
||||
parser.add_argument('--undis', action='store_true')
|
||||
parser.add_argument('--sub_vis', type=str, nargs='+', default=[],
|
||||
help='the sub folder lists for visualization')
|
||||
#
|
||||
# debug
|
||||
#
|
||||
parser.add_argument('--verbose', action='store_true')
|
||||
parser.add_argument('--debug', action='store_true')
|
||||
return parser
|
@ -1,106 +0,0 @@
|
||||
'''
|
||||
* @ Date: 2020-09-14 11:01:52
|
||||
* @ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-25 16:06:41
|
||||
@ FilePath: /EasyMocap/code/mytools/reconstruction.py
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
|
||||
def solveZ(A):
|
||||
u, s, v = np.linalg.svd(A)
|
||||
X = v[-1, :]
|
||||
X = X / X[3]
|
||||
return X[:3]
|
||||
|
||||
def projectN3(kpts3d, Pall):
|
||||
# kpts3d: (N, 3)
|
||||
nViews = len(Pall)
|
||||
kp3d = np.hstack((kpts3d[:, :3], np.ones((kpts3d.shape[0], 1))))
|
||||
kp2ds = []
|
||||
for nv in range(nViews):
|
||||
kp2d = Pall[nv] @ kp3d.T
|
||||
kp2d[:2, :] /= kp2d[2:, :]
|
||||
kp2ds.append(kp2d.T[None, :, :])
|
||||
kp2ds = np.vstack(kp2ds)
|
||||
return kp2ds
|
||||
|
||||
def simple_reprojection_error(kpts1, kpts1_proj):
|
||||
# (N, 3)
|
||||
error = np.mean((kpts1[:, :2] - kpts1_proj[:, :2])**2)
|
||||
return error
|
||||
|
||||
def simple_triangulate(kpts, Pall):
|
||||
# kpts: (nViews, 3)
|
||||
# Pall: (nViews, 3, 4)
|
||||
# return: kpts3d(3,), conf: float
|
||||
nViews = len(kpts)
|
||||
A = np.zeros((nViews*2, 4), dtype=np.float)
|
||||
result = np.zeros(4)
|
||||
result[3] = kpts[:, 2].sum()/(kpts[:, 2]>0).sum()
|
||||
for i in range(nViews):
|
||||
P = Pall[i]
|
||||
A[i*2, :] = kpts[i, 2]*(kpts[i, 0]*P[2:3,:] - P[0:1,:])
|
||||
A[i*2 + 1, :] = kpts[i, 2]*(kpts[i, 1]*P[2:3,:] - P[1:2,:])
|
||||
result[:3] = solveZ(A)
|
||||
return result
|
||||
|
||||
def simple_recon_person(keypoints_use, Puse, config=None, ret_repro=False):
|
||||
eps = 0.01
|
||||
nJoints = keypoints_use[0].shape[0]
|
||||
if isinstance(keypoints_use, list):
|
||||
keypoints_use = np.stack(keypoints_use)
|
||||
out = np.zeros((nJoints, 4))
|
||||
for nj in range(nJoints):
|
||||
keypoints = keypoints_use[:, nj]
|
||||
if (keypoints[:, 2] > 0.01).sum() < 2:
|
||||
continue
|
||||
out[nj] = simple_triangulate(keypoints, Puse)
|
||||
if config is not None:
|
||||
# remove the false limb with the help of limb
|
||||
for (i, j), mean_std in config['skeleton'].items():
|
||||
ii, jj = min(i, j), max(i, j)
|
||||
if out[ii, -1] < eps:
|
||||
out[jj, -1] = 0
|
||||
if out[jj, -1] < eps:
|
||||
continue
|
||||
length = np.linalg.norm(out[ii, :3] - out[jj, :3])
|
||||
if abs(length - mean_std['mean'])/(3*mean_std['std']) > 1:
|
||||
# print((i, j), length, mean_std)
|
||||
out[jj, :] = 0
|
||||
# 计算重投影误差
|
||||
kpts_repro = projectN3(out, Puse)
|
||||
square_diff = (keypoints_use[:, :, :2] - kpts_repro[:, :, :2])**2
|
||||
conf = np.repeat(out[None, :, -1:], len(Puse), 0)
|
||||
kpts_repro = np.concatenate((kpts_repro, conf), axis=2)
|
||||
if conf.sum() < 3: # 至少得有3个有效的关节
|
||||
repro_error = 1e3
|
||||
else:
|
||||
conf2d = conf *(keypoints_use[:, :, -1:] > 0.01)
|
||||
# (nViews, nJoints): reprojection error for each joint in each view
|
||||
repro_error_joint = np.sqrt(square_diff.sum(axis=2, keepdims=True))*conf2d
|
||||
# remove the not valid joints
|
||||
# remove the bad views
|
||||
repro_error = repro_error_joint.sum()/conf.sum()
|
||||
|
||||
if ret_repro:
|
||||
return out, repro_error, kpts_repro
|
||||
return out, repro_error
|
||||
|
||||
def check_limb(keypoints3d, limb_means, thres=0.5):
|
||||
# keypoints3d: (nJ, 4)
|
||||
valid = True
|
||||
cnt = 0
|
||||
for (src, dst), val in limb_means.items():
|
||||
if not (keypoints3d[src, 3] > 0 and keypoints3d[dst, 3] > 0):
|
||||
continue
|
||||
cnt += 1
|
||||
# 计算骨长
|
||||
l_est = np.linalg.norm(keypoints3d[src, :3] - keypoints3d[dst, :3])
|
||||
if abs(l_est - val['mean'])/val['mean']/val['std'] > thres:
|
||||
valid = False
|
||||
break
|
||||
# 至少两段骨头可以使用
|
||||
valid = valid and cnt > 2
|
||||
return valid
|
@ -1,21 +0,0 @@
|
||||
'''
|
||||
@ Date: 2021-01-15 11:12:00
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-25 21:36:42
|
||||
@ FilePath: /EasyMocap/code/mytools/utils.py
|
||||
'''
|
||||
import time
|
||||
|
||||
class Timer:
|
||||
def __init__(self, name, silent=False):
|
||||
self.name = name
|
||||
self.silent = silent
|
||||
|
||||
def __enter__(self):
|
||||
self.start = time.time()
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_tb):
|
||||
end = time.time()
|
||||
if not self.silent:
|
||||
print('-> [{:20s}]: {:5.1f}ms'.format(self.name, (end-self.start)*1000))
|
@ -1,121 +0,0 @@
|
||||
'''
|
||||
@ Date: 2020-11-28 17:23:04
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-21 15:16:52
|
||||
@ FilePath: /EasyMocap/code/mytools/vis_base.py
|
||||
'''
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
import json
|
||||
def read_json(json_path):
|
||||
with open(json_path, 'r') as f:
|
||||
return json.load(f)
|
||||
|
||||
def generate_colorbar(N = 1000, cmap = 'gist_rainbow'):
|
||||
from matplotlib import cm
|
||||
import numpy as np
|
||||
import random
|
||||
random.seed(666)
|
||||
|
||||
cmaps = cm.get_cmap(cmap, N)
|
||||
x = np.linspace(0.0, 1.0, N)
|
||||
index = [i for i in range(N)]
|
||||
random.shuffle(index)
|
||||
rgb = cm.get_cmap(cmap)(x)[:, :3]
|
||||
rgb = rgb[index, :]
|
||||
rgb = (rgb*255).astype(np.uint8).tolist()
|
||||
return rgb
|
||||
|
||||
colors_bar_rgb = generate_colorbar(cmap='hsv')
|
||||
# colors_bar_rgb = read_json('config/colors.json')
|
||||
|
||||
def get_rgb(index):
|
||||
index = int(index)
|
||||
if index == -1:
|
||||
return (255, 255, 255)
|
||||
if index < -1:
|
||||
return (0, 0, 0)
|
||||
col = colors_bar_rgb[index%len(colors_bar_rgb)]
|
||||
# color = tuple([int(c*255) for c in col])
|
||||
return col
|
||||
|
||||
def plot_point(img, x, y, r, col, pid=-1):
|
||||
cv2.circle(img, (int(x+0.5), int(y+0.5)), r, col, -1)
|
||||
if pid != -1:
|
||||
cv2.putText(img, '{}'.format(pid), (int(x+0.5), int(y+0.5)), cv2.FONT_HERSHEY_SIMPLEX, 1, col, 2)
|
||||
|
||||
|
||||
def plot_line(img, pt1, pt2, lw, col):
|
||||
cv2.line(img, (int(pt1[0]+0.5), int(pt1[1]+0.5)), (int(pt2[0]+0.5), int(pt2[1]+0.5)),
|
||||
col, lw)
|
||||
|
||||
def plot_bbox(img, bbox, pid, vis_id=True):
|
||||
# 画bbox: (l, t, r, b)
|
||||
x1, y1, x2, y2 = bbox[:4]
|
||||
x1 = int(round(x1))
|
||||
x2 = int(round(x2))
|
||||
y1 = int(round(y1))
|
||||
y2 = int(round(y2))
|
||||
color = get_rgb(pid)
|
||||
lw = max(img.shape[0]//300, 2)
|
||||
cv2.rectangle(img, (x1, y1), (x2, y2), color, lw)
|
||||
if vis_id:
|
||||
cv2.putText(img, '{}'.format(pid), (x1, y1+20), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
|
||||
|
||||
def plot_keypoints(img, points, pid, config, vis_conf=False, use_limb_color=True, lw=2):
|
||||
for ii, (i, j) in enumerate(config['kintree']):
|
||||
if i >= points.shape[0] or j >= points.shape[0]:
|
||||
continue
|
||||
pt1, pt2 = points[i], points[j]
|
||||
if use_limb_color:
|
||||
col = get_rgb(config['colors'][ii])
|
||||
else:
|
||||
col = get_rgb(pid)
|
||||
if pt1[-1] > 0.01 and pt2[-1] > 0.01:
|
||||
image = cv2.line(
|
||||
img, (int(pt1[0]+0.5), int(pt1[1]+0.5)), (int(pt2[0]+0.5), int(pt2[1]+0.5)),
|
||||
col, lw)
|
||||
for i in range(len(points)):
|
||||
x, y = points[i][0], points[i][1]
|
||||
c = points[i][-1]
|
||||
if c > 0.01:
|
||||
col = get_rgb(pid)
|
||||
cv2.circle(img, (int(x+0.5), int(y+0.5)), lw*2, col, -1)
|
||||
if vis_conf:
|
||||
cv2.putText(img, '{:.1f}'.format(c), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, col, 2)
|
||||
|
||||
def merge(images, row=-1, col=-1, resize=False, ret_range=False):
|
||||
if row == -1 and col == -1:
|
||||
from math import sqrt
|
||||
row = int(sqrt(len(images)) + 0.5)
|
||||
col = int(len(images)/ row + 0.5)
|
||||
if row > col:
|
||||
row, col = col, row
|
||||
if len(images) == 8:
|
||||
# basketball 场景
|
||||
row, col = 2, 4
|
||||
images = [images[i] for i in [0, 1, 2, 3, 7, 6, 5, 4]]
|
||||
if len(images) == 7:
|
||||
row, col = 3, 3
|
||||
elif len(images) == 2:
|
||||
row, col = 2, 1
|
||||
height = images[0].shape[0]
|
||||
width = images[0].shape[1]
|
||||
ret_img = np.zeros((height * row, width * col, images[0].shape[2]), dtype=np.uint8) + 255
|
||||
ranges = []
|
||||
for i in range(row):
|
||||
for j in range(col):
|
||||
if i*col + j >= len(images):
|
||||
break
|
||||
img = images[i * col + j]
|
||||
ret_img[height * i: height * (i+1), width * j: width * (j+1)] = img
|
||||
ranges.append((width*j, height*i, width*(j+1), height*(i+1)))
|
||||
if resize:
|
||||
scale = min(1000/ret_img.shape[0], 1800/ret_img.shape[1])
|
||||
while ret_img.shape[0] > 2000:
|
||||
ret_img = cv2.resize(ret_img, None, fx=scale, fy=scale)
|
||||
if ret_range:
|
||||
return ret_img, ranges
|
||||
return ret_img
|
@ -1,471 +0,0 @@
|
||||
import torch
|
||||
from functools import reduce
|
||||
from torch.optim.optimizer import Optimizer
|
||||
|
||||
|
||||
def _cubic_interpolate(x1, f1, g1, x2, f2, g2, bounds=None):
|
||||
# ported from https://github.com/torch/optim/blob/master/polyinterp.lua
|
||||
# Compute bounds of interpolation area
|
||||
if bounds is not None:
|
||||
xmin_bound, xmax_bound = bounds
|
||||
else:
|
||||
xmin_bound, xmax_bound = (x1, x2) if x1 <= x2 else (x2, x1)
|
||||
|
||||
# Code for most common case: cubic interpolation of 2 points
|
||||
# w/ function and derivative values for both
|
||||
# Solution in this case (where x2 is the farthest point):
|
||||
# d1 = g1 + g2 - 3*(f1-f2)/(x1-x2);
|
||||
# d2 = sqrt(d1^2 - g1*g2);
|
||||
# min_pos = x2 - (x2 - x1)*((g2 + d2 - d1)/(g2 - g1 + 2*d2));
|
||||
# t_new = min(max(min_pos,xmin_bound),xmax_bound);
|
||||
d1 = g1 + g2 - 3 * (f1 - f2) / (x1 - x2)
|
||||
d2_square = d1**2 - g1 * g2
|
||||
if d2_square >= 0:
|
||||
d2 = d2_square.sqrt()
|
||||
if x1 <= x2:
|
||||
min_pos = x2 - (x2 - x1) * ((g2 + d2 - d1) / (g2 - g1 + 2 * d2))
|
||||
else:
|
||||
min_pos = x1 - (x1 - x2) * ((g1 + d2 - d1) / (g1 - g2 + 2 * d2))
|
||||
return min(max(min_pos, xmin_bound), xmax_bound)
|
||||
else:
|
||||
return (xmin_bound + xmax_bound) / 2.
|
||||
|
||||
|
||||
def _strong_wolfe(obj_func,
|
||||
x,
|
||||
t,
|
||||
d,
|
||||
f,
|
||||
g,
|
||||
gtd,
|
||||
c1=1e-4,
|
||||
c2=0.9,
|
||||
tolerance_change=1e-9,
|
||||
max_ls=25):
|
||||
# ported from https://github.com/torch/optim/blob/master/lswolfe.lua
|
||||
d_norm = d.abs().max()
|
||||
g = g.clone()
|
||||
# evaluate objective and gradient using initial step
|
||||
f_new, g_new = obj_func(x, t, d)
|
||||
ls_func_evals = 1
|
||||
gtd_new = g_new.dot(d)
|
||||
|
||||
# bracket an interval containing a point satisfying the Wolfe criteria
|
||||
t_prev, f_prev, g_prev, gtd_prev = 0, f, g, gtd
|
||||
done = False
|
||||
ls_iter = 0
|
||||
while ls_iter < max_ls:
|
||||
# check conditions
|
||||
if f_new > (f + c1 * t * gtd) or (ls_iter > 1 and f_new >= f_prev):
|
||||
bracket = [t_prev, t]
|
||||
bracket_f = [f_prev, f_new]
|
||||
bracket_g = [g_prev, g_new.clone()]
|
||||
bracket_gtd = [gtd_prev, gtd_new]
|
||||
break
|
||||
|
||||
if abs(gtd_new) <= -c2 * gtd:
|
||||
bracket = [t]
|
||||
bracket_f = [f_new]
|
||||
bracket_g = [g_new]
|
||||
done = True
|
||||
break
|
||||
|
||||
if gtd_new >= 0:
|
||||
bracket = [t_prev, t]
|
||||
bracket_f = [f_prev, f_new]
|
||||
bracket_g = [g_prev, g_new.clone()]
|
||||
bracket_gtd = [gtd_prev, gtd_new]
|
||||
break
|
||||
|
||||
# interpolate
|
||||
min_step = t + 0.01 * (t - t_prev)
|
||||
max_step = t * 10
|
||||
tmp = t
|
||||
t = _cubic_interpolate(
|
||||
t_prev,
|
||||
f_prev,
|
||||
gtd_prev,
|
||||
t,
|
||||
f_new,
|
||||
gtd_new,
|
||||
bounds=(min_step, max_step))
|
||||
|
||||
# next step
|
||||
t_prev = tmp
|
||||
f_prev = f_new
|
||||
g_prev = g_new.clone()
|
||||
gtd_prev = gtd_new
|
||||
f_new, g_new = obj_func(x, t, d)
|
||||
ls_func_evals += 1
|
||||
gtd_new = g_new.dot(d)
|
||||
ls_iter += 1
|
||||
|
||||
# reached max number of iterations?
|
||||
if ls_iter == max_ls:
|
||||
bracket = [0, t]
|
||||
bracket_f = [f, f_new]
|
||||
bracket_g = [g, g_new]
|
||||
|
||||
# zoom phase: we now have a point satisfying the criteria, or
|
||||
# a bracket around it. We refine the bracket until we find the
|
||||
# exact point satisfying the criteria
|
||||
insuf_progress = False
|
||||
# find high and low points in bracket
|
||||
low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[-1] else (1, 0)
|
||||
while not done and ls_iter < max_ls:
|
||||
# compute new trial value
|
||||
t = _cubic_interpolate(bracket[0], bracket_f[0], bracket_gtd[0],
|
||||
bracket[1], bracket_f[1], bracket_gtd[1])
|
||||
|
||||
# test that we are making sufficient progress:
|
||||
# in case `t` is so close to boundary, we mark that we are making
|
||||
# insufficient progress, and if
|
||||
# + we have made insufficient progress in the last step, or
|
||||
# + `t` is at one of the boundary,
|
||||
# we will move `t` to a position which is `0.1 * len(bracket)`
|
||||
# away from the nearest boundary point.
|
||||
eps = 0.1 * (max(bracket) - min(bracket))
|
||||
if min(max(bracket) - t, t - min(bracket)) < eps:
|
||||
# interpolation close to boundary
|
||||
if insuf_progress or t >= max(bracket) or t <= min(bracket):
|
||||
# evaluate at 0.1 away from boundary
|
||||
if abs(t - max(bracket)) < abs(t - min(bracket)):
|
||||
t = max(bracket) - eps
|
||||
else:
|
||||
t = min(bracket) + eps
|
||||
insuf_progress = False
|
||||
else:
|
||||
insuf_progress = True
|
||||
else:
|
||||
insuf_progress = False
|
||||
|
||||
# Evaluate new point
|
||||
f_new, g_new = obj_func(x, t, d)
|
||||
ls_func_evals += 1
|
||||
gtd_new = g_new.dot(d)
|
||||
ls_iter += 1
|
||||
|
||||
if f_new > (f + c1 * t * gtd) or f_new >= bracket_f[low_pos]:
|
||||
# Armijo condition not satisfied or not lower than lowest point
|
||||
bracket[high_pos] = t
|
||||
bracket_f[high_pos] = f_new
|
||||
bracket_g[high_pos] = g_new.clone()
|
||||
bracket_gtd[high_pos] = gtd_new
|
||||
low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[1] else (1, 0)
|
||||
else:
|
||||
if abs(gtd_new) <= -c2 * gtd:
|
||||
# Wolfe conditions satisfied
|
||||
done = True
|
||||
elif gtd_new * (bracket[high_pos] - bracket[low_pos]) >= 0:
|
||||
# old high becomes new low
|
||||
bracket[high_pos] = bracket[low_pos]
|
||||
bracket_f[high_pos] = bracket_f[low_pos]
|
||||
bracket_g[high_pos] = bracket_g[low_pos]
|
||||
bracket_gtd[high_pos] = bracket_gtd[low_pos]
|
||||
|
||||
# new point becomes new low
|
||||
bracket[low_pos] = t
|
||||
bracket_f[low_pos] = f_new
|
||||
bracket_g[low_pos] = g_new.clone()
|
||||
bracket_gtd[low_pos] = gtd_new
|
||||
|
||||
# line-search bracket is so small
|
||||
if abs(bracket[1] - bracket[0]) * d_norm < tolerance_change:
|
||||
break
|
||||
|
||||
# return stuff
|
||||
t = bracket[low_pos]
|
||||
f_new = bracket_f[low_pos]
|
||||
g_new = bracket_g[low_pos]
|
||||
return f_new, g_new, t, ls_func_evals
|
||||
|
||||
|
||||
class LBFGS(Optimizer):
|
||||
"""Implements L-BFGS algorithm, heavily inspired by `minFunc
|
||||
<https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html>`.
|
||||
|
||||
.. warning::
|
||||
This optimizer doesn't support per-parameter options and parameter
|
||||
groups (there can be only one).
|
||||
|
||||
.. warning::
|
||||
Right now all parameters have to be on a single device. This will be
|
||||
improved in the future.
|
||||
|
||||
.. note::
|
||||
This is a very memory intensive optimizer (it requires additional
|
||||
``param_bytes * (history_size + 1)`` bytes). If it doesn't fit in memory
|
||||
try reducing the history size, or use a different algorithm.
|
||||
|
||||
Arguments:
|
||||
lr (float): learning rate (default: 1)
|
||||
max_iter (int): maximal number of iterations per optimization step
|
||||
(default: 20)
|
||||
max_eval (int): maximal number of function evaluations per optimization
|
||||
step (default: max_iter * 1.25).
|
||||
tolerance_grad (float): termination tolerance on first order optimality
|
||||
(default: 1e-5).
|
||||
tolerance_change (float): termination tolerance on function
|
||||
value/parameter changes (default: 1e-9).
|
||||
history_size (int): update history size (default: 100).
|
||||
line_search_fn (str): either 'strong_wolfe' or None (default: None).
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
params,
|
||||
lr=1,
|
||||
max_iter=20,
|
||||
max_eval=None,
|
||||
tolerance_grad=1e-5,
|
||||
tolerance_change=1e-9,
|
||||
history_size=100,
|
||||
line_search_fn=None):
|
||||
if max_eval is None:
|
||||
max_eval = max_iter * 5 // 4
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
max_iter=max_iter,
|
||||
max_eval=max_eval,
|
||||
tolerance_grad=tolerance_grad,
|
||||
tolerance_change=tolerance_change,
|
||||
history_size=history_size,
|
||||
line_search_fn=line_search_fn)
|
||||
super(LBFGS, self).__init__(params, defaults)
|
||||
|
||||
if len(self.param_groups) != 1:
|
||||
raise ValueError("LBFGS doesn't support per-parameter options "
|
||||
"(parameter groups)")
|
||||
|
||||
self._params = self.param_groups[0]['params']
|
||||
self._numel_cache = None
|
||||
|
||||
def _numel(self):
|
||||
if self._numel_cache is None:
|
||||
self._numel_cache = reduce(lambda total, p: total + p.numel(), self._params, 0)
|
||||
return self._numel_cache
|
||||
|
||||
def _gather_flat_grad(self):
|
||||
views = []
|
||||
for p in self._params:
|
||||
if p.grad is None:
|
||||
view = p.new(p.numel()).zero_()
|
||||
elif p.grad.is_sparse:
|
||||
view = p.grad.to_dense().view(-1)
|
||||
else:
|
||||
view = p.grad.view(-1)
|
||||
views.append(view)
|
||||
return torch.cat(views, 0)
|
||||
|
||||
def _add_grad(self, step_size, update):
|
||||
offset = 0
|
||||
for p in self._params:
|
||||
numel = p.numel()
|
||||
# view as to avoid deprecated pointwise semantics
|
||||
p.data.add_(step_size, update[offset:offset + numel].view_as(p.data))
|
||||
offset += numel
|
||||
assert offset == self._numel()
|
||||
|
||||
def _clone_param(self):
|
||||
return [p.clone() for p in self._params]
|
||||
|
||||
def _set_param(self, params_data):
|
||||
for p, pdata in zip(self._params, params_data):
|
||||
p.data.copy_(pdata)
|
||||
|
||||
def _directional_evaluate(self, closure, x, t, d):
|
||||
self._add_grad(t, d)
|
||||
loss = float(closure())
|
||||
flat_grad = self._gather_flat_grad()
|
||||
self._set_param(x)
|
||||
return loss, flat_grad
|
||||
|
||||
def step(self, closure):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
assert len(self.param_groups) == 1
|
||||
|
||||
group = self.param_groups[0]
|
||||
lr = group['lr']
|
||||
max_iter = group['max_iter']
|
||||
max_eval = group['max_eval']
|
||||
tolerance_grad = group['tolerance_grad']
|
||||
tolerance_change = group['tolerance_change']
|
||||
line_search_fn = group['line_search_fn']
|
||||
history_size = group['history_size']
|
||||
|
||||
# NOTE: LBFGS has only global state, but we register it as state for
|
||||
# the first param, because this helps with casting in load_state_dict
|
||||
state = self.state[self._params[0]]
|
||||
state.setdefault('func_evals', 0)
|
||||
state.setdefault('n_iter', 0)
|
||||
|
||||
# evaluate initial f(x) and df/dx
|
||||
orig_loss = closure()
|
||||
loss = float(orig_loss)
|
||||
current_evals = 1
|
||||
state['func_evals'] += 1
|
||||
|
||||
flat_grad = self._gather_flat_grad()
|
||||
opt_cond = flat_grad.abs().max() <= tolerance_grad
|
||||
|
||||
# optimal condition
|
||||
if opt_cond:
|
||||
return orig_loss
|
||||
|
||||
# tensors cached in state (for tracing)
|
||||
d = state.get('d')
|
||||
t = state.get('t')
|
||||
old_dirs = state.get('old_dirs')
|
||||
old_stps = state.get('old_stps')
|
||||
ro = state.get('ro')
|
||||
H_diag = state.get('H_diag')
|
||||
prev_flat_grad = state.get('prev_flat_grad')
|
||||
prev_loss = state.get('prev_loss')
|
||||
|
||||
n_iter = 0
|
||||
# optimize for a max of max_iter iterations
|
||||
while n_iter < max_iter:
|
||||
# keep track of nb of iterations
|
||||
n_iter += 1
|
||||
state['n_iter'] += 1
|
||||
|
||||
############################################################
|
||||
# compute gradient descent direction
|
||||
############################################################
|
||||
if state['n_iter'] == 1:
|
||||
d = flat_grad.neg()
|
||||
old_dirs = []
|
||||
old_stps = []
|
||||
ro = []
|
||||
H_diag = 1
|
||||
else:
|
||||
# do lbfgs update (update memory)
|
||||
y = flat_grad.sub(prev_flat_grad)
|
||||
s = d.mul(t)
|
||||
ys = y.dot(s) # y*s
|
||||
if ys > 1e-10:
|
||||
# updating memory
|
||||
if len(old_dirs) == history_size:
|
||||
# shift history by one (limited-memory)
|
||||
old_dirs.pop(0)
|
||||
old_stps.pop(0)
|
||||
ro.pop(0)
|
||||
|
||||
# store new direction/step
|
||||
old_dirs.append(y)
|
||||
old_stps.append(s)
|
||||
ro.append(1. / ys)
|
||||
|
||||
# update scale of initial Hessian approximation
|
||||
H_diag = ys / y.dot(y) # (y*y)
|
||||
|
||||
# compute the approximate (L-BFGS) inverse Hessian
|
||||
# multiplied by the gradient
|
||||
num_old = len(old_dirs)
|
||||
|
||||
if 'al' not in state:
|
||||
state['al'] = [None] * history_size
|
||||
al = state['al']
|
||||
|
||||
# iteration in L-BFGS loop collapsed to use just one buffer
|
||||
q = flat_grad.neg()
|
||||
for i in range(num_old - 1, -1, -1):
|
||||
al[i] = old_stps[i].dot(q) * ro[i]
|
||||
q.add_(-al[i], old_dirs[i])
|
||||
|
||||
# multiply by initial Hessian
|
||||
# r/d is the final direction
|
||||
d = r = torch.mul(q, H_diag)
|
||||
for i in range(num_old):
|
||||
be_i = old_dirs[i].dot(r) * ro[i]
|
||||
r.add_(al[i] - be_i, old_stps[i])
|
||||
|
||||
if prev_flat_grad is None:
|
||||
prev_flat_grad = flat_grad.clone()
|
||||
else:
|
||||
prev_flat_grad.copy_(flat_grad)
|
||||
prev_loss = loss
|
||||
|
||||
############################################################
|
||||
# compute step length
|
||||
############################################################
|
||||
# reset initial guess for step size
|
||||
if state['n_iter'] == 1:
|
||||
t = min(1., 1. / flat_grad.abs().sum()) * lr
|
||||
else:
|
||||
t = lr
|
||||
|
||||
# directional derivative
|
||||
gtd = flat_grad.dot(d) # g * d
|
||||
|
||||
# directional derivative is below tolerance
|
||||
if gtd > -tolerance_change:
|
||||
break
|
||||
|
||||
# optional line search: user function
|
||||
ls_func_evals = 0
|
||||
if line_search_fn is not None:
|
||||
# perform line search, using user function
|
||||
if line_search_fn != "strong_wolfe":
|
||||
raise RuntimeError("only 'strong_wolfe' is supported")
|
||||
else:
|
||||
x_init = self._clone_param()
|
||||
|
||||
def obj_func(x, t, d):
|
||||
return self._directional_evaluate(closure, x, t, d)
|
||||
|
||||
loss, flat_grad, t, ls_func_evals = _strong_wolfe(
|
||||
obj_func, x_init, t, d, loss, flat_grad, gtd)
|
||||
self._add_grad(t, d)
|
||||
opt_cond = flat_grad.abs().max() <= tolerance_grad
|
||||
else:
|
||||
# no line search, simply move with fixed-step
|
||||
self._add_grad(t, d)
|
||||
if n_iter != max_iter:
|
||||
# re-evaluate function only if not in last iteration
|
||||
# the reason we do this: in a stochastic setting,
|
||||
# no use to re-evaluate that function here
|
||||
loss = float(closure())
|
||||
flat_grad = self._gather_flat_grad()
|
||||
opt_cond = flat_grad.abs().max() <= tolerance_grad
|
||||
ls_func_evals = 1
|
||||
|
||||
# update func eval
|
||||
current_evals += ls_func_evals
|
||||
state['func_evals'] += ls_func_evals
|
||||
|
||||
############################################################
|
||||
# check conditions
|
||||
############################################################
|
||||
if n_iter == max_iter:
|
||||
break
|
||||
|
||||
if current_evals >= max_eval:
|
||||
break
|
||||
|
||||
# optimal condition
|
||||
if opt_cond:
|
||||
break
|
||||
|
||||
# lack of progress
|
||||
if d.mul(t).abs().max() <= tolerance_change:
|
||||
break
|
||||
|
||||
if abs(loss - prev_loss) < tolerance_change:
|
||||
break
|
||||
|
||||
state['d'] = d
|
||||
state['t'] = t
|
||||
state['old_dirs'] = old_dirs
|
||||
state['old_stps'] = old_stps
|
||||
state['ro'] = ro
|
||||
state['H_diag'] = H_diag
|
||||
state['prev_flat_grad'] = prev_flat_grad
|
||||
state['prev_loss'] = prev_loss
|
||||
|
||||
return orig_loss
|
||||
|
@ -1,113 +0,0 @@
|
||||
'''
|
||||
@ Date: 2020-11-19 17:46:04
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-22 16:51:55
|
||||
@ FilePath: /EasyMocap/code/pyfitting/lossfactory.py
|
||||
'''
|
||||
import torch
|
||||
from .operation import projection, batch_rodrigues
|
||||
|
||||
def ReprojectionLoss(keypoints3d, keypoints2d, K, Rc, Tc, inv_bbox_sizes, norm='l2'):
|
||||
img_points = projection(keypoints3d, K, Rc, Tc)
|
||||
residual = (img_points - keypoints2d[:, :, :2]) * keypoints2d[:, :, -1:]
|
||||
# squared_res: (nFrames, nJoints, 2)
|
||||
if norm == 'l2':
|
||||
squared_res = (residual ** 2) * inv_bbox_sizes
|
||||
elif norm == 'l1':
|
||||
squared_res = torch.abs(residual) * inv_bbox_sizes
|
||||
else:
|
||||
import ipdb; ipdb.set_trace()
|
||||
return torch.sum(squared_res)
|
||||
|
||||
class SMPLAngleLoss:
|
||||
def __init__(self, keypoints, model_type='smpl'):
|
||||
if keypoints.shape[1] <= 15:
|
||||
use_feet = False
|
||||
use_head = False
|
||||
else:
|
||||
use_feet = keypoints[:, [19, 20, 21, 22, 23, 24], -1].sum() > 0.1
|
||||
use_head = keypoints[:, [15, 16, 17, 18], -1].sum() > 0.1
|
||||
if model_type == 'smpl':
|
||||
SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14, 20, 21, 22, 23]
|
||||
elif model_type == 'smplh':
|
||||
SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14]
|
||||
elif model_type == 'smplx':
|
||||
SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14]
|
||||
else:
|
||||
raise NotImplementedError
|
||||
if not use_feet:
|
||||
SMPL_JOINT_ZERO_IDX.extend([7, 8])
|
||||
if not use_head:
|
||||
SMPL_JOINT_ZERO_IDX.extend([12, 15])
|
||||
SMPL_POSES_ZERO_IDX = [[j for j in range(3*i, 3*i+3)] for i in SMPL_JOINT_ZERO_IDX]
|
||||
SMPL_POSES_ZERO_IDX = sum(SMPL_POSES_ZERO_IDX, [])
|
||||
# SMPL_POSES_ZERO_IDX.extend([36, 37, 38, 45, 46, 47])
|
||||
self.idx = SMPL_POSES_ZERO_IDX
|
||||
|
||||
def loss(self, poses):
|
||||
return torch.sum(torch.abs(poses[:, self.idx]))
|
||||
|
||||
def SmoothLoss(body_params, keys, weight_loss, span=4, model_type='smpl'):
|
||||
spans = [i for i in range(1, span)]
|
||||
span_weights = {i:1/i for i in range(1, span)}
|
||||
span_weights = {key: i/sum(span_weights) for key, i in span_weights.items()}
|
||||
loss_dict = {}
|
||||
nFrames = body_params['poses'].shape[0]
|
||||
nPoses = body_params['poses'].shape[1]
|
||||
if model_type == 'smplh' or model_type == 'smplx':
|
||||
nPoses = 66
|
||||
for key in ['poses', 'Th', 'poses_hand', 'expression']:
|
||||
if key not in keys:
|
||||
continue
|
||||
k = 'smooth_' + key
|
||||
if k in weight_loss.keys() and weight_loss[k] > 0.:
|
||||
loss_dict[k] = 0.
|
||||
for span in spans:
|
||||
if key == 'poses_hand':
|
||||
val = torch.sum((body_params['poses'][span:, 66:] - body_params['poses'][:nFrames-span, 66:])**2)
|
||||
else:
|
||||
val = torch.sum((body_params[key][span:, :nPoses] - body_params[key][:nFrames-span, :nPoses])**2)
|
||||
loss_dict[k] += span_weights[span] * val
|
||||
k = 'smooth_' + key + '_l1'
|
||||
if k in weight_loss.keys() and weight_loss[k] > 0.:
|
||||
loss_dict[k] = 0.
|
||||
for span in spans:
|
||||
if key == 'poses_hand':
|
||||
val = torch.sum((body_params['poses'][span:, 66:] - body_params['poses'][:nFrames-span, 66:]).abs())
|
||||
else:
|
||||
val = torch.sum((body_params[key][span:, :nPoses] - body_params[key][:nFrames-span, :nPoses]).abs())
|
||||
loss_dict[k] += span_weights[span] * val
|
||||
# smooth rotation
|
||||
rot = batch_rodrigues(body_params['Rh'])
|
||||
key, k = 'Rh', 'smooth_Rh'
|
||||
if key in keys and k in weight_loss.keys() and weight_loss[k] > 0.:
|
||||
loss_dict[k] = 0.
|
||||
for span in spans:
|
||||
val = torch.sum((rot[span:, :] - rot[:nFrames-span, :])**2)
|
||||
loss_dict[k] += span_weights[span] * val
|
||||
return loss_dict
|
||||
|
||||
def RegularizationLoss(body_params, body_params_init, weight_loss):
|
||||
loss_dict = {}
|
||||
for key in ['poses', 'shapes', 'Th', 'hands', 'head', 'expression']:
|
||||
if 'init_'+key in weight_loss.keys() and weight_loss['init_'+key] > 0.:
|
||||
if key == 'poses':
|
||||
loss_dict['init_'+key] = torch.sum((body_params[key][:, :66] - body_params_init[key][:, :66])**2)
|
||||
elif key == 'hands':
|
||||
loss_dict['init_'+key] = torch.sum((body_params['poses'][: , 66:66+12] - body_params_init['poses'][:, 66:66+12])**2)
|
||||
elif key == 'head':
|
||||
loss_dict['init_'+key] = torch.sum((body_params['poses'][: , 78:78+9] - body_params_init['poses'][:, 78:78+9])**2)
|
||||
elif key in body_params.keys():
|
||||
loss_dict['init_'+key] = torch.sum((body_params[key] - body_params_init[key])**2)
|
||||
for key in ['poses', 'shapes', 'hands', 'head', 'expression']:
|
||||
if 'reg_'+key in weight_loss.keys() and weight_loss['reg_'+key] > 0.:
|
||||
if key == 'poses':
|
||||
loss_dict['reg_'+key] = torch.sum((body_params[key][:, :66])**2)
|
||||
elif key == 'hands':
|
||||
loss_dict['reg_'+key] = torch.sum((body_params['poses'][: , 66:66+12])**2)
|
||||
elif key == 'head':
|
||||
loss_dict['reg_'+key] = torch.sum((body_params['poses'][: , 78:78+9])**2)
|
||||
elif key in body_params.keys():
|
||||
loss_dict['reg_'+key] = torch.sum((body_params[key])**2)
|
||||
return loss_dict
|
@ -1,74 +0,0 @@
|
||||
'''
|
||||
@ Date: 2020-11-19 11:39:45
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-20 15:06:28
|
||||
@ FilePath: /EasyMocap/code/pyfitting/operation.py
|
||||
'''
|
||||
import torch
|
||||
|
||||
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
|
||||
''' Calculates the rotation matrices for a batch of rotation vectors
|
||||
Parameters
|
||||
----------
|
||||
rot_vecs: torch.tensor Nx3
|
||||
array of N axis-angle vectors
|
||||
Returns
|
||||
-------
|
||||
R: torch.tensor Nx3x3
|
||||
The rotation matrices for the given axis-angle parameters
|
||||
'''
|
||||
|
||||
batch_size = rot_vecs.shape[0]
|
||||
device = rot_vecs.device
|
||||
|
||||
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
|
||||
rot_dir = rot_vecs / angle
|
||||
|
||||
cos = torch.unsqueeze(torch.cos(angle), dim=1)
|
||||
sin = torch.unsqueeze(torch.sin(angle), dim=1)
|
||||
|
||||
# Bx1 arrays
|
||||
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
|
||||
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
|
||||
|
||||
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
|
||||
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
|
||||
.view((batch_size, 3, 3))
|
||||
|
||||
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
|
||||
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
|
||||
return rot_mat
|
||||
|
||||
def projection(points3d, camera_intri, R=None, T=None, distance=None):
|
||||
""" project the 3d points to camera coordinate
|
||||
|
||||
Arguments:
|
||||
points3d {Tensor} -- (bn, N, 3)
|
||||
camera_intri {Tensor} -- (bn, 3, 3)
|
||||
distance {Tensor} -- (bn, 1, 1)
|
||||
R: bn, 3, 3
|
||||
T: bn, 3, 1
|
||||
Returns:
|
||||
points2d -- (bn, N, 2)
|
||||
"""
|
||||
if R is not None:
|
||||
Rt = torch.transpose(R, 1, 2)
|
||||
if T.shape[-1] == 1:
|
||||
Tt = torch.transpose(T, 1, 2)
|
||||
points3d = torch.matmul(points3d, Rt) + Tt
|
||||
else:
|
||||
points3d = torch.matmul(points3d, Rt) + T
|
||||
|
||||
if distance is None:
|
||||
img_points = torch.div(points3d[:, :, :2],
|
||||
points3d[:, :, 2:3])
|
||||
else:
|
||||
img_points = torch.div(points3d[:, :, :2],
|
||||
distance)
|
||||
camera_mat = camera_intri[:, :2, :2]
|
||||
center = torch.transpose(camera_intri[:, :2, 2:3], 1, 2)
|
||||
img_points = torch.matmul(img_points, camera_mat.transpose(1, 2)) + center
|
||||
# img_points = torch.einsum('bki,bji->bjk', [camera_mat, img_points]) \
|
||||
# + center
|
||||
return img_points
|
@ -1,131 +0,0 @@
|
||||
'''
|
||||
@ Date: 2020-06-26 12:06:25
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2020-06-26 12:08:37
|
||||
@ Author: Qing Shuai
|
||||
@ Mail: s_q@zju.edu.cn
|
||||
'''
|
||||
import numpy as np
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
import json
|
||||
|
||||
def rel_change(prev_val, curr_val):
|
||||
return (prev_val - curr_val) / max([np.abs(prev_val), np.abs(curr_val), 1])
|
||||
|
||||
class FittingMonitor:
|
||||
def __init__(self, ftol=1e-5, gtol=1e-6, maxiters=100, visualize=False, verbose=False, **kwargs):
|
||||
self.maxiters = maxiters
|
||||
self.ftol = ftol
|
||||
self.gtol = gtol
|
||||
self.visualize = visualize
|
||||
self.verbose = verbose
|
||||
if self.visualize:
|
||||
from utils.mesh_viewer import MeshViewer
|
||||
self.mv = MeshViewer(width=1024, height=1024, bg_color=[1.0, 1.0, 1.0, 1.0],
|
||||
body_color=[0.65098039, 0.74117647, 0.85882353, 1.0],
|
||||
offscreen=False)
|
||||
|
||||
def run_fitting(self, optimizer, closure, params, smpl_render=None, **kwargs):
|
||||
prev_loss = None
|
||||
grad_require(params, True)
|
||||
if self.verbose:
|
||||
trange = tqdm(range(self.maxiters), desc='Fitting')
|
||||
else:
|
||||
trange = range(self.maxiters)
|
||||
for iter in trange:
|
||||
loss = optimizer.step(closure)
|
||||
if torch.isnan(loss).sum() > 0:
|
||||
print('NaN loss value, stopping!')
|
||||
break
|
||||
|
||||
if torch.isinf(loss).sum() > 0:
|
||||
print('Infinite loss value, stopping!')
|
||||
break
|
||||
|
||||
# if all([torch.abs(var.grad.view(-1).max()).item() < self.gtol
|
||||
# for var in params if var.grad is not None]):
|
||||
# print('Small grad, stopping!')
|
||||
# break
|
||||
|
||||
if iter > 0 and prev_loss is not None and self.ftol > 0:
|
||||
loss_rel_change = rel_change(prev_loss, loss.item())
|
||||
|
||||
if loss_rel_change <= self.ftol:
|
||||
break
|
||||
|
||||
if self.visualize:
|
||||
vertices = smpl_render.GetVertices(**kwargs)
|
||||
self.mv.update_mesh(vertices[::10], smpl_render.faces)
|
||||
prev_loss = loss.item()
|
||||
grad_require(params, False)
|
||||
return prev_loss
|
||||
|
||||
def close(self):
|
||||
if self.visualize:
|
||||
self.mv.close_viewer()
|
||||
class FittingLog:
|
||||
if False:
|
||||
from tensorboardX import SummaryWriter
|
||||
swriter = SummaryWriter()
|
||||
def __init__(self, log_name, useVisdom=False):
|
||||
if not os.path.exists(log_name):
|
||||
log_file = open(log_name, 'w')
|
||||
self.index = {log_name:0}
|
||||
|
||||
else:
|
||||
log_file = open(log_name, 'r')
|
||||
log_pre = log_file.readlines()
|
||||
log_file.close()
|
||||
self.index = {log_name:len(log_pre)}
|
||||
log_file = open(log_name, 'a')
|
||||
self.log_file = log_file
|
||||
self.useVisdom = useVisdom
|
||||
if useVisdom:
|
||||
import visdom
|
||||
self.vis = visdom.Visdom(env=os.path.realpath(
|
||||
join(os.path.dirname(log_name), '..')).replace(os.sep, '_'))
|
||||
elif False:
|
||||
self.writer = FittingLog.swriter
|
||||
self.log_name = log_name
|
||||
|
||||
def step(self, loss_dict, weight_loss):
|
||||
print(' '.join([key + ' %f'%(loss_dict[key].item()*weight_loss[key])
|
||||
for key in loss_dict.keys() if weight_loss[key]>0]), file=self.log_file)
|
||||
loss = {key:loss_dict[key].item()*weight_loss[key]
|
||||
for key in loss_dict.keys() if weight_loss[key]>0}
|
||||
if self.useVisdom:
|
||||
name = list(loss.keys())
|
||||
val = list(loss.values())
|
||||
x = self.index.get(self.log_name, 0)
|
||||
if len(val) == 1:
|
||||
y = np.array(val)
|
||||
else:
|
||||
y = np.array(val).reshape(-1, len(val))
|
||||
self.vis.line(Y=y,X=np.ones(y.shape)*x,
|
||||
win=str(self.log_name),#unicode
|
||||
opts=dict(legend=name,
|
||||
title=self.log_name),
|
||||
update=None if x == 0 else 'append'
|
||||
)
|
||||
elif False:
|
||||
self.writer.add_scalars('data/{}'.format(self.log_name), loss, self.index[self.log_name])
|
||||
self.index[self.log_name] += 1
|
||||
|
||||
def log_loss(self, weight_loss):
|
||||
loss = json.dumps(weight_loss, indent=4)
|
||||
self.log_file.writelines(loss)
|
||||
self.log_file.write('\n')
|
||||
|
||||
def close(self):
|
||||
self.log_file.close()
|
||||
|
||||
|
||||
def grad_require(paras, flag=False):
|
||||
if isinstance(paras, list):
|
||||
for par in paras:
|
||||
par.requires_grad = flag
|
||||
elif isinstance(paras, dict):
|
||||
for key, par in paras.items():
|
||||
par.requires_grad = flag
|
@ -1,364 +0,0 @@
|
||||
'''
|
||||
@ Date: 2020-11-19 10:49:26
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-24 21:29:12
|
||||
@ FilePath: /EasyMocapRelease/code/pyfitting/optimize_simple.py
|
||||
'''
|
||||
import numpy as np
|
||||
import torch
|
||||
from .lbfgs import LBFGS
|
||||
from .optimize import FittingMonitor, grad_require, FittingLog
|
||||
from .lossfactory import SMPLAngleLoss, SmoothLoss, RegularizationLoss, ReprojectionLoss
|
||||
|
||||
def create_closure(optimizer, body_model, body_params, body_params_init, cam_params,
|
||||
keypoints2d, bboxes, weight_loss_, debug=False, verbose=False):
|
||||
K, Rc, Tc = cam_params['K'], cam_params['Rc'], cam_params['Tc']
|
||||
bbox_sizes = np.maximum(bboxes[:, 2] - bboxes[:, 0], bboxes[:, 3] - bboxes[:, 1])/100
|
||||
inv_bbox_sizes = torch.Tensor(1./bbox_sizes[:, None, None]).to(body_model.device)**2
|
||||
nFrames = keypoints2d.shape[0]
|
||||
nPoses = body_params['poses'].shape[0]
|
||||
if nFrames == nPoses:
|
||||
weight_loss = {key:val/nFrames for key, val in weight_loss_.items()} # normalize by frames
|
||||
else:
|
||||
# the multiple views case
|
||||
weight_loss = weight_loss_.copy()
|
||||
weight_loss['repro'] /= nFrames
|
||||
angle_prior = SMPLAngleLoss(keypoints2d)
|
||||
|
||||
if len(K.shape) == 2:
|
||||
K, Rc, Tc = K[None, :, :], Rc[None, :, :], Tc[None, :, :]
|
||||
def closure(debug=False):
|
||||
optimizer.zero_grad()
|
||||
keypoints3d = body_model(return_verts=False, return_tensor=True, **body_params)
|
||||
loss_dict = {}
|
||||
loss_dict['repro'] = ReprojectionLoss(keypoints3d, keypoints2d, K, Rc, Tc, inv_bbox_sizes)
|
||||
# smooth
|
||||
loss_dict.update(SmoothLoss(body_params, ['poses', 'Th'], weight_loss))
|
||||
# regularize
|
||||
loss_dict.update(RegularizationLoss(body_params, body_params_init, weight_loss))
|
||||
loss_dict['reg_poses_zero'] = angle_prior.loss(body_params['poses'])
|
||||
# fittingLog.step(loss_dict, weight_loss)
|
||||
if verbose:
|
||||
print(' '.join([key + ' %f'%(loss_dict[key].item()*weight_loss[key])
|
||||
for key in loss_dict.keys() if weight_loss[key]>0]))
|
||||
loss = sum([loss_dict[key]*weight_loss[key]
|
||||
for key in loss_dict.keys()])
|
||||
if not debug:
|
||||
loss.backward()
|
||||
return loss
|
||||
else:
|
||||
return loss_dict
|
||||
return closure
|
||||
|
||||
def findNeighborIdx(nf, nF, nspan):
|
||||
idx = [i for i in range(nf-nspan, nf+nspan+1) if i >=0 and i<nF and i!= nf]
|
||||
return idx
|
||||
|
||||
def viewSelection(body_params, span=5):
|
||||
""" Apply view selection for body parameters
|
||||
|
||||
Args:
|
||||
body_params (DictParams)
|
||||
"""
|
||||
assert span % 2 == 1, 'span = {} must be an odd number'.format(span)
|
||||
nspan = (span - 1)//2
|
||||
# for linear data
|
||||
nF = body_params['poses'].shape[0]
|
||||
min_thres = {'Th': 0.2, 'poses': 0.2}
|
||||
for key in ['poses', 'Th']:
|
||||
weight = np.ones((nF))
|
||||
for nf in range(nF):
|
||||
# first find neighbor
|
||||
neighbor_idx = findNeighborIdx(nf, nF, nspan)
|
||||
dist = np.linalg.norm(body_params[key][neighbor_idx, :] - body_params[key][nf:nf+1, :], axis=1)
|
||||
conf = dist.min()/np.linalg.norm(body_params[key][nf])
|
||||
weight[nf] = min_thres[key] - conf
|
||||
if conf > min_thres[key]:
|
||||
weight[nf] = 0
|
||||
for nf in range(nF):
|
||||
neighbor_idx = findNeighborIdx(nf, nF, nspan) + [nf]
|
||||
weight_cur = weight[neighbor_idx]
|
||||
weight_sum = weight_cur.sum()
|
||||
if weight_sum == 0:
|
||||
pass
|
||||
else:
|
||||
val = body_params[key][neighbor_idx, :]*weight_cur[:, None]
|
||||
val = val.sum(axis=0)/weight_sum
|
||||
# simply remove outliers
|
||||
body_params[key][nf] = val
|
||||
# for rotation data
|
||||
pass
|
||||
return body_params
|
||||
|
||||
|
||||
def optimizeVideo(body_model, params_init, cam_params,
|
||||
keypoints, bbox,
|
||||
weight, cfg=None):
|
||||
""" simple function for optimizing video/image
|
||||
|
||||
Args:
|
||||
body_model (SMPL model)
|
||||
params_init (DictParam): poses(F, 72), shapes(1/F, 10), Rh(F, 3), Th(F, 3)
|
||||
cam_params (DictParam): K, R, T
|
||||
keypoints (F, J, 3): 2D keypoints
|
||||
bbox (F, 7): bounding box
|
||||
weight (Dict): string:float
|
||||
cfg (Config): Config Node controling running mode
|
||||
"""
|
||||
device = body_model.device
|
||||
cam_params = {key:torch.Tensor(val).to(device) for key, val in cam_params.items()}
|
||||
keypoints = torch.Tensor(keypoints).to(device)
|
||||
body_params = {key:torch.Tensor(val).to(device) for key, val in params_init.items()}
|
||||
body_params_init = {key:val.clone() for key, val in body_params.items()}
|
||||
if cfg is None:
|
||||
opt_params = [body_params['Rh'], body_params['Th'], body_params['poses']]
|
||||
else:
|
||||
opt_params = []
|
||||
if cfg.OPT_R:
|
||||
opt_params.append(body_params['Rh'])
|
||||
if cfg.OPT_T:
|
||||
opt_params.append(body_params['Th'])
|
||||
if cfg.OPT_POSE:
|
||||
opt_params.append(body_params['poses'])
|
||||
|
||||
grad_require(opt_params, True)
|
||||
optimizer = LBFGS(
|
||||
opt_params, line_search_fn='strong_wolfe')
|
||||
|
||||
closure = create_closure(optimizer, body_model, body_params,
|
||||
body_params_init, cam_params,
|
||||
keypoints, bbox, weight, verbose=cfg.VERBOSE)
|
||||
|
||||
fitting = FittingMonitor(ftol=1e-4)
|
||||
final_loss = fitting.run_fitting(optimizer, closure, opt_params)
|
||||
fitting.close()
|
||||
grad_require(opt_params, False)
|
||||
loss_dict = closure(debug=True)
|
||||
optimizer = LBFGS(
|
||||
opt_params, line_search_fn='strong_wolfe')
|
||||
body_params = {key:val.detach().cpu().numpy() for key, val in body_params.items()}
|
||||
return body_params
|
||||
|
||||
def optimizeMultiImage(body_model, params_init, cam_params,
|
||||
keypoints, bbox,
|
||||
weight, cfg):
|
||||
""" simple function for optimizing multiple images
|
||||
|
||||
Args:
|
||||
body_model (SMPL model)
|
||||
params_init (DictParam): poses(1, 72), shapes(1, 10), Rh(1, 3), Th(1, 3)
|
||||
cam_params (DictParam): K(nV, 3, 3), R(nV, 3, 3), T(nV, 3, 1)
|
||||
keypoints (nV, J, 3): 2D keypoints
|
||||
bbox (nV, 7): bounding box
|
||||
weight (Dict): string:float
|
||||
cfg (Config): Config Node controling running mode
|
||||
"""
|
||||
device = body_model.device
|
||||
cam_params = {key:torch.Tensor(val).to(device) for key, val in cam_params.items()}
|
||||
keypoints = torch.Tensor(keypoints).to(device)
|
||||
body_params = {key:torch.Tensor(val).to(device) for key, val in params_init.items()}
|
||||
body_params_init = {key:val.clone() for key, val in body_params.items()}
|
||||
if cfg is None:
|
||||
opt_params = [body_params['Rh'], body_params['Th'], body_params['poses']]
|
||||
else:
|
||||
opt_params = []
|
||||
if cfg.OPT_R:
|
||||
opt_params.append(body_params['Rh'])
|
||||
if cfg.OPT_T:
|
||||
opt_params.append(body_params['Th'])
|
||||
if cfg.OPT_POSE:
|
||||
opt_params.append(body_params['poses'])
|
||||
if cfg.OPT_SHAPE:
|
||||
opt_params.append(body_params['shapes'])
|
||||
grad_require(opt_params, True)
|
||||
optimizer = LBFGS(
|
||||
opt_params, line_search_fn='strong_wolfe')
|
||||
|
||||
closure = create_closure(optimizer, body_model, body_params,
|
||||
body_params_init, cam_params,
|
||||
keypoints, bbox, weight, verbose=cfg.VERBOSE)
|
||||
|
||||
fitting = FittingMonitor(ftol=1e-4)
|
||||
final_loss = fitting.run_fitting(optimizer, closure, opt_params)
|
||||
fitting.close()
|
||||
grad_require(opt_params, False)
|
||||
loss_dict = closure(debug=True)
|
||||
for key in loss_dict.keys():
|
||||
loss_dict[key] = loss_dict[key].item()
|
||||
optimizer = LBFGS(
|
||||
opt_params, line_search_fn='strong_wolfe')
|
||||
body_params = {key:val.detach().cpu().numpy() for key, val in body_params.items()}
|
||||
return body_params, loss_dict
|
||||
|
||||
def optimizeShape(body_model, body_params, keypoints3d,
|
||||
weight_loss, kintree, cfg=None):
|
||||
""" simple function for optimizing model shape given 3d keypoints
|
||||
|
||||
Args:
|
||||
body_model (SMPL model)
|
||||
params_init (DictParam): poses(1, 72), shapes(1, 10), Rh(1, 3), Th(1, 3)
|
||||
keypoints (nFrames, nJoints, 3): 3D keypoints
|
||||
weight (Dict): string:float
|
||||
kintree ([[src, dst]]): list of list:int
|
||||
cfg (Config): Config Node controling running mode
|
||||
"""
|
||||
device = body_model.device
|
||||
# 计算不同的骨长
|
||||
kintree = np.array(kintree, dtype=np.int)
|
||||
# limb_length: nFrames, nLimbs, 1
|
||||
limb_length = np.linalg.norm(keypoints3d[:, kintree[:, 1], :3] - keypoints3d[:, kintree[:, 0], :3], axis=2, keepdims=True)
|
||||
# conf: nFrames, nLimbs, 1
|
||||
limb_conf = np.minimum(keypoints3d[:, kintree[:, 1], 3:], keypoints3d[:, kintree[:, 0], 3:])
|
||||
limb_length = torch.Tensor(limb_length).to(device)
|
||||
limb_conf = torch.Tensor(limb_conf).to(device)
|
||||
body_params = {key:torch.Tensor(val).to(device) for key, val in body_params.items()}
|
||||
body_params_init = {key:val.clone() for key, val in body_params.items()}
|
||||
opt_params = [body_params['shapes']]
|
||||
grad_require(opt_params, True)
|
||||
optimizer = LBFGS(
|
||||
opt_params, line_search_fn='strong_wolfe', max_iter=10)
|
||||
nFrames = keypoints3d.shape[0]
|
||||
verbose = False
|
||||
def closure(debug=False):
|
||||
optimizer.zero_grad()
|
||||
keypoints3d = body_model(return_verts=False, return_tensor=True, only_shape=True, **body_params)
|
||||
src = keypoints3d[:, kintree[:, 0], :3] #.detach()
|
||||
dst = keypoints3d[:, kintree[:, 1], :3]
|
||||
direct_est = (dst - src).detach()
|
||||
direct_norm = torch.norm(direct_est, dim=2, keepdim=True)
|
||||
direct_normalized = direct_est/(direct_norm + 1e-4)
|
||||
err = dst - src - direct_normalized * limb_length
|
||||
loss_dict = {
|
||||
's3d': torch.sum(err**2*limb_conf)/nFrames,
|
||||
'reg_shapes': torch.sum(body_params['shapes']**2)}
|
||||
if 'init_shape' in weight_loss.keys():
|
||||
loss_dict['init_shape'] = torch.sum((body_params['shapes'] - body_params_init['shapes'])**2)
|
||||
# fittingLog.step(loss_dict, weight_loss)
|
||||
if verbose:
|
||||
print(' '.join([key + ' %.3f'%(loss_dict[key].item()*weight_loss[key])
|
||||
for key in loss_dict.keys() if weight_loss[key]>0]))
|
||||
loss = sum([loss_dict[key]*weight_loss[key]
|
||||
for key in loss_dict.keys()])
|
||||
if not debug:
|
||||
loss.backward()
|
||||
return loss
|
||||
else:
|
||||
return loss_dict
|
||||
|
||||
fitting = FittingMonitor(ftol=1e-4)
|
||||
final_loss = fitting.run_fitting(optimizer, closure, opt_params)
|
||||
fitting.close()
|
||||
grad_require(opt_params, False)
|
||||
loss_dict = closure(debug=True)
|
||||
for key in loss_dict.keys():
|
||||
loss_dict[key] = loss_dict[key].item()
|
||||
optimizer = LBFGS(
|
||||
opt_params, line_search_fn='strong_wolfe')
|
||||
body_params = {key:val.detach().cpu().numpy() for key, val in body_params.items()}
|
||||
return body_params
|
||||
|
||||
N_BODY = 25
|
||||
N_HAND = 21
|
||||
|
||||
def optimizePose(body_model, body_params, keypoints3d,
|
||||
weight_loss, kintree, cfg=None):
|
||||
""" simple function for optimizing model pose given 3d keypoints
|
||||
|
||||
Args:
|
||||
body_model (SMPL model)
|
||||
params_init (DictParam): poses(1, 72), shapes(1, 10), Rh(1, 3), Th(1, 3)
|
||||
keypoints (nFrames, nJoints, 3): 3D keypoints
|
||||
weight (Dict): string:float
|
||||
kintree ([[src, dst]]): list of list:int
|
||||
cfg (Config): Config Node controling running mode
|
||||
"""
|
||||
device = body_model.device
|
||||
model_type = body_model.model_type
|
||||
# 计算不同的骨长
|
||||
kintree = np.array(kintree, dtype=np.int)
|
||||
nFrames = keypoints3d.shape[0]
|
||||
nJoints = keypoints3d.shape[1]
|
||||
keypoints3d = torch.Tensor(keypoints3d).to(device)
|
||||
angle_prior = SMPLAngleLoss(keypoints3d, body_model.model_type)
|
||||
|
||||
body_params = {key:torch.Tensor(val).to(device) for key, val in body_params.items()}
|
||||
body_params_init = {key:val.clone() for key, val in body_params.items()}
|
||||
if cfg is None:
|
||||
opt_params = [body_params['Rh'], body_params['Th'], body_params['poses']]
|
||||
verbose = False
|
||||
else:
|
||||
opt_params = []
|
||||
if cfg.OPT_R:
|
||||
opt_params.append(body_params['Rh'])
|
||||
if cfg.OPT_T:
|
||||
opt_params.append(body_params['Th'])
|
||||
if cfg.OPT_POSE:
|
||||
opt_params.append(body_params['poses'])
|
||||
if cfg.OPT_SHAPE:
|
||||
opt_params.append(body_params['shapes'])
|
||||
if cfg.OPT_EXPR and model_type == 'smplx':
|
||||
opt_params.append(body_params['expression'])
|
||||
verbose = cfg.VERBOSE
|
||||
grad_require(opt_params, True)
|
||||
optimizer = LBFGS(
|
||||
opt_params, line_search_fn='strong_wolfe')
|
||||
zero_pose = torch.zeros((nFrames, 3), device=device)
|
||||
if not cfg.OPT_HAND and model_type in ['smplh', 'smplx']:
|
||||
zero_pose_hand = torch.zeros((nFrames, body_params['poses'].shape[1] - 66), device=device)
|
||||
nJoints = N_BODY
|
||||
keypoints3d = keypoints3d[:, :nJoints]
|
||||
elif cfg.OPT_HAND and not cfg.OPT_EXPR and model_type == 'smplx':
|
||||
zero_pose_face = torch.zeros((nFrames, body_params['poses'].shape[1] - 78), device=device)
|
||||
nJoints = N_BODY + N_HAND * 2
|
||||
keypoints3d = keypoints3d[:, :nJoints]
|
||||
else:
|
||||
nJoints = keypoints3d.shape[1]
|
||||
def closure(debug=False):
|
||||
optimizer.zero_grad()
|
||||
new_params = body_params.copy()
|
||||
if not cfg.OPT_HAND and cfg.MODEL in ['smplh', 'smplx']:
|
||||
new_params['poses'] = torch.cat([zero_pose, body_params['poses'][:, 3:66], zero_pose_hand], dim=1)
|
||||
else:
|
||||
new_params['poses'] = torch.cat([zero_pose, body_params['poses'][:, 3:]], dim=1)
|
||||
kpts_est = body_model(return_verts=False, return_tensor=True, **new_params)[:, :nJoints, :]
|
||||
diff_square = (kpts_est[:, :nJoints, :3] - keypoints3d[..., :3])**2
|
||||
# TODO:add robust loss
|
||||
conf = keypoints3d[..., 3:]
|
||||
loss_3d = torch.sum(conf * diff_square)
|
||||
loss_dict = {
|
||||
'k3d': loss_3d,
|
||||
'reg_poses_zero': angle_prior.loss(body_params['poses'])
|
||||
}
|
||||
# regularize
|
||||
loss_dict.update(RegularizationLoss(body_params, body_params_init, weight_loss))
|
||||
# smooth
|
||||
smooth_conf = keypoints3d[1:, ..., -1:]**2
|
||||
loss_dict['smooth_body'] = torch.sum(smooth_conf[:, :N_BODY] * torch.abs(kpts_est[:-1, :N_BODY] - kpts_est[1:, :N_BODY]))
|
||||
if cfg.OPT_HAND and cfg.MODEL in ['smplh', 'smplx']:
|
||||
loss_dict['smooth_hand'] = torch.sum(smooth_conf[:, N_BODY:N_BODY+N_HAND*2] * torch.abs(kpts_est[:-1, N_BODY:N_BODY+N_HAND*2] - kpts_est[1:, N_BODY:N_BODY+N_HAND*2]))
|
||||
for key in loss_dict.keys():
|
||||
loss_dict[key] = loss_dict[key]/nFrames
|
||||
# fittingLog.step(loss_dict, weight_loss)
|
||||
if verbose:
|
||||
print(' '.join([key + ' %f'%(loss_dict[key].item()*weight_loss[key])
|
||||
for key in loss_dict.keys() if weight_loss[key]>0]))
|
||||
loss = sum([loss_dict[key]*weight_loss[key]
|
||||
for key in loss_dict.keys()])
|
||||
if not debug:
|
||||
loss.backward()
|
||||
return loss
|
||||
else:
|
||||
return loss_dict
|
||||
|
||||
fitting = FittingMonitor(ftol=1e-4)
|
||||
final_loss = fitting.run_fitting(optimizer, closure, opt_params)
|
||||
fitting.close()
|
||||
grad_require(opt_params, False)
|
||||
loss_dict = closure(debug=True)
|
||||
for key in loss_dict.keys():
|
||||
loss_dict[key] = loss_dict[key].item()
|
||||
optimizer = LBFGS(
|
||||
opt_params, line_search_fn='strong_wolfe')
|
||||
body_params = {key:val.detach().cpu().numpy() for key, val in body_params.items()}
|
||||
return body_params
|
@ -1,10 +0,0 @@
|
||||
'''
|
||||
@ Date: 2020-11-18 14:33:20
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-20 16:33:02
|
||||
@ FilePath: /EasyMocap/code/smplmodel/__init__.py
|
||||
'''
|
||||
from .body_model import SMPLlayer
|
||||
from .body_param import load_model
|
||||
from .body_param import merge_params, select_nf, init_params, Config, check_params, check_keypoints
|
@ -1,209 +0,0 @@
|
||||
'''
|
||||
@ Date: 2020-11-18 14:04:10
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-22 16:04:54
|
||||
@ FilePath: /EasyMocap/code/smplmodel/body_model.py
|
||||
'''
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from .lbs import lbs, batch_rodrigues
|
||||
import os.path as osp
|
||||
import pickle
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
def to_tensor(array, dtype=torch.float32, device=torch.device('cpu')):
|
||||
if 'torch.tensor' not in str(type(array)):
|
||||
return torch.tensor(array, dtype=dtype).to(device)
|
||||
else:
|
||||
return array.to(device)
|
||||
|
||||
def to_np(array, dtype=np.float32):
|
||||
if 'scipy.sparse' in str(type(array)):
|
||||
array = array.todense()
|
||||
return np.array(array, dtype=dtype)
|
||||
|
||||
def load_regressor(regressor_path):
|
||||
if regressor_path.endswith('.npy'):
|
||||
X_regressor = to_tensor(np.load(regressor_path))
|
||||
elif regressor_path.endswith('.txt'):
|
||||
data = np.loadtxt(regressor_path)
|
||||
with open(regressor_path, 'r') as f:
|
||||
shape = f.readline().split()[1:]
|
||||
reg = np.zeros((int(shape[0]), int(shape[1])))
|
||||
for i, j, v in data:
|
||||
reg[int(i), int(j)] = v
|
||||
X_regressor = to_tensor(reg)
|
||||
else:
|
||||
import ipdb; ipdb.set_trace()
|
||||
return X_regressor
|
||||
|
||||
class SMPLlayer(nn.Module):
|
||||
def __init__(self, model_path, model_type='smpl', gender='neutral', device=None,
|
||||
regressor_path=None) -> None:
|
||||
super(SMPLlayer, self).__init__()
|
||||
dtype = torch.float32
|
||||
self.dtype = dtype
|
||||
self.device = device
|
||||
self.model_type = model_type
|
||||
# create the SMPL model
|
||||
if osp.isdir(model_path):
|
||||
model_fn = 'SMPL_{}.{ext}'.format(gender.upper(), ext='pkl')
|
||||
smpl_path = osp.join(model_path, model_fn)
|
||||
else:
|
||||
smpl_path = model_path
|
||||
assert osp.exists(smpl_path), 'Path {} does not exist!'.format(
|
||||
smpl_path)
|
||||
|
||||
with open(smpl_path, 'rb') as smpl_file:
|
||||
data = pickle.load(smpl_file, encoding='latin1')
|
||||
self.faces = data['f']
|
||||
self.register_buffer('faces_tensor',
|
||||
to_tensor(to_np(self.faces, dtype=np.int64),
|
||||
dtype=torch.long))
|
||||
# Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*3 x 207
|
||||
num_pose_basis = data['posedirs'].shape[-1]
|
||||
# 207 x 20670
|
||||
posedirs = data['posedirs']
|
||||
data['posedirs'] = np.reshape(data['posedirs'], [-1, num_pose_basis]).T
|
||||
|
||||
for key in ['J_regressor', 'v_template', 'weights', 'posedirs', 'shapedirs']:
|
||||
val = to_tensor(to_np(data[key]), dtype=dtype)
|
||||
self.register_buffer(key, val)
|
||||
# indices of parents for each joints
|
||||
parents = to_tensor(to_np(data['kintree_table'][0])).long()
|
||||
parents[0] = -1
|
||||
self.register_buffer('parents', parents)
|
||||
if self.model_type == 'smplx':
|
||||
# shape
|
||||
self.num_expression_coeffs = 10
|
||||
self.num_shapes = 10
|
||||
self.shapedirs = self.shapedirs[:, :, :self.num_shapes+self.num_expression_coeffs]
|
||||
# joints regressor
|
||||
if regressor_path is not None:
|
||||
X_regressor = load_regressor(regressor_path)
|
||||
X_regressor = torch.cat((self.J_regressor, X_regressor), dim=0)
|
||||
|
||||
j_J_regressor = torch.zeros(self.J_regressor.shape[0], X_regressor.shape[0], device=device)
|
||||
for i in range(self.J_regressor.shape[0]):
|
||||
j_J_regressor[i, i] = 1
|
||||
j_v_template = X_regressor @ self.v_template
|
||||
#
|
||||
j_shapedirs = torch.einsum('vij,kv->kij', [self.shapedirs, X_regressor])
|
||||
# (25, 24)
|
||||
j_weights = X_regressor @ self.weights
|
||||
j_posedirs = torch.einsum('ab, bde->ade', [X_regressor, torch.Tensor(posedirs)]).numpy()
|
||||
j_posedirs = np.reshape(j_posedirs, [-1, num_pose_basis]).T
|
||||
j_posedirs = to_tensor(j_posedirs)
|
||||
self.register_buffer('j_posedirs', j_posedirs)
|
||||
self.register_buffer('j_shapedirs', j_shapedirs)
|
||||
self.register_buffer('j_weights', j_weights)
|
||||
self.register_buffer('j_v_template', j_v_template)
|
||||
self.register_buffer('j_J_regressor', j_J_regressor)
|
||||
if self.model_type == 'smplh':
|
||||
# load smplh data
|
||||
self.num_pca_comps = 6
|
||||
from os.path import join
|
||||
for key in ['LEFT', 'RIGHT']:
|
||||
left_file = join(os.path.dirname(smpl_path), 'MANO_{}.pkl'.format(key))
|
||||
with open(left_file, 'rb') as f:
|
||||
data = pickle.load(f, encoding='latin1')
|
||||
val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype)
|
||||
self.register_buffer('mHandsMean'+key[0], val)
|
||||
val = to_tensor(to_np(data['hands_components'][:self.num_pca_comps, :]), dtype=dtype)
|
||||
self.register_buffer('mHandsComponents'+key[0], val)
|
||||
self.use_pca = True
|
||||
self.use_flat_mean = True
|
||||
elif self.model_type == 'smplx':
|
||||
# hand pose
|
||||
self.num_pca_comps = 6
|
||||
from os.path import join
|
||||
for key in ['Ll', 'Rr']:
|
||||
val = to_tensor(to_np(data['hands_mean'+key[1]].reshape(1, -1)), dtype=dtype)
|
||||
self.register_buffer('mHandsMean'+key[0], val)
|
||||
val = to_tensor(to_np(data['hands_components'+key[1]][:self.num_pca_comps, :]), dtype=dtype)
|
||||
self.register_buffer('mHandsComponents'+key[0], val)
|
||||
self.use_pca = True
|
||||
self.use_flat_mean = True
|
||||
|
||||
def extend_pose(self, poses):
|
||||
if self.model_type not in ['smplh', 'smplx']:
|
||||
return poses
|
||||
elif self.model_type == 'smplh' and poses.shape[-1] == 156:
|
||||
return poses
|
||||
elif self.model_type == 'smplx' and poses.shape[-1] == 165:
|
||||
return poses
|
||||
|
||||
NUM_BODYJOINTS = 22 * 3
|
||||
if self.use_pca:
|
||||
NUM_HANDJOINTS = self.num_pca_comps
|
||||
else:
|
||||
NUM_HANDJOINTS = 15 * 3
|
||||
NUM_FACEJOINTS = 3 * 3
|
||||
poses_lh = poses[:, NUM_BODYJOINTS:NUM_BODYJOINTS + NUM_HANDJOINTS]
|
||||
poses_rh = poses[:, NUM_BODYJOINTS + NUM_HANDJOINTS:NUM_BODYJOINTS+NUM_HANDJOINTS*2]
|
||||
if self.use_pca:
|
||||
poses_lh = poses_lh @ self.mHandsComponentsL
|
||||
poses_rh = poses_rh @ self.mHandsComponentsR
|
||||
if self.use_flat_mean:
|
||||
poses_lh = poses_lh + self.mHandsMeanL
|
||||
poses_rh = poses_rh + self.mHandsMeanR
|
||||
if self.model_type == 'smplh':
|
||||
poses = torch.cat([poses[:, :NUM_BODYJOINTS], poses_lh, poses_rh], dim=1)
|
||||
elif self.model_type == 'smplx':
|
||||
# the head part have only three joints
|
||||
# poses_head: (N, 9), jaw_pose, leye_pose, reye_pose respectively
|
||||
poses_head = poses[:, NUM_BODYJOINTS+NUM_HANDJOINTS*2:]
|
||||
# body, head, left hand, right hand
|
||||
poses = torch.cat([poses[:, :NUM_BODYJOINTS], poses_head, poses_lh, poses_rh], dim=1)
|
||||
return poses
|
||||
|
||||
def forward(self, poses, shapes, Rh=None, Th=None, expression=None, return_verts=True, return_tensor=True, only_shape=False, **kwargs):
|
||||
""" Forward pass for SMPL model
|
||||
|
||||
Args:
|
||||
poses (n, 72)
|
||||
shapes (n, 10)
|
||||
Rh (n, 3): global orientation
|
||||
Th (n, 3): global translation
|
||||
return_verts (bool, optional): if True return (6890, 3). Defaults to False.
|
||||
"""
|
||||
if 'torch' not in str(type(poses)):
|
||||
dtype, device = self.dtype, self.device
|
||||
poses = to_tensor(poses, dtype, device)
|
||||
shapes = to_tensor(shapes, dtype, device)
|
||||
Rh = to_tensor(Rh, dtype, device)
|
||||
Th = to_tensor(Th, dtype, device)
|
||||
if expression is not None:
|
||||
expression = to_tensor(expression, dtype, device)
|
||||
|
||||
bn = poses.shape[0]
|
||||
# process Rh, Th
|
||||
if Rh is None:
|
||||
Rh = torch.zeros(bn, 3, device=poses.device)
|
||||
rot = batch_rodrigues(Rh)
|
||||
transl = Th.unsqueeze(dim=1)
|
||||
# process shapes
|
||||
if shapes.shape[0] < bn:
|
||||
shapes = shapes.expand(bn, -1)
|
||||
if expression is not None and self.model_type == 'smplx':
|
||||
shapes = torch.cat([shapes, expression], dim=1)
|
||||
# process poses
|
||||
if self.model_type == 'smplh' or self.model_type == 'smplx':
|
||||
poses = self.extend_pose(poses)
|
||||
if return_verts:
|
||||
vertices, joints = lbs(shapes, poses, self.v_template,
|
||||
self.shapedirs, self.posedirs,
|
||||
self.J_regressor, self.parents,
|
||||
self.weights, pose2rot=True, dtype=self.dtype)
|
||||
else:
|
||||
vertices, joints = lbs(shapes, poses, self.j_v_template,
|
||||
self.j_shapedirs, self.j_posedirs,
|
||||
self.j_J_regressor, self.parents,
|
||||
self.j_weights, pose2rot=True, dtype=self.dtype, only_shape=only_shape)
|
||||
vertices = vertices[:, self.J_regressor.shape[0]:, :]
|
||||
vertices = torch.matmul(vertices, rot.transpose(1, 2)) + transl
|
||||
if not return_tensor:
|
||||
vertices = vertices.detach().cpu().numpy()
|
||||
return vertices
|
@ -1,102 +0,0 @@
|
||||
'''
|
||||
@ Date: 2020-11-20 13:34:54
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-24 18:39:45
|
||||
@ FilePath: /EasyMocapRelease/code/smplmodel/body_param.py
|
||||
'''
|
||||
import numpy as np
|
||||
|
||||
def merge_params(param_list, share_shape=True):
|
||||
output = {}
|
||||
for key in ['poses', 'shapes', 'Rh', 'Th', 'expression']:
|
||||
if key in param_list[0].keys():
|
||||
output[key] = np.vstack([v[key] for v in param_list])
|
||||
if share_shape:
|
||||
output['shapes'] = output['shapes'].mean(axis=0, keepdims=True)
|
||||
return output
|
||||
|
||||
def select_nf(params_all, nf):
|
||||
output = {}
|
||||
for key in ['poses', 'Rh', 'Th']:
|
||||
output[key] = params_all[key][nf:nf+1, :]
|
||||
if 'expression' in params_all.keys():
|
||||
output['expression'] = params_all['expression'][nf:nf+1, :]
|
||||
if params_all['shapes'].shape[0] == 1:
|
||||
output['shapes'] = params_all['shapes']
|
||||
else:
|
||||
output['shapes'] = params_all['shapes'][nf:nf+1, :]
|
||||
return output
|
||||
|
||||
NUM_POSES = {'smpl': 72, 'smplh': 78, 'smplx': 66 + 12 + 9}
|
||||
NUM_EXPR = 10
|
||||
|
||||
def init_params(nFrames=1, model_type='smpl'):
|
||||
params = {
|
||||
'poses': np.zeros((nFrames, NUM_POSES[model_type])),
|
||||
'shapes': np.zeros((1, 10)),
|
||||
'Rh': np.zeros((nFrames, 3)),
|
||||
'Th': np.zeros((nFrames, 3)),
|
||||
}
|
||||
if model_type == 'smplx':
|
||||
params['expression'] = np.zeros((nFrames, NUM_EXPR))
|
||||
return params
|
||||
|
||||
def check_params(body_params, model_type):
|
||||
nFrames = body_params['poses'].shape[0]
|
||||
if body_params['poses'].shape[1] != NUM_POSES[model_type]:
|
||||
body_params['poses'] = np.hstack((body_params['poses'], np.zeros((nFrames, NUM_POSES[model_type] - body_params['poses'].shape[1]))))
|
||||
if model_type == 'smplx' and 'expression' not in body_params.keys():
|
||||
body_params['expression'] = np.zeros((nFrames, NUM_EXPR))
|
||||
return body_params
|
||||
|
||||
class Config:
|
||||
OPT_R = False
|
||||
OPT_T = False
|
||||
OPT_POSE = False
|
||||
OPT_SHAPE = False
|
||||
OPT_HAND = False
|
||||
OPT_EXPR = False
|
||||
VERBOSE = False
|
||||
MODEL = 'smpl'
|
||||
|
||||
def load_model(gender='neutral', use_cuda=True, model_type='smpl'):
|
||||
# prepare SMPL model
|
||||
import torch
|
||||
if use_cuda:
|
||||
device = torch.device('cuda')
|
||||
else:
|
||||
device = torch.device('cpu')
|
||||
from .body_model import SMPLlayer
|
||||
if model_type == 'smpl':
|
||||
body_model = SMPLlayer('data/smplx/smpl', gender=gender, device=device,
|
||||
regressor_path='data/smplx/J_regressor_body25.npy')
|
||||
elif model_type == 'smplh':
|
||||
body_model = SMPLlayer('data/smplx/smplh/SMPLH_MALE.pkl', model_type='smplh', gender=gender, device=device,
|
||||
regressor_path='data/smplx/J_regressor_body25_smplh.txt')
|
||||
elif model_type == 'smplx':
|
||||
body_model = SMPLlayer('data/smplx/smplx/SMPLX_{}.pkl'.format(gender.upper()), model_type='smplx', gender=gender, device=device,
|
||||
regressor_path='data/smplx/J_regressor_body25_smplx.txt')
|
||||
else:
|
||||
body_model = None
|
||||
body_model.to(device)
|
||||
return body_model
|
||||
|
||||
def check_keypoints(keypoints2d, WEIGHT_DEBUFF=1.2):
|
||||
# keypoints2d: nFrames, nJoints, 3
|
||||
#
|
||||
# wrong feet
|
||||
# if keypoints2d.shape[-2] > 25 + 42:
|
||||
# keypoints2d[..., 0, 2] = 0
|
||||
# keypoints2d[..., [15, 16, 17, 18], -1] = 0
|
||||
# keypoints2d[..., [19, 20, 21, 22, 23, 24], -1] /= 2
|
||||
if keypoints2d.shape[-2] > 25:
|
||||
# set the hand keypoints
|
||||
keypoints2d[..., 25, :] = keypoints2d[..., 7, :]
|
||||
keypoints2d[..., 46, :] = keypoints2d[..., 4, :]
|
||||
keypoints2d[..., 25:, -1] *= WEIGHT_DEBUFF
|
||||
# reduce the confidence of hand and face
|
||||
MIN_CONF = 0.3
|
||||
conf = keypoints2d[..., -1]
|
||||
conf[conf<MIN_CONF] = 0
|
||||
return keypoints2d
|
@ -1,378 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
|
||||
# holder of all proprietary rights on this computer program.
|
||||
# You can only use this computer program if you have closed
|
||||
# a license agreement with MPG or you get the right to use the computer
|
||||
# program from someone who is authorized to grant you that right.
|
||||
# Any use of the computer program without a valid license is prohibited and
|
||||
# liable to prosecution.
|
||||
#
|
||||
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
|
||||
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
|
||||
# for Intelligent Systems. All rights reserved.
|
||||
#
|
||||
# Contact: ps-license@tuebingen.mpg.de
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def rot_mat_to_euler(rot_mats):
|
||||
# Calculates rotation matrix to euler angles
|
||||
# Careful for extreme cases of eular angles like [0.0, pi, 0.0]
|
||||
|
||||
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
|
||||
rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
|
||||
return torch.atan2(-rot_mats[:, 2, 0], sy)
|
||||
|
||||
|
||||
def find_dynamic_lmk_idx_and_bcoords(vertices, pose, dynamic_lmk_faces_idx,
|
||||
dynamic_lmk_b_coords,
|
||||
neck_kin_chain, dtype=torch.float32):
|
||||
''' Compute the faces, barycentric coordinates for the dynamic landmarks
|
||||
|
||||
|
||||
To do so, we first compute the rotation of the neck around the y-axis
|
||||
and then use a pre-computed look-up table to find the faces and the
|
||||
barycentric coordinates that will be used.
|
||||
|
||||
Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de)
|
||||
for providing the original TensorFlow implementation and for the LUT.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vertices: torch.tensor BxVx3, dtype = torch.float32
|
||||
The tensor of input vertices
|
||||
pose: torch.tensor Bx(Jx3), dtype = torch.float32
|
||||
The current pose of the body model
|
||||
dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long
|
||||
The look-up table from neck rotation to faces
|
||||
dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32
|
||||
The look-up table from neck rotation to barycentric coordinates
|
||||
neck_kin_chain: list
|
||||
A python list that contains the indices of the joints that form the
|
||||
kinematic chain of the neck.
|
||||
dtype: torch.dtype, optional
|
||||
|
||||
Returns
|
||||
-------
|
||||
dyn_lmk_faces_idx: torch.tensor, dtype = torch.long
|
||||
A tensor of size BxL that contains the indices of the faces that
|
||||
will be used to compute the current dynamic landmarks.
|
||||
dyn_lmk_b_coords: torch.tensor, dtype = torch.float32
|
||||
A tensor of size BxL that contains the indices of the faces that
|
||||
will be used to compute the current dynamic landmarks.
|
||||
'''
|
||||
|
||||
batch_size = vertices.shape[0]
|
||||
|
||||
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
|
||||
neck_kin_chain)
|
||||
rot_mats = batch_rodrigues(
|
||||
aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3)
|
||||
|
||||
rel_rot_mat = torch.eye(3, device=vertices.device,
|
||||
dtype=dtype).unsqueeze_(dim=0)
|
||||
for idx in range(len(neck_kin_chain)):
|
||||
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)
|
||||
|
||||
y_rot_angle = torch.round(
|
||||
torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
|
||||
max=39)).to(dtype=torch.long)
|
||||
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
|
||||
mask = y_rot_angle.lt(-39).to(dtype=torch.long)
|
||||
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
|
||||
y_rot_angle = (neg_mask * neg_vals +
|
||||
(1 - neg_mask) * y_rot_angle)
|
||||
|
||||
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
|
||||
0, y_rot_angle)
|
||||
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
|
||||
0, y_rot_angle)
|
||||
|
||||
return dyn_lmk_faces_idx, dyn_lmk_b_coords
|
||||
|
||||
|
||||
def vertices2landmarks(vertices, faces, lmk_faces_idx, lmk_bary_coords):
|
||||
''' Calculates landmarks by barycentric interpolation
|
||||
|
||||
Parameters
|
||||
----------
|
||||
vertices: torch.tensor BxVx3, dtype = torch.float32
|
||||
The tensor of input vertices
|
||||
faces: torch.tensor Fx3, dtype = torch.long
|
||||
The faces of the mesh
|
||||
lmk_faces_idx: torch.tensor L, dtype = torch.long
|
||||
The tensor with the indices of the faces used to calculate the
|
||||
landmarks.
|
||||
lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32
|
||||
The tensor of barycentric coordinates that are used to interpolate
|
||||
the landmarks
|
||||
|
||||
Returns
|
||||
-------
|
||||
landmarks: torch.tensor BxLx3, dtype = torch.float32
|
||||
The coordinates of the landmarks for each mesh in the batch
|
||||
'''
|
||||
# Extract the indices of the vertices for each face
|
||||
# BxLx3
|
||||
batch_size, num_verts = vertices.shape[:2]
|
||||
device = vertices.device
|
||||
|
||||
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view(
|
||||
batch_size, -1, 3)
|
||||
|
||||
lmk_faces += torch.arange(
|
||||
batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts
|
||||
|
||||
lmk_vertices = vertices.view(-1, 3)[lmk_faces].view(
|
||||
batch_size, -1, 3, 3)
|
||||
|
||||
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
|
||||
return landmarks
|
||||
|
||||
|
||||
def lbs(betas, pose, v_template, shapedirs, posedirs, J_regressor, parents,
|
||||
lbs_weights, pose2rot=True, dtype=torch.float32, only_shape=False):
|
||||
''' Performs Linear Blend Skinning with the given shape and pose parameters
|
||||
|
||||
Parameters
|
||||
----------
|
||||
betas : torch.tensor BxNB
|
||||
The tensor of shape parameters
|
||||
pose : torch.tensor Bx(J + 1) * 3
|
||||
The pose parameters in axis-angle format
|
||||
v_template torch.tensor BxVx3
|
||||
The template mesh that will be deformed
|
||||
shapedirs : torch.tensor 1xNB
|
||||
The tensor of PCA shape displacements
|
||||
posedirs : torch.tensor Px(V * 3)
|
||||
The pose PCA coefficients
|
||||
J_regressor : torch.tensor JxV
|
||||
The regressor array that is used to calculate the joints from
|
||||
the position of the vertices
|
||||
parents: torch.tensor J
|
||||
The array that describes the kinematic tree for the model
|
||||
lbs_weights: torch.tensor N x V x (J + 1)
|
||||
The linear blend skinning weights that represent how much the
|
||||
rotation matrix of each part affects each vertex
|
||||
pose2rot: bool, optional
|
||||
Flag on whether to convert the input pose tensor to rotation
|
||||
matrices. The default value is True. If False, then the pose tensor
|
||||
should already contain rotation matrices and have a size of
|
||||
Bx(J + 1)x9
|
||||
dtype: torch.dtype, optional
|
||||
|
||||
Returns
|
||||
-------
|
||||
verts: torch.tensor BxVx3
|
||||
The vertices of the mesh after applying the shape and pose
|
||||
displacements.
|
||||
joints: torch.tensor BxJx3
|
||||
The joints of the model
|
||||
'''
|
||||
|
||||
batch_size = max(betas.shape[0], pose.shape[0])
|
||||
device = betas.device
|
||||
|
||||
# Add shape contribution
|
||||
v_shaped = v_template + blend_shapes(betas, shapedirs)
|
||||
|
||||
# Get the joints
|
||||
# NxJx3 array
|
||||
J = vertices2joints(J_regressor, v_shaped)
|
||||
if only_shape:
|
||||
return v_shaped, J
|
||||
# 3. Add pose blend shapes
|
||||
# N x J x 3 x 3
|
||||
ident = torch.eye(3, dtype=dtype, device=device)
|
||||
if pose2rot:
|
||||
rot_mats = batch_rodrigues(
|
||||
pose.view(-1, 3), dtype=dtype).view([batch_size, -1, 3, 3])
|
||||
|
||||
pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1])
|
||||
# (N x P) x (P, V * 3) -> N x V x 3
|
||||
pose_offsets = torch.matmul(pose_feature, posedirs) \
|
||||
.view(batch_size, -1, 3)
|
||||
else:
|
||||
pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident
|
||||
rot_mats = pose.view(batch_size, -1, 3, 3)
|
||||
|
||||
pose_offsets = torch.matmul(pose_feature.view(batch_size, -1),
|
||||
posedirs).view(batch_size, -1, 3)
|
||||
|
||||
v_posed = pose_offsets + v_shaped
|
||||
# 4. Get the global joint location
|
||||
J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype)
|
||||
|
||||
# 5. Do skinning:
|
||||
# W is N x V x (J + 1)
|
||||
W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1])
|
||||
# (N x V x (J + 1)) x (N x (J + 1) x 16)
|
||||
num_joints = J_regressor.shape[0]
|
||||
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \
|
||||
.view(batch_size, -1, 4, 4)
|
||||
|
||||
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1],
|
||||
dtype=dtype, device=device)
|
||||
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2)
|
||||
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1))
|
||||
|
||||
verts = v_homo[:, :, :3, 0]
|
||||
|
||||
return verts, J_transformed
|
||||
|
||||
|
||||
def vertices2joints(J_regressor, vertices):
|
||||
''' Calculates the 3D joint locations from the vertices
|
||||
|
||||
Parameters
|
||||
----------
|
||||
J_regressor : torch.tensor JxV
|
||||
The regressor array that is used to calculate the joints from the
|
||||
position of the vertices
|
||||
vertices : torch.tensor BxVx3
|
||||
The tensor of mesh vertices
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.tensor BxJx3
|
||||
The location of the joints
|
||||
'''
|
||||
|
||||
return torch.einsum('bik,ji->bjk', [vertices, J_regressor])
|
||||
|
||||
|
||||
def blend_shapes(betas, shape_disps):
|
||||
''' Calculates the per vertex displacement due to the blend shapes
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
betas : torch.tensor Bx(num_betas)
|
||||
Blend shape coefficients
|
||||
shape_disps: torch.tensor Vx3x(num_betas)
|
||||
Blend shapes
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.tensor BxVx3
|
||||
The per-vertex displacement due to shape deformation
|
||||
'''
|
||||
|
||||
# Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l]
|
||||
# i.e. Multiply each shape displacement by its corresponding beta and
|
||||
# then sum them.
|
||||
blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps])
|
||||
return blend_shape
|
||||
|
||||
|
||||
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
|
||||
''' Calculates the rotation matrices for a batch of rotation vectors
|
||||
Parameters
|
||||
----------
|
||||
rot_vecs: torch.tensor Nx3
|
||||
array of N axis-angle vectors
|
||||
Returns
|
||||
-------
|
||||
R: torch.tensor Nx3x3
|
||||
The rotation matrices for the given axis-angle parameters
|
||||
'''
|
||||
|
||||
batch_size = rot_vecs.shape[0]
|
||||
device = rot_vecs.device
|
||||
|
||||
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
|
||||
rot_dir = rot_vecs / angle
|
||||
|
||||
cos = torch.unsqueeze(torch.cos(angle), dim=1)
|
||||
sin = torch.unsqueeze(torch.sin(angle), dim=1)
|
||||
|
||||
# Bx1 arrays
|
||||
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
|
||||
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
|
||||
|
||||
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
|
||||
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
|
||||
.view((batch_size, 3, 3))
|
||||
|
||||
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
|
||||
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
|
||||
return rot_mat
|
||||
|
||||
|
||||
def transform_mat(R, t):
|
||||
''' Creates a batch of transformation matrices
|
||||
Args:
|
||||
- R: Bx3x3 array of a batch of rotation matrices
|
||||
- t: Bx3x1 array of a batch of translation vectors
|
||||
Returns:
|
||||
- T: Bx4x4 Transformation matrix
|
||||
'''
|
||||
# No padding left or right, only add an extra row
|
||||
return torch.cat([F.pad(R, [0, 0, 0, 1]),
|
||||
F.pad(t, [0, 0, 0, 1], value=1)], dim=2)
|
||||
|
||||
|
||||
def batch_rigid_transform(rot_mats, joints, parents, dtype=torch.float32):
|
||||
"""
|
||||
Applies a batch of rigid transformations to the joints
|
||||
|
||||
Parameters
|
||||
----------
|
||||
rot_mats : torch.tensor BxNx3x3
|
||||
Tensor of rotation matrices
|
||||
joints : torch.tensor BxNx3
|
||||
Locations of joints
|
||||
parents : torch.tensor BxN
|
||||
The kinematic tree of each object
|
||||
dtype : torch.dtype, optional:
|
||||
The data type of the created tensors, the default is torch.float32
|
||||
|
||||
Returns
|
||||
-------
|
||||
posed_joints : torch.tensor BxNx3
|
||||
The locations of the joints after applying the pose rotations
|
||||
rel_transforms : torch.tensor BxNx4x4
|
||||
The relative (with respect to the root joint) rigid transformations
|
||||
for all the joints
|
||||
"""
|
||||
|
||||
joints = torch.unsqueeze(joints, dim=-1)
|
||||
|
||||
rel_joints = joints.clone()
|
||||
rel_joints[:, 1:] -= joints[:, parents[1:]]
|
||||
|
||||
transforms_mat = transform_mat(
|
||||
rot_mats.view(-1, 3, 3),
|
||||
rel_joints.contiguous().view(-1, 3, 1)).view(-1, joints.shape[1], 4, 4)
|
||||
|
||||
transform_chain = [transforms_mat[:, 0]]
|
||||
for i in range(1, parents.shape[0]):
|
||||
# Subtract the joint location at the rest pose
|
||||
# No need for rotation, since it's identity when at rest
|
||||
curr_res = torch.matmul(transform_chain[parents[i]],
|
||||
transforms_mat[:, i])
|
||||
transform_chain.append(curr_res)
|
||||
|
||||
transforms = torch.stack(transform_chain, dim=1)
|
||||
|
||||
# The last column of the transformations contains the posed joints
|
||||
posed_joints = transforms[:, :, :3, 3]
|
||||
|
||||
# The last column of the transformations contains the posed joints
|
||||
posed_joints = transforms[:, :, :3, 3]
|
||||
|
||||
joints_homogen = F.pad(joints, [0, 0, 0, 1])
|
||||
|
||||
rel_transforms = transforms - F.pad(
|
||||
torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0])
|
||||
|
||||
return posed_joints, rel_transforms
|
@ -1,97 +0,0 @@
|
||||
'''
|
||||
@ Date: 2021-01-17 21:14:50
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-25 19:34:46
|
||||
@ FilePath: /EasyMocapRelease/code/vis_render.py
|
||||
'''
|
||||
# visualize the results by pyrender
|
||||
import pyrender # first import the pyrender
|
||||
from collections import namedtuple
|
||||
from dataset.base import MVBase
|
||||
from dataset.config import CONFIG
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from visualize.geometry import create_ground
|
||||
|
||||
Person = namedtuple('Person', ['vertices', 'keypoints3d'])
|
||||
|
||||
def inBound(keypoints3d, bound):
|
||||
if bound is None:
|
||||
return True
|
||||
valid = np.where(keypoints3d[:, -1] > 0.01)[0]
|
||||
kpts = keypoints3d[valid]
|
||||
crit = (kpts[:, 0] > bound[0][0]) & (kpts[:, 0] < bound[1][0]) &\
|
||||
(kpts[:, 1] > bound[0][1]) & (kpts[:, 1] < bound[1][1]) &\
|
||||
(kpts[:, 2] > bound[0][2]) & (kpts[:, 2] < bound[1][2])
|
||||
if crit.sum()/crit.shape[0] < 0.8:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
def visualize(path, sub, out, mode, rend_type, args):
|
||||
config = CONFIG[mode]
|
||||
no_img = False
|
||||
dataset = MVBase(path, cams=sub, config=config,
|
||||
undis=args.undis, no_img=no_img, out=out)
|
||||
dataset.skel_path = args.skel
|
||||
if rend_type in ['skel']:
|
||||
from visualize.skelmodel import SkelModel
|
||||
body_model = SkelModel(config['nJoints'], config['kintree'])
|
||||
elif rend_type in ['mesh']:
|
||||
from smplmodel import load_model
|
||||
body_model = load_model(args.gender, model_type=args.model)
|
||||
smpl_model = body_model
|
||||
elif rend_type == 'smplskel':
|
||||
from smplmodel import load_model
|
||||
smpl_model = load_model(args.gender, model_type=args.model)
|
||||
from visualize.skelmodel import SkelModel
|
||||
body_model = SkelModel(config['nJoints'], config['kintree'])
|
||||
|
||||
dataset.writer.save_origin = args.save_origin
|
||||
start, end = args.start, min(args.end, len(dataset))
|
||||
bound = None
|
||||
if args.scene == 'none':
|
||||
ground = create_ground(step=0.5)
|
||||
elif args.scene == 'hw':
|
||||
ground = create_ground(step=1, xrange=14, yrange=10, two_sides=False)
|
||||
bound = [[0, 0, 0], [14, 10, 2.5]]
|
||||
else:
|
||||
ground = create_ground(step=1, xrange=28, yrange=15, two_sides=False)
|
||||
for nf in tqdm(range(start, end), desc='rendering'):
|
||||
images, annots = dataset[nf]
|
||||
if rend_type == 'skel':
|
||||
infos = dataset.read_skel(nf)
|
||||
else:
|
||||
infos = dataset.read_smpl(nf)
|
||||
# body_model: input: keypoints3d/smpl params, output: vertices, (colors)
|
||||
# The element of peopleDict must have `id`, `vertices`
|
||||
peopleDict = {}
|
||||
for info in infos:
|
||||
if rend_type == 'skel':
|
||||
joints = info['keypoints3d']
|
||||
else:
|
||||
joints = smpl_model(return_verts=False, return_tensor=False, **info)[0]
|
||||
if not inBound(joints, bound):
|
||||
continue
|
||||
if rend_type == 'smplskel':
|
||||
joints = smpl_model(return_verts=False, return_tensor=False, **info)[0]
|
||||
joints = np.hstack([joints, np.ones((joints.shape[0], 1))])
|
||||
info_new = {'id': info['id'], 'keypoints3d': joints}
|
||||
vertices = body_model(return_verts=True, return_tensor=False, **info_new)[0]
|
||||
else:
|
||||
vertices = body_model(return_verts=True, return_tensor=False, **info)[0]
|
||||
peopleDict[info['id']] = Person(vertices=vertices, keypoints3d=None)
|
||||
dataset.vis_smpl(peopleDict, faces=body_model.faces, images=images, nf=nf,
|
||||
sub_vis=args.sub_vis, mode=rend_type, extra_data=[ground], add_back=args.add_back)
|
||||
|
||||
if __name__ == "__main__":
|
||||
from mytools.cmd_loader import load_parser
|
||||
parser = load_parser()
|
||||
parser.add_argument('--type', type=str, default='mesh', choices=['skel', 'mesh', 'smplskel'])
|
||||
parser.add_argument('--scene', type=str, default='none', choices=['none', 'zjub', 'hw'])
|
||||
parser.add_argument('--skel', type=str, default=None)
|
||||
parser.add_argument('--add_back', action='store_true')
|
||||
parser.add_argument('--save_origin', action='store_true')
|
||||
args = parser.parse_args()
|
||||
visualize(args.path, args.sub, args.out, args.body, args.type, args)
|
@ -1,82 +0,0 @@
|
||||
'''
|
||||
@ Date: 2021-01-17 22:44:34
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-25 19:14:20
|
||||
@ FilePath: /EasyMocapRelease/code/visualize/geometry.py
|
||||
'''
|
||||
import numpy as np
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
def create_ground(
|
||||
center=[0, 0, 0], xdir=[1, 0, 0], ydir=[0, 1, 0], # 位置
|
||||
step=1, xrange=10, yrange=10, # 尺寸
|
||||
white=[1., 1., 1.], black=[0.,0.,0.], # 颜色
|
||||
two_sides=True
|
||||
):
|
||||
if isinstance(center, list):
|
||||
center = np.array(center)
|
||||
xdir = np.array(xdir)
|
||||
ydir = np.array(ydir)
|
||||
xdir = xdir * step
|
||||
ydir = ydir * step
|
||||
vertls, trils, colls = [],[],[]
|
||||
cnt = 0
|
||||
min_x = -xrange if two_sides else 0
|
||||
min_y = -yrange if two_sides else 0
|
||||
for i in range(min_x, xrange+1):
|
||||
for j in range(min_y, yrange+1):
|
||||
point0 = center + i*xdir + j*ydir
|
||||
point1 = center + (i+1)*xdir + j*ydir
|
||||
point2 = center + (i+1)*xdir + (j+1)*ydir
|
||||
point3 = center + (i)*xdir + (j+1)*ydir
|
||||
if (i%2==0 and j%2==0) or (i%2==1 and j%2==1):
|
||||
col = white
|
||||
else:
|
||||
col = black
|
||||
vert = np.stack([point0, point1, point2, point3])
|
||||
col = np.stack([col for _ in range(vert.shape[0])])
|
||||
tri = np.array([[2, 3, 0], [0, 1, 2]]) + vert.shape[0] * cnt
|
||||
cnt += 1
|
||||
vertls.append(vert)
|
||||
trils.append(tri)
|
||||
colls.append(col)
|
||||
vertls = np.vstack(vertls)
|
||||
trils = np.vstack(trils)
|
||||
colls = np.vstack(colls)
|
||||
return {'vertices': vertls, 'faces': trils, 'colors': colls, 'name': 'ground'}
|
||||
|
||||
|
||||
def get_rotation_from_two_directions(direc0, direc1):
|
||||
direc0 = direc0/np.linalg.norm(direc0)
|
||||
direc1 = direc1/np.linalg.norm(direc1)
|
||||
rotdir = np.cross(direc0, direc1)
|
||||
if np.linalg.norm(rotdir) < 1e-2:
|
||||
return np.eye(3)
|
||||
rotdir = rotdir/np.linalg.norm(rotdir)
|
||||
rotdir = rotdir * np.arccos(np.dot(direc0, direc1))
|
||||
rotmat, _ = cv2.Rodrigues(rotdir)
|
||||
return rotmat
|
||||
|
||||
def create_plane(normal, point, width=1, height=1, depth=0.005):
|
||||
mesh_box = TriangleMesh.create_box(width=2*width, height=2*height, depth=2*depth)
|
||||
mesh_box.paint_uniform_color([0.8, 0.8, 0.8])
|
||||
# 根据normal计算旋转
|
||||
rotmat = get_rotation_from_two_directions(np.array([0, 0, 1]), normal[0])
|
||||
transform0 = np.eye(4)
|
||||
transform0[0, 3] = -width
|
||||
transform0[1, 3] = -height
|
||||
transform0[2, 3] = -depth
|
||||
transform = np.eye(4)
|
||||
transform[:3, :3] = rotmat
|
||||
transform[0, 3] = point[0, 0]
|
||||
transform[1, 3] = point[0, 1]
|
||||
transform[2, 3] = point[0, 2]
|
||||
mesh_box.transform(transform @ transform0)
|
||||
return {'vertices': np.asarray(mesh_box.vertices), 'faces': np.asarray(mesh_box.triangles), 'colors': np.asarray(mesh_box.vertex_colors), 'name': 'ground'}
|
||||
faces = np.loadtxt('./code/visualize/sphere_faces_20.txt', dtype=np.int)
|
||||
vertices = np.loadtxt('./code/visualize/sphere_vertices_20.txt')
|
||||
colors = np.ones((vertices.shape[0], 3))
|
||||
|
||||
return {'vertices': vertices, 'faces': faces, 'colors': colors, 'name': 'ground'}
|
@ -1,315 +0,0 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import cv2
|
||||
import pyrender
|
||||
import trimesh
|
||||
import copy
|
||||
# 这个顺序是BGR的。虽然render的使用的是RGB的,但是由于和图像拼接了,所以又变成BGR的了
|
||||
colors = [
|
||||
# (0.5, 0.2, 0.2, 1.), # Defalut BGR
|
||||
(.5, .5, .7, 1.), # Pink BGR
|
||||
(.44, .50, .98, 1.), # Red
|
||||
(.7, .7, .6, 1.), # Neutral
|
||||
(.5, .5, .7, 1.), # Blue
|
||||
(.5, .55, .3, 1.), # capsule
|
||||
(.3, .5, .55, 1.), # Yellow
|
||||
# (.6, .6, .6, 1.), # gray
|
||||
(.9, 1., 1., 1.),
|
||||
(0.95, 0.74, 0.65, 1.),
|
||||
(.9, .7, .7, 1.)
|
||||
]
|
||||
|
||||
colors_table = {
|
||||
# colorblind/print/copy safe:
|
||||
'_blue': [0.65098039, 0.74117647, 0.85882353],
|
||||
'_pink': [.9, .7, .7],
|
||||
'_mint': [ 166/255., 229/255., 204/255.],
|
||||
'_mint2': [ 202/255., 229/255., 223/255.],
|
||||
'_green': [ 153/255., 216/255., 201/255.],
|
||||
'_green2': [ 171/255., 221/255., 164/255.],
|
||||
'_red': [ 251/255., 128/255., 114/255.],
|
||||
'_orange': [ 253/255., 174/255., 97/255.],
|
||||
'_yellow': [ 250/255., 230/255., 154/255.],
|
||||
'r':[255/255,0,0],
|
||||
'g':[0,255/255,0],
|
||||
'b':[0,0,255/255],
|
||||
'k':[0,0,0],
|
||||
'y':[255/255,255/255,0],
|
||||
'purple':[128/255,0,128/255]
|
||||
}
|
||||
|
||||
def get_colors(pid):
|
||||
if isinstance(pid, int):
|
||||
return colors[pid % len(colors)]
|
||||
elif isinstance(pid, str):
|
||||
return colors_table[pid]
|
||||
|
||||
from pyrender import RenderFlags
|
||||
render_flags = {
|
||||
'flip_wireframe': False,
|
||||
'all_wireframe': False,
|
||||
'all_solid': True,
|
||||
'shadows': True,
|
||||
'vertex_normals': False,
|
||||
'face_normals': False,
|
||||
'cull_faces': False, # set to False
|
||||
'point_size': 1.0,
|
||||
'rgba':True
|
||||
}
|
||||
|
||||
flags = RenderFlags.NONE
|
||||
if render_flags['flip_wireframe']:
|
||||
flags |= RenderFlags.FLIP_WIREFRAME
|
||||
elif render_flags['all_wireframe']:
|
||||
flags |= RenderFlags.ALL_WIREFRAME
|
||||
elif render_flags['all_solid']:
|
||||
flags |= RenderFlags.ALL_SOLID
|
||||
|
||||
if render_flags['shadows']:
|
||||
flags |= RenderFlags.SHADOWS_DIRECTIONAL | RenderFlags.SHADOWS_SPOT
|
||||
if render_flags['vertex_normals']:
|
||||
flags |= RenderFlags.VERTEX_NORMALS
|
||||
if render_flags['face_normals']:
|
||||
flags |= RenderFlags.FACE_NORMALS
|
||||
if not render_flags['cull_faces']:
|
||||
flags |= RenderFlags.SKIP_CULL_FACES
|
||||
if render_flags['rgba']:
|
||||
flags |= RenderFlags.RGBA
|
||||
|
||||
|
||||
class Renderer(object):
|
||||
def __init__(self, focal_length=1000, height=512, width=512, faces=None,
|
||||
bg_color=[1.0, 1.0, 1.0, 0.0], down_scale=1 # render 配置
|
||||
):
|
||||
self.renderer = pyrender.OffscreenRenderer(height, width)
|
||||
self.faces = faces
|
||||
self.focal_length = focal_length
|
||||
self.bg_color = bg_color
|
||||
self.ambient_light = (0.5, 0.5, 0.5)
|
||||
self.down_scale = down_scale
|
||||
|
||||
def add_light(self, scene):
|
||||
trans = [0, 0, 0]
|
||||
# Use 3 directional lights
|
||||
# Create light source
|
||||
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1)
|
||||
light_pose = np.eye(4)
|
||||
light_pose[:3, 3] = np.array([0, -1, 1]) + trans
|
||||
scene.add(light, pose=light_pose)
|
||||
light_pose[:3, 3] = np.array([0, 1, 1]) + trans
|
||||
scene.add(light, pose=light_pose)
|
||||
light_pose[:3, 3] = np.array([1, 1, 2]) + trans
|
||||
scene.add(light, pose=light_pose)
|
||||
|
||||
def render(self, render_data, cameras, images,
|
||||
use_white=False, add_back=True,
|
||||
ret_depth=False, ret_color=False):
|
||||
# Need to flip x-axis
|
||||
rot = trimesh.transformations.rotation_matrix(
|
||||
np.radians(180), [1, 0, 0])
|
||||
output_images, output_colors, output_depths = [], [], []
|
||||
for nv, img_ in enumerate(images):
|
||||
if use_white:
|
||||
img = np.zeros_like(img_, dtype=np.uint8) + 255
|
||||
else:
|
||||
img = img_.copy()
|
||||
K, R, T = cameras['K'][nv].copy(), cameras['R'][nv], cameras['T'][nv]
|
||||
# down scale the image to speed up rendering
|
||||
img = cv2.resize(img, None, fx=1/self.down_scale, fy=1/self.down_scale)
|
||||
K[:2, :] /= self.down_scale
|
||||
|
||||
self.renderer.viewport_height = img.shape[0]
|
||||
self.renderer.viewport_width = img.shape[1]
|
||||
scene = pyrender.Scene(bg_color=self.bg_color,
|
||||
ambient_light=self.ambient_light)
|
||||
for trackId, data in render_data.items():
|
||||
vert = data['vertices'].copy()
|
||||
faces = data['faces']
|
||||
vert = vert @ R.T + T.T
|
||||
if 'colors' not in data.keys():
|
||||
# 如果使用了vid这个键,那么可视化的颜色使用vid的颜色
|
||||
col = get_colors(data.get('vid', trackId))
|
||||
mesh = trimesh.Trimesh(vert, faces)
|
||||
mesh.apply_transform(rot)
|
||||
|
||||
material = pyrender.MetallicRoughnessMaterial(
|
||||
metallicFactor=0.0,
|
||||
alphaMode='OPAQUE',
|
||||
baseColorFactor=col)
|
||||
mesh = pyrender.Mesh.from_trimesh(
|
||||
mesh,
|
||||
material=material)
|
||||
scene.add(mesh, data['name'])
|
||||
else:
|
||||
mesh = trimesh.Trimesh(vert, faces, vertex_colors=data['colors'], process=False)
|
||||
# mesh = trimesh.Trimesh(vert, faces, process=False)
|
||||
mesh.apply_transform(rot)
|
||||
material = pyrender.MetallicRoughnessMaterial(
|
||||
metallicFactor=0.0,
|
||||
alphaMode='OPAQUE',
|
||||
baseColorFactor=(1., 1., 1.))
|
||||
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
||||
scene.add(mesh, data['name'])
|
||||
camera_pose = np.eye(4)
|
||||
camera = pyrender.camera.IntrinsicsCamera(fx=K[0, 0], fy=K[1, 1], cx=K[0, 2], cy=K[1, 2])
|
||||
scene.add(camera, pose=camera_pose)
|
||||
self.add_light(scene)
|
||||
# Alpha channel was not working previously need to check again
|
||||
# Until this is fixed use hack with depth image to get the opacity
|
||||
rend_rgba, rend_depth = self.renderer.render(scene, flags=flags)
|
||||
if rend_rgba.shape[2] == 3: # fail to generate transparent channel
|
||||
valid_mask = (rend_depth > 0)[:, :, None]
|
||||
rend_rgba = np.dstack((rend_rgba, (valid_mask*255).astype(np.uint8)))
|
||||
if add_back:
|
||||
rend_cat = cv2.addWeighted(
|
||||
cv2.bitwise_and(img, 255 - rend_rgba[:, :, 3:4].repeat(3, 2)), 1,
|
||||
cv2.bitwise_and(rend_rgba[:, :, :3], rend_rgba[:, :, 3:4].repeat(3, 2)), 1, 0)
|
||||
else:
|
||||
rend_cat = rend_rgba
|
||||
|
||||
output_colors.append(rend_rgba)
|
||||
output_depths.append(rend_depth)
|
||||
output_images.append(rend_cat)
|
||||
if ret_depth:
|
||||
return output_images, output_depths
|
||||
elif ret_color:
|
||||
return output_colors
|
||||
else:
|
||||
return output_images
|
||||
|
||||
def render_multiview(self, vertices, K, R, T, imglist, trackId=0, return_depth=False, return_color=False,
|
||||
bg_color=[0.0, 0.0, 0.0, 0.0], camera=None):
|
||||
# List to store rendered scenes
|
||||
output_images, output_colors, output_depths = [], [], []
|
||||
# Need to flip x-axis
|
||||
rot = trimesh.transformations.rotation_matrix(
|
||||
np.radians(180), [1, 0, 0])
|
||||
nViews = len(imglist)
|
||||
for nv in range(nViews):
|
||||
img = imglist[nv]
|
||||
self.renderer.viewport_height = img.shape[0]
|
||||
self.renderer.viewport_width = img.shape[1]
|
||||
# Create a scene for each image and render all meshes
|
||||
scene = pyrender.Scene(bg_color=bg_color,
|
||||
ambient_light=(0.3, 0.3, 0.3))
|
||||
camera_pose = np.eye(4)
|
||||
|
||||
# for every person in the scene
|
||||
if isinstance(vertices, dict):
|
||||
for trackId, data in vertices.items():
|
||||
vert = data['vertices'].copy()
|
||||
faces = data['faces']
|
||||
col = data.get('col', trackId)
|
||||
vert = vert @ R[nv].T + T[nv]
|
||||
mesh = trimesh.Trimesh(vert, faces)
|
||||
mesh.apply_transform(rot)
|
||||
trans = [0, 0, 0]
|
||||
|
||||
material = pyrender.MetallicRoughnessMaterial(
|
||||
metallicFactor=0.0,
|
||||
alphaMode='OPAQUE',
|
||||
baseColorFactor=colors[col % len(colors)])
|
||||
mesh = pyrender.Mesh.from_trimesh(
|
||||
mesh,
|
||||
material=material)
|
||||
scene.add(mesh, 'mesh')
|
||||
else:
|
||||
verts = vertices @ R[nv].T + T[nv]
|
||||
mesh = trimesh.Trimesh(verts, self.faces)
|
||||
mesh.apply_transform(rot)
|
||||
trans = [0, 0, 0]
|
||||
|
||||
material = pyrender.MetallicRoughnessMaterial(
|
||||
metallicFactor=0.0,
|
||||
alphaMode='OPAQUE',
|
||||
baseColorFactor=colors[trackId % len(colors)])
|
||||
mesh = pyrender.Mesh.from_trimesh(
|
||||
mesh,
|
||||
material=material)
|
||||
scene.add(mesh, 'mesh')
|
||||
|
||||
if camera is not None:
|
||||
light = pyrender.PointLight(color=[1.0, 1.0, 1.0], intensity=70)
|
||||
light_pose = np.eye(4)
|
||||
light_pose[:3, 3] = [0, 0, 4.5]
|
||||
scene.add(light, pose=light_pose)
|
||||
|
||||
light_pose[:3, 3] = [0, 1, 4]
|
||||
scene.add(light, pose=light_pose)
|
||||
|
||||
light_pose[:3, 3] = [0, -1, 4]
|
||||
scene.add(light, pose=light_pose)
|
||||
else:
|
||||
trans = [0, 0, 0]
|
||||
# Use 3 directional lights
|
||||
# Create light source
|
||||
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1)
|
||||
light_pose = np.eye(4)
|
||||
light_pose[:3, 3] = np.array([0, -1, 1]) + trans
|
||||
scene.add(light, pose=light_pose)
|
||||
light_pose[:3, 3] = np.array([0, 1, 1]) + trans
|
||||
scene.add(light, pose=light_pose)
|
||||
light_pose[:3, 3] = np.array([1, 1, 2]) + trans
|
||||
scene.add(light, pose=light_pose)
|
||||
if camera is None:
|
||||
if K is None:
|
||||
camera_center = np.array([img.shape[1] / 2., img.shape[0] / 2.])
|
||||
camera = pyrender.camera.IntrinsicsCamera(fx=self.focal_length, fy=self.focal_length, cx=camera_center[0], cy=camera_center[1])
|
||||
else:
|
||||
camera = pyrender.camera.IntrinsicsCamera(fx=K[nv][0, 0], fy=K[nv][1, 1], cx=K[nv][0, 2], cy=K[nv][1, 2])
|
||||
scene.add(camera, pose=camera_pose)
|
||||
# Alpha channel was not working previously need to check again
|
||||
# Until this is fixed use hack with depth image to get the opacity
|
||||
color, rend_depth = self.renderer.render(scene, flags=flags)
|
||||
# color = color[::-1,::-1]
|
||||
# rend_depth = rend_depth[::-1,::-1]
|
||||
output_depths.append(rend_depth)
|
||||
color = color.astype(np.uint8)
|
||||
valid_mask = (rend_depth > 0)[:, :, None]
|
||||
if color.shape[2] == 3: # 在服务器上透明通道失败
|
||||
color = np.dstack((color, (valid_mask*255).astype(np.uint8)))
|
||||
output_colors.append(color)
|
||||
output_img = (color[:, :, :3] * valid_mask +
|
||||
(1 - valid_mask) * img)
|
||||
|
||||
output_img = output_img.astype(np.uint8)
|
||||
output_images.append(output_img)
|
||||
if return_depth:
|
||||
return output_images, output_depths
|
||||
elif return_color:
|
||||
return output_colors
|
||||
else:
|
||||
return output_images
|
||||
|
||||
def render_results(img, render_data, cam_params, outname=None, rotate=False, degree=90, axis=[1.,0.,0],
|
||||
fix_center=None):
|
||||
render_data = copy.deepcopy(render_data)
|
||||
render = Renderer(height=1024, width=1024, faces=None)
|
||||
Ks, Rs, Ts = [cam_params['K']], [cam_params['Rc']], [cam_params['Tc']]
|
||||
imgsrender = render.render_multiview(render_data, Ks, Rs, Ts, [img], return_color=True)[0]
|
||||
render0 = cv2.addWeighted(cv2.bitwise_and(img, 255 - imgsrender[:, :, 3:4].repeat(3, 2)), 1, imgsrender[:, :, :3], 1, 0.0)
|
||||
if rotate:
|
||||
# simple rotate the vertices
|
||||
if fix_center is None:
|
||||
center = np.mean(np.vstack([v['vertices'] for i, v in render_data.items()]), axis=0, keepdims=True)
|
||||
new_center = center.copy()
|
||||
new_center[:, 0:2] = 0
|
||||
else:
|
||||
center = fix_center.copy()
|
||||
new_center = fix_center.copy()
|
||||
new_center[:, 2] *= 1.5
|
||||
direc = np.array(axis)
|
||||
rot, _ = cv2.Rodrigues(direc*degree/90*np.pi/2)
|
||||
for key in render_data.keys():
|
||||
vertices = render_data[key]['vertices']
|
||||
vert = (vertices - center) @ rot.T + new_center
|
||||
render_data[key]['vertices'] = vert
|
||||
blank = np.zeros(())
|
||||
blank = np.zeros((img.shape[0], img.shape[1], 3), dtype=img.dtype) + 255
|
||||
imgsrender = render.render_multiview(render_data, Ks, Rs, Ts, [blank], return_color=True)[0]
|
||||
render1 = cv2.addWeighted(cv2.bitwise_and(blank, 255- imgsrender[:, :, 3:4].repeat(3, 2)), 1, imgsrender[:, :, :3], 1, 0.0)
|
||||
render0 = np.vstack([render0, render1])
|
||||
if outname is not None:
|
||||
os.makedirs(os.path.dirname(outname), exist_ok=True)
|
||||
cv2.imwrite(outname, render0)
|
||||
return render0
|
@ -1,74 +0,0 @@
|
||||
'''
|
||||
@ Date: 2021-01-17 21:38:19
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-01-22 23:08:18
|
||||
@ FilePath: /EasyMocap/code/visualize/skelmodel.py
|
||||
'''
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
def calTransformation(v_i, v_j, r, adaptr=False, ratio=10):
|
||||
""" from to vertices to T
|
||||
|
||||
Arguments:
|
||||
v_i {} -- [description]
|
||||
v_j {[type]} -- [description]
|
||||
"""
|
||||
xaxis = np.array([1, 0, 0])
|
||||
v = (v_i + v_j)/2
|
||||
direc = (v_i - v_j)
|
||||
length = np.linalg.norm(direc)
|
||||
direc = direc/length
|
||||
rotdir = np.cross(xaxis, direc)
|
||||
rotdir = rotdir/np.linalg.norm(rotdir)
|
||||
rotdir = rotdir * np.arccos(np.dot(direc, xaxis))
|
||||
rotmat, _ = cv2.Rodrigues(rotdir)
|
||||
# set the minimal radius for the finger and face
|
||||
shrink = max(length/ratio, 0.005)
|
||||
eigval = np.array([[length/2/r, 0, 0], [0, shrink, 0], [0, 0, shrink]])
|
||||
T = np.eye(4)
|
||||
T[:3,:3] = rotmat @ eigval @ rotmat.T
|
||||
T[:3, 3] = v
|
||||
return T, r, length
|
||||
|
||||
class SkelModel:
|
||||
def __init__(self, nJoints, kintree) -> None:
|
||||
self.nJoints = nJoints
|
||||
self.kintree = kintree
|
||||
faces = np.loadtxt('./code/visualize/sphere_faces_20.txt', dtype=np.int)
|
||||
self.vertices = np.loadtxt('./code/visualize/sphere_vertices_20.txt')
|
||||
# compose faces
|
||||
faces_all = []
|
||||
for nj in range(nJoints):
|
||||
faces_all.append(faces + nj*self.vertices.shape[0])
|
||||
for nk in range(len(kintree)):
|
||||
faces_all.append(faces + nJoints*self.vertices.shape[0] + nk*self.vertices.shape[0])
|
||||
self.faces = np.vstack(faces_all)
|
||||
|
||||
def __call__(self, keypoints3d, id=0, return_verts=True, return_tensor=False):
|
||||
vertices_all = []
|
||||
r = 0.02
|
||||
# joints
|
||||
for nj in range(self.nJoints):
|
||||
if nj > 25:
|
||||
r_ = r * 0.4
|
||||
else:
|
||||
r_ = r
|
||||
if keypoints3d[nj, -1] < 0.01:
|
||||
vertices_all.append(self.vertices*0.001)
|
||||
continue
|
||||
vertices_all.append(self.vertices*r_ + keypoints3d[nj:nj+1, :3])
|
||||
# limb
|
||||
for nk, (i, j) in enumerate(self.kintree):
|
||||
if keypoints3d[i][-1] < 0.1 or keypoints3d[j][-1] < 0.1:
|
||||
vertices_all.append(self.vertices*0.001)
|
||||
continue
|
||||
T, _, length = calTransformation(keypoints3d[i, :3], keypoints3d[j, :3], r=1)
|
||||
if length > 2: # 超过两米的
|
||||
vertices_all.append(self.vertices*0.001)
|
||||
continue
|
||||
vertices = self.vertices @ T[:3, :3].T + T[:3, 3:].T
|
||||
vertices_all.append(vertices)
|
||||
vertices = np.vstack(vertices_all)
|
||||
return vertices[None, :, :]
|
File diff suppressed because it is too large
Load Diff
@ -1,762 +0,0 @@
|
||||
0.000 0.000 1.000
|
||||
0.000 0.000 -1.000
|
||||
0.156 0.000 0.988
|
||||
0.155 0.024 0.988
|
||||
0.149 0.048 0.988
|
||||
0.139 0.071 0.988
|
||||
0.127 0.092 0.988
|
||||
0.111 0.111 0.988
|
||||
0.092 0.127 0.988
|
||||
0.071 0.139 0.988
|
||||
0.048 0.149 0.988
|
||||
0.024 0.155 0.988
|
||||
0.000 0.156 0.988
|
||||
-0.024 0.155 0.988
|
||||
-0.048 0.149 0.988
|
||||
-0.071 0.139 0.988
|
||||
-0.092 0.127 0.988
|
||||
-0.111 0.111 0.988
|
||||
-0.127 0.092 0.988
|
||||
-0.139 0.071 0.988
|
||||
-0.149 0.048 0.988
|
||||
-0.155 0.024 0.988
|
||||
-0.156 0.000 0.988
|
||||
-0.155 -0.024 0.988
|
||||
-0.149 -0.048 0.988
|
||||
-0.139 -0.071 0.988
|
||||
-0.127 -0.092 0.988
|
||||
-0.111 -0.111 0.988
|
||||
-0.092 -0.127 0.988
|
||||
-0.071 -0.139 0.988
|
||||
-0.048 -0.149 0.988
|
||||
-0.024 -0.155 0.988
|
||||
-0.000 -0.156 0.988
|
||||
0.024 -0.155 0.988
|
||||
0.048 -0.149 0.988
|
||||
0.071 -0.139 0.988
|
||||
0.092 -0.127 0.988
|
||||
0.111 -0.111 0.988
|
||||
0.127 -0.092 0.988
|
||||
0.139 -0.071 0.988
|
||||
0.149 -0.048 0.988
|
||||
0.155 -0.024 0.988
|
||||
0.309 0.000 0.951
|
||||
0.305 0.048 0.951
|
||||
0.294 0.095 0.951
|
||||
0.275 0.140 0.951
|
||||
0.250 0.182 0.951
|
||||
0.219 0.219 0.951
|
||||
0.182 0.250 0.951
|
||||
0.140 0.275 0.951
|
||||
0.095 0.294 0.951
|
||||
0.048 0.305 0.951
|
||||
0.000 0.309 0.951
|
||||
-0.048 0.305 0.951
|
||||
-0.095 0.294 0.951
|
||||
-0.140 0.275 0.951
|
||||
-0.182 0.250 0.951
|
||||
-0.219 0.219 0.951
|
||||
-0.250 0.182 0.951
|
||||
-0.275 0.140 0.951
|
||||
-0.294 0.095 0.951
|
||||
-0.305 0.048 0.951
|
||||
-0.309 0.000 0.951
|
||||
-0.305 -0.048 0.951
|
||||
-0.294 -0.095 0.951
|
||||
-0.275 -0.140 0.951
|
||||
-0.250 -0.182 0.951
|
||||
-0.219 -0.219 0.951
|
||||
-0.182 -0.250 0.951
|
||||
-0.140 -0.275 0.951
|
||||
-0.095 -0.294 0.951
|
||||
-0.048 -0.305 0.951
|
||||
-0.000 -0.309 0.951
|
||||
0.048 -0.305 0.951
|
||||
0.095 -0.294 0.951
|
||||
0.140 -0.275 0.951
|
||||
0.182 -0.250 0.951
|
||||
0.219 -0.219 0.951
|
||||
0.250 -0.182 0.951
|
||||
0.275 -0.140 0.951
|
||||
0.294 -0.095 0.951
|
||||
0.305 -0.048 0.951
|
||||
0.454 0.000 0.891
|
||||
0.448 0.071 0.891
|
||||
0.432 0.140 0.891
|
||||
0.405 0.206 0.891
|
||||
0.367 0.267 0.891
|
||||
0.321 0.321 0.891
|
||||
0.267 0.367 0.891
|
||||
0.206 0.405 0.891
|
||||
0.140 0.432 0.891
|
||||
0.071 0.448 0.891
|
||||
0.000 0.454 0.891
|
||||
-0.071 0.448 0.891
|
||||
-0.140 0.432 0.891
|
||||
-0.206 0.405 0.891
|
||||
-0.267 0.367 0.891
|
||||
-0.321 0.321 0.891
|
||||
-0.367 0.267 0.891
|
||||
-0.405 0.206 0.891
|
||||
-0.432 0.140 0.891
|
||||
-0.448 0.071 0.891
|
||||
-0.454 0.000 0.891
|
||||
-0.448 -0.071 0.891
|
||||
-0.432 -0.140 0.891
|
||||
-0.405 -0.206 0.891
|
||||
-0.367 -0.267 0.891
|
||||
-0.321 -0.321 0.891
|
||||
-0.267 -0.367 0.891
|
||||
-0.206 -0.405 0.891
|
||||
-0.140 -0.432 0.891
|
||||
-0.071 -0.448 0.891
|
||||
-0.000 -0.454 0.891
|
||||
0.071 -0.448 0.891
|
||||
0.140 -0.432 0.891
|
||||
0.206 -0.405 0.891
|
||||
0.267 -0.367 0.891
|
||||
0.321 -0.321 0.891
|
||||
0.367 -0.267 0.891
|
||||
0.405 -0.206 0.891
|
||||
0.432 -0.140 0.891
|
||||
0.448 -0.071 0.891
|
||||
0.588 0.000 0.809
|
||||
0.581 0.092 0.809
|
||||
0.559 0.182 0.809
|
||||
0.524 0.267 0.809
|
||||
0.476 0.345 0.809
|
||||
0.416 0.416 0.809
|
||||
0.345 0.476 0.809
|
||||
0.267 0.524 0.809
|
||||
0.182 0.559 0.809
|
||||
0.092 0.581 0.809
|
||||
0.000 0.588 0.809
|
||||
-0.092 0.581 0.809
|
||||
-0.182 0.559 0.809
|
||||
-0.267 0.524 0.809
|
||||
-0.345 0.476 0.809
|
||||
-0.416 0.416 0.809
|
||||
-0.476 0.345 0.809
|
||||
-0.524 0.267 0.809
|
||||
-0.559 0.182 0.809
|
||||
-0.581 0.092 0.809
|
||||
-0.588 0.000 0.809
|
||||
-0.581 -0.092 0.809
|
||||
-0.559 -0.182 0.809
|
||||
-0.524 -0.267 0.809
|
||||
-0.476 -0.345 0.809
|
||||
-0.416 -0.416 0.809
|
||||
-0.345 -0.476 0.809
|
||||
-0.267 -0.524 0.809
|
||||
-0.182 -0.559 0.809
|
||||
-0.092 -0.581 0.809
|
||||
-0.000 -0.588 0.809
|
||||
0.092 -0.581 0.809
|
||||
0.182 -0.559 0.809
|
||||
0.267 -0.524 0.809
|
||||
0.345 -0.476 0.809
|
||||
0.416 -0.416 0.809
|
||||
0.476 -0.345 0.809
|
||||
0.524 -0.267 0.809
|
||||
0.559 -0.182 0.809
|
||||
0.581 -0.092 0.809
|
||||
0.707 0.000 0.707
|
||||
0.698 0.111 0.707
|
||||
0.672 0.219 0.707
|
||||
0.630 0.321 0.707
|
||||
0.572 0.416 0.707
|
||||
0.500 0.500 0.707
|
||||
0.416 0.572 0.707
|
||||
0.321 0.630 0.707
|
||||
0.219 0.672 0.707
|
||||
0.111 0.698 0.707
|
||||
0.000 0.707 0.707
|
||||
-0.111 0.698 0.707
|
||||
-0.219 0.672 0.707
|
||||
-0.321 0.630 0.707
|
||||
-0.416 0.572 0.707
|
||||
-0.500 0.500 0.707
|
||||
-0.572 0.416 0.707
|
||||
-0.630 0.321 0.707
|
||||
-0.672 0.219 0.707
|
||||
-0.698 0.111 0.707
|
||||
-0.707 0.000 0.707
|
||||
-0.698 -0.111 0.707
|
||||
-0.672 -0.219 0.707
|
||||
-0.630 -0.321 0.707
|
||||
-0.572 -0.416 0.707
|
||||
-0.500 -0.500 0.707
|
||||
-0.416 -0.572 0.707
|
||||
-0.321 -0.630 0.707
|
||||
-0.219 -0.672 0.707
|
||||
-0.111 -0.698 0.707
|
||||
-0.000 -0.707 0.707
|
||||
0.111 -0.698 0.707
|
||||
0.219 -0.672 0.707
|
||||
0.321 -0.630 0.707
|
||||
0.416 -0.572 0.707
|
||||
0.500 -0.500 0.707
|
||||
0.572 -0.416 0.707
|
||||
0.630 -0.321 0.707
|
||||
0.672 -0.219 0.707
|
||||
0.698 -0.111 0.707
|
||||
0.809 0.000 0.588
|
||||
0.799 0.127 0.588
|
||||
0.769 0.250 0.588
|
||||
0.721 0.367 0.588
|
||||
0.655 0.476 0.588
|
||||
0.572 0.572 0.588
|
||||
0.476 0.655 0.588
|
||||
0.367 0.721 0.588
|
||||
0.250 0.769 0.588
|
||||
0.127 0.799 0.588
|
||||
0.000 0.809 0.588
|
||||
-0.127 0.799 0.588
|
||||
-0.250 0.769 0.588
|
||||
-0.367 0.721 0.588
|
||||
-0.476 0.655 0.588
|
||||
-0.572 0.572 0.588
|
||||
-0.655 0.476 0.588
|
||||
-0.721 0.367 0.588
|
||||
-0.769 0.250 0.588
|
||||
-0.799 0.127 0.588
|
||||
-0.809 0.000 0.588
|
||||
-0.799 -0.127 0.588
|
||||
-0.769 -0.250 0.588
|
||||
-0.721 -0.367 0.588
|
||||
-0.655 -0.476 0.588
|
||||
-0.572 -0.572 0.588
|
||||
-0.476 -0.655 0.588
|
||||
-0.367 -0.721 0.588
|
||||
-0.250 -0.769 0.588
|
||||
-0.127 -0.799 0.588
|
||||
-0.000 -0.809 0.588
|
||||
0.127 -0.799 0.588
|
||||
0.250 -0.769 0.588
|
||||
0.367 -0.721 0.588
|
||||
0.476 -0.655 0.588
|
||||
0.572 -0.572 0.588
|
||||
0.655 -0.476 0.588
|
||||
0.721 -0.367 0.588
|
||||
0.769 -0.250 0.588
|
||||
0.799 -0.127 0.588
|
||||
0.891 0.000 0.454
|
||||
0.880 0.139 0.454
|
||||
0.847 0.275 0.454
|
||||
0.794 0.405 0.454
|
||||
0.721 0.524 0.454
|
||||
0.630 0.630 0.454
|
||||
0.524 0.721 0.454
|
||||
0.405 0.794 0.454
|
||||
0.275 0.847 0.454
|
||||
0.139 0.880 0.454
|
||||
0.000 0.891 0.454
|
||||
-0.139 0.880 0.454
|
||||
-0.275 0.847 0.454
|
||||
-0.405 0.794 0.454
|
||||
-0.524 0.721 0.454
|
||||
-0.630 0.630 0.454
|
||||
-0.721 0.524 0.454
|
||||
-0.794 0.405 0.454
|
||||
-0.847 0.275 0.454
|
||||
-0.880 0.139 0.454
|
||||
-0.891 0.000 0.454
|
||||
-0.880 -0.139 0.454
|
||||
-0.847 -0.275 0.454
|
||||
-0.794 -0.405 0.454
|
||||
-0.721 -0.524 0.454
|
||||
-0.630 -0.630 0.454
|
||||
-0.524 -0.721 0.454
|
||||
-0.405 -0.794 0.454
|
||||
-0.275 -0.847 0.454
|
||||
-0.139 -0.880 0.454
|
||||
-0.000 -0.891 0.454
|
||||
0.139 -0.880 0.454
|
||||
0.275 -0.847 0.454
|
||||
0.405 -0.794 0.454
|
||||
0.524 -0.721 0.454
|
||||
0.630 -0.630 0.454
|
||||
0.721 -0.524 0.454
|
||||
0.794 -0.405 0.454
|
||||
0.847 -0.275 0.454
|
||||
0.880 -0.139 0.454
|
||||
0.951 0.000 0.309
|
||||
0.939 0.149 0.309
|
||||
0.905 0.294 0.309
|
||||
0.847 0.432 0.309
|
||||
0.769 0.559 0.309
|
||||
0.672 0.672 0.309
|
||||
0.559 0.769 0.309
|
||||
0.432 0.847 0.309
|
||||
0.294 0.905 0.309
|
||||
0.149 0.939 0.309
|
||||
0.000 0.951 0.309
|
||||
-0.149 0.939 0.309
|
||||
-0.294 0.905 0.309
|
||||
-0.432 0.847 0.309
|
||||
-0.559 0.769 0.309
|
||||
-0.672 0.672 0.309
|
||||
-0.769 0.559 0.309
|
||||
-0.847 0.432 0.309
|
||||
-0.905 0.294 0.309
|
||||
-0.939 0.149 0.309
|
||||
-0.951 0.000 0.309
|
||||
-0.939 -0.149 0.309
|
||||
-0.905 -0.294 0.309
|
||||
-0.847 -0.432 0.309
|
||||
-0.769 -0.559 0.309
|
||||
-0.672 -0.672 0.309
|
||||
-0.559 -0.769 0.309
|
||||
-0.432 -0.847 0.309
|
||||
-0.294 -0.905 0.309
|
||||
-0.149 -0.939 0.309
|
||||
-0.000 -0.951 0.309
|
||||
0.149 -0.939 0.309
|
||||
0.294 -0.905 0.309
|
||||
0.432 -0.847 0.309
|
||||
0.559 -0.769 0.309
|
||||
0.672 -0.672 0.309
|
||||
0.769 -0.559 0.309
|
||||
0.847 -0.432 0.309
|
||||
0.905 -0.294 0.309
|
||||
0.939 -0.149 0.309
|
||||
0.988 0.000 0.156
|
||||
0.976 0.155 0.156
|
||||
0.939 0.305 0.156
|
||||
0.880 0.448 0.156
|
||||
0.799 0.581 0.156
|
||||
0.698 0.698 0.156
|
||||
0.581 0.799 0.156
|
||||
0.448 0.880 0.156
|
||||
0.305 0.939 0.156
|
||||
0.155 0.976 0.156
|
||||
0.000 0.988 0.156
|
||||
-0.155 0.976 0.156
|
||||
-0.305 0.939 0.156
|
||||
-0.448 0.880 0.156
|
||||
-0.581 0.799 0.156
|
||||
-0.698 0.698 0.156
|
||||
-0.799 0.581 0.156
|
||||
-0.880 0.448 0.156
|
||||
-0.939 0.305 0.156
|
||||
-0.976 0.155 0.156
|
||||
-0.988 0.000 0.156
|
||||
-0.976 -0.155 0.156
|
||||
-0.939 -0.305 0.156
|
||||
-0.880 -0.448 0.156
|
||||
-0.799 -0.581 0.156
|
||||
-0.698 -0.698 0.156
|
||||
-0.581 -0.799 0.156
|
||||
-0.448 -0.880 0.156
|
||||
-0.305 -0.939 0.156
|
||||
-0.155 -0.976 0.156
|
||||
-0.000 -0.988 0.156
|
||||
0.155 -0.976 0.156
|
||||
0.305 -0.939 0.156
|
||||
0.448 -0.880 0.156
|
||||
0.581 -0.799 0.156
|
||||
0.698 -0.698 0.156
|
||||
0.799 -0.581 0.156
|
||||
0.880 -0.448 0.156
|
||||
0.939 -0.305 0.156
|
||||
0.976 -0.155 0.156
|
||||
1.000 0.000 0.000
|
||||
0.988 0.156 0.000
|
||||
0.951 0.309 0.000
|
||||
0.891 0.454 0.000
|
||||
0.809 0.588 0.000
|
||||
0.707 0.707 0.000
|
||||
0.588 0.809 0.000
|
||||
0.454 0.891 0.000
|
||||
0.309 0.951 0.000
|
||||
0.156 0.988 0.000
|
||||
0.000 1.000 0.000
|
||||
-0.156 0.988 0.000
|
||||
-0.309 0.951 0.000
|
||||
-0.454 0.891 0.000
|
||||
-0.588 0.809 0.000
|
||||
-0.707 0.707 0.000
|
||||
-0.809 0.588 0.000
|
||||
-0.891 0.454 0.000
|
||||
-0.951 0.309 0.000
|
||||
-0.988 0.156 0.000
|
||||
-1.000 0.000 0.000
|
||||
-0.988 -0.156 0.000
|
||||
-0.951 -0.309 0.000
|
||||
-0.891 -0.454 0.000
|
||||
-0.809 -0.588 0.000
|
||||
-0.707 -0.707 0.000
|
||||
-0.588 -0.809 0.000
|
||||
-0.454 -0.891 0.000
|
||||
-0.309 -0.951 0.000
|
||||
-0.156 -0.988 0.000
|
||||
-0.000 -1.000 0.000
|
||||
0.156 -0.988 0.000
|
||||
0.309 -0.951 0.000
|
||||
0.454 -0.891 0.000
|
||||
0.588 -0.809 0.000
|
||||
0.707 -0.707 0.000
|
||||
0.809 -0.588 0.000
|
||||
0.891 -0.454 0.000
|
||||
0.951 -0.309 0.000
|
||||
0.988 -0.156 0.000
|
||||
0.988 0.000 -0.156
|
||||
0.976 0.155 -0.156
|
||||
0.939 0.305 -0.156
|
||||
0.880 0.448 -0.156
|
||||
0.799 0.581 -0.156
|
||||
0.698 0.698 -0.156
|
||||
0.581 0.799 -0.156
|
||||
0.448 0.880 -0.156
|
||||
0.305 0.939 -0.156
|
||||
0.155 0.976 -0.156
|
||||
0.000 0.988 -0.156
|
||||
-0.155 0.976 -0.156
|
||||
-0.305 0.939 -0.156
|
||||
-0.448 0.880 -0.156
|
||||
-0.581 0.799 -0.156
|
||||
-0.698 0.698 -0.156
|
||||
-0.799 0.581 -0.156
|
||||
-0.880 0.448 -0.156
|
||||
-0.939 0.305 -0.156
|
||||
-0.976 0.155 -0.156
|
||||
-0.988 0.000 -0.156
|
||||
-0.976 -0.155 -0.156
|
||||
-0.939 -0.305 -0.156
|
||||
-0.880 -0.448 -0.156
|
||||
-0.799 -0.581 -0.156
|
||||
-0.698 -0.698 -0.156
|
||||
-0.581 -0.799 -0.156
|
||||
-0.448 -0.880 -0.156
|
||||
-0.305 -0.939 -0.156
|
||||
-0.155 -0.976 -0.156
|
||||
-0.000 -0.988 -0.156
|
||||
0.155 -0.976 -0.156
|
||||
0.305 -0.939 -0.156
|
||||
0.448 -0.880 -0.156
|
||||
0.581 -0.799 -0.156
|
||||
0.698 -0.698 -0.156
|
||||
0.799 -0.581 -0.156
|
||||
0.880 -0.448 -0.156
|
||||
0.939 -0.305 -0.156
|
||||
0.976 -0.155 -0.156
|
||||
0.951 0.000 -0.309
|
||||
0.939 0.149 -0.309
|
||||
0.905 0.294 -0.309
|
||||
0.847 0.432 -0.309
|
||||
0.769 0.559 -0.309
|
||||
0.672 0.672 -0.309
|
||||
0.559 0.769 -0.309
|
||||
0.432 0.847 -0.309
|
||||
0.294 0.905 -0.309
|
||||
0.149 0.939 -0.309
|
||||
0.000 0.951 -0.309
|
||||
-0.149 0.939 -0.309
|
||||
-0.294 0.905 -0.309
|
||||
-0.432 0.847 -0.309
|
||||
-0.559 0.769 -0.309
|
||||
-0.672 0.672 -0.309
|
||||
-0.769 0.559 -0.309
|
||||
-0.847 0.432 -0.309
|
||||
-0.905 0.294 -0.309
|
||||
-0.939 0.149 -0.309
|
||||
-0.951 0.000 -0.309
|
||||
-0.939 -0.149 -0.309
|
||||
-0.905 -0.294 -0.309
|
||||
-0.847 -0.432 -0.309
|
||||
-0.769 -0.559 -0.309
|
||||
-0.672 -0.672 -0.309
|
||||
-0.559 -0.769 -0.309
|
||||
-0.432 -0.847 -0.309
|
||||
-0.294 -0.905 -0.309
|
||||
-0.149 -0.939 -0.309
|
||||
-0.000 -0.951 -0.309
|
||||
0.149 -0.939 -0.309
|
||||
0.294 -0.905 -0.309
|
||||
0.432 -0.847 -0.309
|
||||
0.559 -0.769 -0.309
|
||||
0.672 -0.672 -0.309
|
||||
0.769 -0.559 -0.309
|
||||
0.847 -0.432 -0.309
|
||||
0.905 -0.294 -0.309
|
||||
0.939 -0.149 -0.309
|
||||
0.891 0.000 -0.454
|
||||
0.880 0.139 -0.454
|
||||
0.847 0.275 -0.454
|
||||
0.794 0.405 -0.454
|
||||
0.721 0.524 -0.454
|
||||
0.630 0.630 -0.454
|
||||
0.524 0.721 -0.454
|
||||
0.405 0.794 -0.454
|
||||
0.275 0.847 -0.454
|
||||
0.139 0.880 -0.454
|
||||
0.000 0.891 -0.454
|
||||
-0.139 0.880 -0.454
|
||||
-0.275 0.847 -0.454
|
||||
-0.405 0.794 -0.454
|
||||
-0.524 0.721 -0.454
|
||||
-0.630 0.630 -0.454
|
||||
-0.721 0.524 -0.454
|
||||
-0.794 0.405 -0.454
|
||||
-0.847 0.275 -0.454
|
||||
-0.880 0.139 -0.454
|
||||
-0.891 0.000 -0.454
|
||||
-0.880 -0.139 -0.454
|
||||
-0.847 -0.275 -0.454
|
||||
-0.794 -0.405 -0.454
|
||||
-0.721 -0.524 -0.454
|
||||
-0.630 -0.630 -0.454
|
||||
-0.524 -0.721 -0.454
|
||||
-0.405 -0.794 -0.454
|
||||
-0.275 -0.847 -0.454
|
||||
-0.139 -0.880 -0.454
|
||||
-0.000 -0.891 -0.454
|
||||
0.139 -0.880 -0.454
|
||||
0.275 -0.847 -0.454
|
||||
0.405 -0.794 -0.454
|
||||
0.524 -0.721 -0.454
|
||||
0.630 -0.630 -0.454
|
||||
0.721 -0.524 -0.454
|
||||
0.794 -0.405 -0.454
|
||||
0.847 -0.275 -0.454
|
||||
0.880 -0.139 -0.454
|
||||
0.809 0.000 -0.588
|
||||
0.799 0.127 -0.588
|
||||
0.769 0.250 -0.588
|
||||
0.721 0.367 -0.588
|
||||
0.655 0.476 -0.588
|
||||
0.572 0.572 -0.588
|
||||
0.476 0.655 -0.588
|
||||
0.367 0.721 -0.588
|
||||
0.250 0.769 -0.588
|
||||
0.127 0.799 -0.588
|
||||
0.000 0.809 -0.588
|
||||
-0.127 0.799 -0.588
|
||||
-0.250 0.769 -0.588
|
||||
-0.367 0.721 -0.588
|
||||
-0.476 0.655 -0.588
|
||||
-0.572 0.572 -0.588
|
||||
-0.655 0.476 -0.588
|
||||
-0.721 0.367 -0.588
|
||||
-0.769 0.250 -0.588
|
||||
-0.799 0.127 -0.588
|
||||
-0.809 0.000 -0.588
|
||||
-0.799 -0.127 -0.588
|
||||
-0.769 -0.250 -0.588
|
||||
-0.721 -0.367 -0.588
|
||||
-0.655 -0.476 -0.588
|
||||
-0.572 -0.572 -0.588
|
||||
-0.476 -0.655 -0.588
|
||||
-0.367 -0.721 -0.588
|
||||
-0.250 -0.769 -0.588
|
||||
-0.127 -0.799 -0.588
|
||||
-0.000 -0.809 -0.588
|
||||
0.127 -0.799 -0.588
|
||||
0.250 -0.769 -0.588
|
||||
0.367 -0.721 -0.588
|
||||
0.476 -0.655 -0.588
|
||||
0.572 -0.572 -0.588
|
||||
0.655 -0.476 -0.588
|
||||
0.721 -0.367 -0.588
|
||||
0.769 -0.250 -0.588
|
||||
0.799 -0.127 -0.588
|
||||
0.707 0.000 -0.707
|
||||
0.698 0.111 -0.707
|
||||
0.672 0.219 -0.707
|
||||
0.630 0.321 -0.707
|
||||
0.572 0.416 -0.707
|
||||
0.500 0.500 -0.707
|
||||
0.416 0.572 -0.707
|
||||
0.321 0.630 -0.707
|
||||
0.219 0.672 -0.707
|
||||
0.111 0.698 -0.707
|
||||
0.000 0.707 -0.707
|
||||
-0.111 0.698 -0.707
|
||||
-0.219 0.672 -0.707
|
||||
-0.321 0.630 -0.707
|
||||
-0.416 0.572 -0.707
|
||||
-0.500 0.500 -0.707
|
||||
-0.572 0.416 -0.707
|
||||
-0.630 0.321 -0.707
|
||||
-0.672 0.219 -0.707
|
||||
-0.698 0.111 -0.707
|
||||
-0.707 0.000 -0.707
|
||||
-0.698 -0.111 -0.707
|
||||
-0.672 -0.219 -0.707
|
||||
-0.630 -0.321 -0.707
|
||||
-0.572 -0.416 -0.707
|
||||
-0.500 -0.500 -0.707
|
||||
-0.416 -0.572 -0.707
|
||||
-0.321 -0.630 -0.707
|
||||
-0.219 -0.672 -0.707
|
||||
-0.111 -0.698 -0.707
|
||||
-0.000 -0.707 -0.707
|
||||
0.111 -0.698 -0.707
|
||||
0.219 -0.672 -0.707
|
||||
0.321 -0.630 -0.707
|
||||
0.416 -0.572 -0.707
|
||||
0.500 -0.500 -0.707
|
||||
0.572 -0.416 -0.707
|
||||
0.630 -0.321 -0.707
|
||||
0.672 -0.219 -0.707
|
||||
0.698 -0.111 -0.707
|
||||
0.588 0.000 -0.809
|
||||
0.581 0.092 -0.809
|
||||
0.559 0.182 -0.809
|
||||
0.524 0.267 -0.809
|
||||
0.476 0.345 -0.809
|
||||
0.416 0.416 -0.809
|
||||
0.345 0.476 -0.809
|
||||
0.267 0.524 -0.809
|
||||
0.182 0.559 -0.809
|
||||
0.092 0.581 -0.809
|
||||
0.000 0.588 -0.809
|
||||
-0.092 0.581 -0.809
|
||||
-0.182 0.559 -0.809
|
||||
-0.267 0.524 -0.809
|
||||
-0.345 0.476 -0.809
|
||||
-0.416 0.416 -0.809
|
||||
-0.476 0.345 -0.809
|
||||
-0.524 0.267 -0.809
|
||||
-0.559 0.182 -0.809
|
||||
-0.581 0.092 -0.809
|
||||
-0.588 0.000 -0.809
|
||||
-0.581 -0.092 -0.809
|
||||
-0.559 -0.182 -0.809
|
||||
-0.524 -0.267 -0.809
|
||||
-0.476 -0.345 -0.809
|
||||
-0.416 -0.416 -0.809
|
||||
-0.345 -0.476 -0.809
|
||||
-0.267 -0.524 -0.809
|
||||
-0.182 -0.559 -0.809
|
||||
-0.092 -0.581 -0.809
|
||||
-0.000 -0.588 -0.809
|
||||
0.092 -0.581 -0.809
|
||||
0.182 -0.559 -0.809
|
||||
0.267 -0.524 -0.809
|
||||
0.345 -0.476 -0.809
|
||||
0.416 -0.416 -0.809
|
||||
0.476 -0.345 -0.809
|
||||
0.524 -0.267 -0.809
|
||||
0.559 -0.182 -0.809
|
||||
0.581 -0.092 -0.809
|
||||
0.454 0.000 -0.891
|
||||
0.448 0.071 -0.891
|
||||
0.432 0.140 -0.891
|
||||
0.405 0.206 -0.891
|
||||
0.367 0.267 -0.891
|
||||
0.321 0.321 -0.891
|
||||
0.267 0.367 -0.891
|
||||
0.206 0.405 -0.891
|
||||
0.140 0.432 -0.891
|
||||
0.071 0.448 -0.891
|
||||
0.000 0.454 -0.891
|
||||
-0.071 0.448 -0.891
|
||||
-0.140 0.432 -0.891
|
||||
-0.206 0.405 -0.891
|
||||
-0.267 0.367 -0.891
|
||||
-0.321 0.321 -0.891
|
||||
-0.367 0.267 -0.891
|
||||
-0.405 0.206 -0.891
|
||||
-0.432 0.140 -0.891
|
||||
-0.448 0.071 -0.891
|
||||
-0.454 0.000 -0.891
|
||||
-0.448 -0.071 -0.891
|
||||
-0.432 -0.140 -0.891
|
||||
-0.405 -0.206 -0.891
|
||||
-0.367 -0.267 -0.891
|
||||
-0.321 -0.321 -0.891
|
||||
-0.267 -0.367 -0.891
|
||||
-0.206 -0.405 -0.891
|
||||
-0.140 -0.432 -0.891
|
||||
-0.071 -0.448 -0.891
|
||||
-0.000 -0.454 -0.891
|
||||
0.071 -0.448 -0.891
|
||||
0.140 -0.432 -0.891
|
||||
0.206 -0.405 -0.891
|
||||
0.267 -0.367 -0.891
|
||||
0.321 -0.321 -0.891
|
||||
0.367 -0.267 -0.891
|
||||
0.405 -0.206 -0.891
|
||||
0.432 -0.140 -0.891
|
||||
0.448 -0.071 -0.891
|
||||
0.309 0.000 -0.951
|
||||
0.305 0.048 -0.951
|
||||
0.294 0.095 -0.951
|
||||
0.275 0.140 -0.951
|
||||
0.250 0.182 -0.951
|
||||
0.219 0.219 -0.951
|
||||
0.182 0.250 -0.951
|
||||
0.140 0.275 -0.951
|
||||
0.095 0.294 -0.951
|
||||
0.048 0.305 -0.951
|
||||
0.000 0.309 -0.951
|
||||
-0.048 0.305 -0.951
|
||||
-0.095 0.294 -0.951
|
||||
-0.140 0.275 -0.951
|
||||
-0.182 0.250 -0.951
|
||||
-0.219 0.219 -0.951
|
||||
-0.250 0.182 -0.951
|
||||
-0.275 0.140 -0.951
|
||||
-0.294 0.095 -0.951
|
||||
-0.305 0.048 -0.951
|
||||
-0.309 0.000 -0.951
|
||||
-0.305 -0.048 -0.951
|
||||
-0.294 -0.095 -0.951
|
||||
-0.275 -0.140 -0.951
|
||||
-0.250 -0.182 -0.951
|
||||
-0.219 -0.219 -0.951
|
||||
-0.182 -0.250 -0.951
|
||||
-0.140 -0.275 -0.951
|
||||
-0.095 -0.294 -0.951
|
||||
-0.048 -0.305 -0.951
|
||||
-0.000 -0.309 -0.951
|
||||
0.048 -0.305 -0.951
|
||||
0.095 -0.294 -0.951
|
||||
0.140 -0.275 -0.951
|
||||
0.182 -0.250 -0.951
|
||||
0.219 -0.219 -0.951
|
||||
0.250 -0.182 -0.951
|
||||
0.275 -0.140 -0.951
|
||||
0.294 -0.095 -0.951
|
||||
0.305 -0.048 -0.951
|
||||
0.156 0.000 -0.988
|
||||
0.155 0.024 -0.988
|
||||
0.149 0.048 -0.988
|
||||
0.139 0.071 -0.988
|
||||
0.127 0.092 -0.988
|
||||
0.111 0.111 -0.988
|
||||
0.092 0.127 -0.988
|
||||
0.071 0.139 -0.988
|
||||
0.048 0.149 -0.988
|
||||
0.024 0.155 -0.988
|
||||
0.000 0.156 -0.988
|
||||
-0.024 0.155 -0.988
|
||||
-0.048 0.149 -0.988
|
||||
-0.071 0.139 -0.988
|
||||
-0.092 0.127 -0.988
|
||||
-0.111 0.111 -0.988
|
||||
-0.127 0.092 -0.988
|
||||
-0.139 0.071 -0.988
|
||||
-0.149 0.048 -0.988
|
||||
-0.155 0.024 -0.988
|
||||
-0.156 0.000 -0.988
|
||||
-0.155 -0.024 -0.988
|
||||
-0.149 -0.048 -0.988
|
||||
-0.139 -0.071 -0.988
|
||||
-0.127 -0.092 -0.988
|
||||
-0.111 -0.111 -0.988
|
||||
-0.092 -0.127 -0.988
|
||||
-0.071 -0.139 -0.988
|
||||
-0.048 -0.149 -0.988
|
||||
-0.024 -0.155 -0.988
|
||||
-0.000 -0.156 -0.988
|
||||
0.024 -0.155 -0.988
|
||||
0.048 -0.149 -0.988
|
||||
0.071 -0.139 -0.988
|
||||
0.092 -0.127 -0.988
|
||||
0.111 -0.111 -0.988
|
||||
0.127 -0.092 -0.988
|
||||
0.139 -0.071 -0.988
|
||||
0.149 -0.048 -0.988
|
||||
0.155 -0.024 -0.988
|
Loading…
Reference in New Issue
Block a user