add mvmp code
This commit is contained in:
parent
a66a138314
commit
bc514523cc
@ -26,7 +26,7 @@ class ImageDataBase:
|
||||
def try_to_extract_images(self, root, value):
|
||||
if not os.path.exists(os.path.join(root, value['root'])) and os.path.exists(os.path.join(root, 'videos')):
|
||||
print('[{}] Cannot find the images but find the videos, try to extract it'.format(self.__class__.__name__))
|
||||
for videoname in os.listdir(os.path.join(root, 'videos')):
|
||||
for videoname in sorted(os.listdir(os.path.join(root, 'videos'))):
|
||||
videoext = '.' + videoname.split('.')[-1]
|
||||
outdir = join(root, value['root'], videoname.replace(videoext, ''))
|
||||
os.makedirs(outdir, exist_ok=True)
|
||||
|
@ -174,6 +174,11 @@ class MVDataset(ImageDataBase):
|
||||
self.filter = filter
|
||||
if len(self.subs) == 0:
|
||||
self.subs = self.meta['subs']
|
||||
if len(self.subs_vis) == 1:
|
||||
if self.subs_vis[0] == '_all_':
|
||||
self.subs_vis = self.subs
|
||||
elif self.subs_vis[0] == '_sample_4_':
|
||||
self.subs_vis = [self.subs[0], self.subs[len(self.subs)//3], self.subs[(len(self.subs)*2//3)], self.subs[-1]]
|
||||
self.check_frames_length()
|
||||
|
||||
@staticmethod
|
||||
@ -266,6 +271,11 @@ class MVDataset(ImageDataBase):
|
||||
def check(self, index):
|
||||
raise NotImplementedError
|
||||
|
||||
def __str__(self) -> str:
|
||||
pre = super().__str__()
|
||||
pre += ''' subs_vis: {}'''.format(self.subs_vis)
|
||||
return pre
|
||||
|
||||
class MVMP(MVDataset):
|
||||
def read_annots(self, annotnames):
|
||||
val = []
|
||||
|
@ -43,7 +43,10 @@ class SMPLLoader:
|
||||
'body_model': self.smplmodel,
|
||||
'model': self.forward}
|
||||
|
||||
def forward(self, params):
|
||||
def forward(self, params, ret_vertices=False):
|
||||
if ret_vertices:
|
||||
keypoints = self.smplmodel.vertices(params, return_tensor=True)
|
||||
else:
|
||||
keypoints = self.smplmodel.keypoints(params, return_tensor=True)
|
||||
ret = {
|
||||
'keypoints': keypoints
|
||||
|
@ -57,13 +57,12 @@ class VisBase:
|
||||
self.count += 1
|
||||
|
||||
class Vis3D(VisBase):
|
||||
def __init__(self, scale, lw_factor=1, name='repro', **kwargs) -> None:
|
||||
def __init__(self, scale, lw_factor=1, name='vis_repro', **kwargs) -> None:
|
||||
super().__init__(scale, lw_factor, name, **kwargs)
|
||||
|
||||
def __call__(self, images, cameras, keypoints3d=None, results=None):
|
||||
# keypoints3d: (nJoints, 4)
|
||||
undist = False
|
||||
cameras['dist'] = np.zeros_like(cameras['dist'])
|
||||
vis_all = []
|
||||
for nv in range(len(images)):
|
||||
if isinstance(images[nv], str): continue
|
||||
@ -77,25 +76,28 @@ class Vis3D(VisBase):
|
||||
if results is None:
|
||||
if len(keypoints3d.shape) == 2:
|
||||
keypoints_repro, depth = projectPoints(keypoints3d, {key:cameras[key][nv] for key in ['R', 'T', 'K', 'dist']})
|
||||
plot_keypoints_auto(vis, keypoints_repro, pid=0, use_limb_color=False)
|
||||
plot_keypoints_auto(vis, keypoints_repro, pid=0, use_limb_color=True)
|
||||
else:
|
||||
for pid in range(keypoints3d.shape[0]):
|
||||
keypoints_repro, depth = projectPoints(keypoints3d[pid], {key:cameras[key][nv] for key in ['R', 'T', 'K', 'dist']})
|
||||
plot_keypoints_auto(vis, keypoints_repro, pid=pid, use_limb_color=False)
|
||||
if (depth < 0.5).all():
|
||||
continue
|
||||
plot_keypoints_auto(vis, keypoints_repro, pid=pid, use_limb_color=True)
|
||||
else:
|
||||
for res in results:
|
||||
k3d = res['keypoints3d']
|
||||
k3d_rt = np.dot(k3d[:, :3], camera['R'].T) + camera['T'].T
|
||||
keypoints_repro, depth = projectPoints(k3d, camera)
|
||||
depth = k3d_rt[..., -1]
|
||||
if k3d.shape[0] == 1:
|
||||
x, y = keypoints_repro[0,0], keypoints_repro[0,1]
|
||||
# if res['id'] == 6:
|
||||
plot_cross(vis, x, y, col=get_rgb(res['id']), lw=self.lw, width=self.lw * 5)
|
||||
elif k3d.shape[0] == 2: # limb
|
||||
x1, y1 = keypoints_repro[0,0], keypoints_repro[0,1]
|
||||
x2, y2 = keypoints_repro[1,0], keypoints_repro[1,1]
|
||||
cv2.line(vis, (int(x1), int(y1)), (int(x2), int(y2)), get_rgb(res['id']), self.lw)
|
||||
else:
|
||||
plot_keypoints_auto(vis, keypoints_repro, pid=res['id'], use_limb_color=False, lw_factor=self.lw)
|
||||
plot_keypoints_auto(vis, keypoints_repro, pid=res['id'], use_limb_color=True, lw_factor=self.lw)
|
||||
cv2.putText(vis, '{}'.format(res['id']), (int(keypoints_repro[0,0]), int(keypoints_repro[0,1])),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 2, get_rgb(res['id']), self.lw)
|
||||
vis_all.append(vis)
|
||||
@ -255,6 +257,8 @@ class Vis2D(VisBase):
|
||||
plot_bbox(vis_, bbox[nv], 0)
|
||||
else:
|
||||
for pid in range(k2d.shape[0]):
|
||||
plot_keypoints_auto(vis_, k2d[pid], pid=pid, use_limb_color=False)
|
||||
plot_keypoints_auto(vis_, k2d[pid], pid=pid, use_limb_color=True)
|
||||
if bbox is not None:
|
||||
plot_bbox(vis_, bbox[nv][pid], pid=pid)
|
||||
vis.append(vis_)
|
||||
self.merge_and_write(vis)
|
@ -38,7 +38,7 @@ class Render(VisBase):
|
||||
self.merge_and_write([ret])
|
||||
|
||||
class Render_multiview(VisBase):
|
||||
def __init__(self, view_list=[], name='render', model_name='body_model', render_mode='image', backend='pyrender', shape=[-1,-1], scale=1., **kwargs):
|
||||
def __init__(self, view_list=[], name='vis_render', model_name='body_model', render_mode='image', backend='pyrender', shape=[-1,-1], scale=1., **kwargs):
|
||||
self.scale3d = scale
|
||||
super().__init__(name=name, scale=1., **kwargs)
|
||||
self.view_list = view_list
|
||||
@ -46,17 +46,15 @@ class Render_multiview(VisBase):
|
||||
self.model_name = model_name
|
||||
self.shape = shape
|
||||
|
||||
def render_(self, vertices, faces, cameras, imgnames):
|
||||
for nf, img in enumerate(tqdm(imgnames, desc=self.name)):
|
||||
def render_frame(self, imgname, vert, faces, cameras, pids=[]):
|
||||
mv_ret = []
|
||||
if not isinstance(img, list):
|
||||
img = [img]
|
||||
if not isinstance(imgname, list):
|
||||
imgname = [imgname]
|
||||
for nv in self.view_list:
|
||||
basename = os.path.basename(img[nv])
|
||||
assert os.path.exists(img[nv]), img[nv]
|
||||
vis = cv2.imread(img[nv])
|
||||
basename = os.path.basename(imgname[nv])
|
||||
assert os.path.exists(imgname[nv]), imgname[nv]
|
||||
vis = cv2.imread(imgname[nv])
|
||||
vis = cv2.resize(vis, None, fx=self.scale3d, fy=self.scale3d)
|
||||
vert = vertices[nf]
|
||||
meshes = {}
|
||||
if vert.ndim == 2:
|
||||
meshes[0] = {
|
||||
@ -66,19 +64,15 @@ class Render_multiview(VisBase):
|
||||
'name': 'human_{}'.format(0)
|
||||
}
|
||||
elif vert.ndim == 3:
|
||||
for pid in range(vert.shape[0]):
|
||||
if len(pids) == 0:
|
||||
pids = list(range(vert.shape[0]))
|
||||
for ipid, pid in enumerate(pids):
|
||||
meshes[pid] = {
|
||||
'vertices': vert[pid],
|
||||
'vertices': vert[ipid],
|
||||
'faces': faces,
|
||||
'id': pid,
|
||||
'name': 'human_{}'.format(pid)
|
||||
}
|
||||
if cameras['K'].ndim == 4:
|
||||
K = cameras['K'][nf][nv].copy()
|
||||
K[:2, :] *= self.scale
|
||||
R = cameras['R'][nf][nv]
|
||||
T = cameras['T'][nf][nv]
|
||||
else:
|
||||
K = cameras['K'][nv].copy()
|
||||
K[:2, :] *= self.scale3d
|
||||
R = cameras['R'][nv]
|
||||
@ -106,12 +100,45 @@ class Render_multiview(VisBase):
|
||||
mv_ret.append(ret)
|
||||
self.merge_and_write(mv_ret)
|
||||
|
||||
def render_(self, vertices, faces, cameras, imgnames, pids=[]):
|
||||
for nf, imgname in enumerate(tqdm(imgnames, desc=self.name)):
|
||||
vert = vertices[nf]
|
||||
camera_ = {cam: val[nf] for cam, val in cameras.items()}
|
||||
self.render_frame(imgname, vert, faces, camera_, pids=pids)
|
||||
|
||||
def __call__(self, params, cameras, imgnames, **kwargs):
|
||||
body_model = kwargs[self.model_name]
|
||||
vertices = body_model.vertices(params, return_tensor=False)
|
||||
faces = body_model.faces
|
||||
self.render_(vertices, faces, cameras, imgnames)
|
||||
|
||||
class RenderAll_multiview(Render_multiview):
|
||||
def __call__(self, results, cameras, imgnames, meta, **kwargs):
|
||||
body_model = kwargs[self.model_name]
|
||||
for index in tqdm(meta['index'], desc=self.name):
|
||||
results_frame = []
|
||||
for pid, result in results.items():
|
||||
if index >= result['frames'][0] and index <= result['frames'][-1]:
|
||||
frame_rel = result['frames'].index(index)
|
||||
results_frame.append({
|
||||
'id': pid,
|
||||
})
|
||||
for key in ['Rh', 'Th', 'poses', 'shapes']:
|
||||
if result['params'][key].shape[0] == 1:
|
||||
results_frame[-1][key] = result['params'][key]
|
||||
else:
|
||||
results_frame[-1][key] = result['params'][key][frame_rel:frame_rel+1]
|
||||
params = {}
|
||||
for key in results_frame[0].keys():
|
||||
if key != 'id':
|
||||
params[key] = np.concatenate([res[key] for res in results_frame], axis=0)
|
||||
pids = [res['id'] for res in results_frame]
|
||||
vertices = body_model.vertices(params, return_tensor=False)
|
||||
camera_ = {cam: val[index] for cam, val in cameras.items()}
|
||||
self.render_frame(imgnames[index], vertices, body_model.faces, camera_, pids=pids)
|
||||
# self.render_frame(vertices, body_model.faces, camera_, imgnames[index], pids=pids)
|
||||
# self.render_frame(vertices, body_model.faces, camera_, imgnames[index], pids=pids)
|
||||
|
||||
class Render_nocam:
|
||||
def __init__(self, scale=0.5, backend='pyrender',view_list=[0]) -> None:
|
||||
self.name = 'render'
|
||||
|
@ -1,5 +1,5 @@
|
||||
import os
|
||||
from easymocap.mytools.file_utils import write_keypoints3d, write_smpl
|
||||
from easymocap.mytools.file_utils import write_keypoints3d, write_smpl, write_vertices
|
||||
from easymocap.annotator.file_utils import save_annot
|
||||
from os.path import join
|
||||
from tqdm import tqdm
|
||||
@ -66,8 +66,10 @@ class Write2D:
|
||||
save_annot(dumpname, annots)
|
||||
|
||||
class WriteSMPL:
|
||||
def __init__(self, name='smpl') -> None:
|
||||
def __init__(self, name='smpl', write_vertices=False) -> None:
|
||||
self.name = name
|
||||
# TODO: make available
|
||||
self.write_vertices = write_vertices
|
||||
|
||||
def __call__(self, params=None, results=None, meta=None, model=None):
|
||||
results_all = []
|
||||
@ -91,7 +93,14 @@ class WriteSMPL:
|
||||
param = results_frame[-1]
|
||||
pred = model(param)['keypoints'][0]
|
||||
results_frame[-1]['keypoints3d'] = pred
|
||||
if self.write_vertices:
|
||||
vert = model(param, ret_vertices=True)['keypoints'][0]
|
||||
results_frame[-1]['vertices'] = vert
|
||||
write_smpl(join(self.output, self.name, '{:06d}.json'.format(meta['frame'][index])), results_frame)
|
||||
write_keypoints3d(join(self.output, 'keypoints3d', '{:06d}.json'.format(meta['frame'][index])), results_frame)
|
||||
if self.write_vertices:
|
||||
write_vertices(join(self.output, 'vertices', '{:06d}.json'.format(meta['frame'][index])), results_frame)
|
||||
for res in results_frame:
|
||||
res.pop('vertices')
|
||||
results_all.append(results_frame)
|
||||
return {'results_perframe': results_all}
|
137
myeasymocap/operations/iterative_triangulate.py
Normal file
137
myeasymocap/operations/iterative_triangulate.py
Normal file
@ -0,0 +1,137 @@
|
||||
import numpy as np
|
||||
import itertools
|
||||
from easymocap.mytools.triangulator import batch_triangulate, project_points
|
||||
from easymocap.mytools.debug_utils import log, mywarn, myerror
|
||||
|
||||
def project_and_distance(kpts3d, RT, kpts2d):
|
||||
kpts_proj = project_points(kpts3d, RT)
|
||||
# 1. distance between input and projection
|
||||
conf = (kpts3d[None, :, -1] > 0) * (kpts2d[:, :, -1] > 0)
|
||||
dist = np.linalg.norm(kpts_proj[..., :2] - kpts2d[..., :2], axis=-1) * conf
|
||||
return kpts_proj[..., -1], dist, conf
|
||||
|
||||
def remove_outview(kpts2d, out_view, debug):
|
||||
if len(out_view) == 0:
|
||||
return False
|
||||
elif len(out_view) == 1:
|
||||
# directly remove the outlier view
|
||||
outv = out_view[0]
|
||||
if debug:
|
||||
log('[triangulate] remove outview: {}'.format(outv))
|
||||
else:
|
||||
# only remove the first outlier view
|
||||
outv = out_view[0]
|
||||
if debug:
|
||||
mywarn('[triangulate] remove first outview: {} from {}'.format(outv, out_view))
|
||||
kpts2d[outv] = 0.
|
||||
return True
|
||||
|
||||
def remove_outjoint(kpts2d, Pall, out_joint, dist_max, dist_track, min_view=3, previous=None, debug=False):
|
||||
MIN_CONF_3D = 0.1
|
||||
if len(out_joint) == 0:
|
||||
return False
|
||||
if debug:
|
||||
mywarn('[triangulate] remove outjoint: {}'.format(out_joint))
|
||||
nviews = np.arange(kpts2d.shape[0])
|
||||
for nj in out_joint:
|
||||
valid = np.where(kpts2d[:, nj, -1] > 0)[0]
|
||||
if len(valid) < min_view:
|
||||
# if less than 3 visible view, set these unvisible
|
||||
kpts2d[:, nj, -1] = 0
|
||||
continue
|
||||
kpts_nj = kpts2d[valid, nj]
|
||||
Pall_nj = Pall[valid]
|
||||
view_index = nviews[valid]
|
||||
view_local = np.arange(valid.shape[0])
|
||||
comb_views = np.array(list(itertools.combinations(view_local.tolist(), min_view))).T
|
||||
comb_kpts = kpts_nj[comb_views]
|
||||
comb_Pall = Pall_nj[comb_views]
|
||||
comb_k3d = batch_triangulate(comb_kpts, comb_Pall)
|
||||
depth, dist, conf = project_and_distance(comb_k3d, comb_Pall, comb_kpts)
|
||||
# 依次选择置信度最高的
|
||||
sort_by_conf = (-comb_kpts[..., -1].sum(axis=0)).argsort()
|
||||
flag = (dist[:, sort_by_conf]<dist_max).all(axis=0)
|
||||
if previous is not None:
|
||||
dist3d = np.linalg.norm(previous[[nj], :3] - comb_k3d[:, :3], axis=-1) * 1000
|
||||
flag = flag & ((dist3d[sort_by_conf] < dist_track) | (previous[nj, 3] < MIN_CONF_3D))
|
||||
valid = sort_by_conf[flag]
|
||||
if valid.shape[0] == 0:
|
||||
if debug:
|
||||
mywarn('[triangulate] cannot find valid combinations of joint {}'.format(nj))
|
||||
kpts2d[:, nj, -1] = 0
|
||||
else:
|
||||
# check all 2D keypoints
|
||||
k3d = comb_k3d[valid[0]].reshape(1, 4)
|
||||
depth, dist, conf = project_and_distance(k3d, Pall_nj, kpts_nj[:, None])
|
||||
valid_view = view_index[np.where(dist < dist_max)[0]]
|
||||
# 这里需要尝试三角化一下,如果按照新的三角化之后误差更大的话,不应该用新的,而是使用老的
|
||||
if debug:
|
||||
log('[triangulate] {} find valid combinations of joint: {}'.format(nj, valid_view))
|
||||
log('[triangulate] {} distance 2d pixel (max {}): {}'.format(nj, dist_max, dist[np.where(dist < dist_max)[0], 0]))
|
||||
if previous is not None and previous[nj, 3] > MIN_CONF_3D:
|
||||
_dist3d = np.linalg.norm(previous[[nj], :3] - k3d[:, :3], axis=-1) * 1000
|
||||
log('[triangulate] {} distance 3d mm (max {}): {}'.format(nj, dist_track, _dist3d))
|
||||
if _dist3d > dist_track:
|
||||
import ipdb; ipdb.set_trace()
|
||||
set0 = np.zeros(kpts2d.shape[0])
|
||||
set0[valid_view] = 1.
|
||||
kpts2d[:, nj, -1] *= set0
|
||||
return True
|
||||
|
||||
def iterative_triangulate(kpts2d, RT,
|
||||
min_conf=0.1, min_view=3, min_joints=3, dist_max=0.05, dist_track=50,
|
||||
thres_outlier_view=0.4, thres_outlier_joint=0.4, debug=True,
|
||||
previous=None,
|
||||
**kwargs):
|
||||
kpts2d = kpts2d.copy()
|
||||
conf = kpts2d[..., -1]
|
||||
kpts2d[conf<min_conf] = 0.
|
||||
if debug:
|
||||
log('[triangulate] kpts2d: {}'.format(kpts2d.shape))
|
||||
while True:
|
||||
# 0. triangulate and project
|
||||
kpts3d = batch_triangulate(kpts2d, RT, min_view=min_view)
|
||||
depth, dist, conf = project_and_distance(kpts3d, RT, kpts2d)
|
||||
# 2. find the outlier
|
||||
vv, jj = np.where(dist > dist_max)
|
||||
if vv.shape[0] < 1:
|
||||
if debug:
|
||||
log('[triangulate] Not found outlier, break')
|
||||
break
|
||||
ratio_outlier_view = (dist>dist_max).sum(axis=1)/(1e-5 + (conf > 0.).sum(axis=1))
|
||||
ratio_outlier_joint = (dist>dist_max).sum(axis=0)/(1e-5 + (conf > 0.).sum(axis=0))
|
||||
# 3. find the totally wrong detections
|
||||
out_view = np.where(ratio_outlier_view > thres_outlier_view)[0]
|
||||
error_joint = dist.sum(axis=0)/(1e-5 + (conf > 0.).sum(axis=0))
|
||||
# for joint, we calculate the mean distance of this joint
|
||||
out_joint = np.where((ratio_outlier_joint > thres_outlier_joint) & (error_joint > dist_max))[0]
|
||||
if len(out_view) > 1:
|
||||
# TODO: 如果全都小于0的话,相当于随机丢了,应该增加视角的置信度
|
||||
# 应该生成多个proposal;然后递归的去寻找
|
||||
# 不应该直接抛弃的
|
||||
# 如果有previous的情况,应该用previous来作为判断标准
|
||||
# cfg = dict(min_conf=min_conf, min_view=min_view, min_joints=min_joints, dist_max=dist_max, dist_track=dist_track,
|
||||
# thres_outlier_view=thres_outlier_view, thres_outlier_joint=0.4, debug=True, previous=None)
|
||||
if debug: mywarn('[triangulate] More than one outlier view: {}, stop triangulation.'.format(ratio_outlier_view))
|
||||
return kpts3d, np.zeros_like(kpts2d)
|
||||
if debug: mywarn('[triangulate] Remove outlier view give outlier ratio: {}'.format(ratio_outlier_view))
|
||||
dist_view = dist.sum(axis=1)/(1e-5 + (conf > 0.).sum(axis=1))
|
||||
out_view = out_view.tolist()
|
||||
out_view.sort(key=lambda x:-dist_view[x])
|
||||
if remove_outview(kpts2d, out_view, debug): continue
|
||||
if len(out_joint) > 0:
|
||||
if debug:
|
||||
print(dist[:, out_joint])
|
||||
mywarn('[triangulate] Remove outlier joint {} given outlier ratio: {}'.format(out_joint, ratio_outlier_joint[out_joint]))
|
||||
remove_outjoint(kpts2d, RT, out_joint, dist_max, dist_track, previous=previous, debug=debug)
|
||||
continue
|
||||
if debug:
|
||||
log('[triangulate] Directly remove {}, {}'.format(vv, jj))
|
||||
kpts2d[vv, jj, -1] = 0.
|
||||
if debug:
|
||||
log('[triangulate] finally {} valid points, {} not valid'.format((kpts3d[..., -1]>0).sum(), np.where(kpts3d[..., -1]<=0)[0]))
|
||||
if (kpts3d[..., -1]>0).sum() < min_joints:
|
||||
kpts3d[..., -1] = 0.
|
||||
kpts2d[..., -1] = 0.
|
||||
return kpts3d, kpts2d
|
||||
return kpts3d, kpts2d
|
558
myeasymocap/operations/match_base.py
Normal file
558
myeasymocap/operations/match_base.py
Normal file
@ -0,0 +1,558 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
from easymocap.mytools.camera_utils import Undistort
|
||||
from easymocap.mytools.debug_utils import log, mywarn, myerror
|
||||
from .iterative_triangulate import iterative_triangulate
|
||||
from easymocap.mytools.triangulator import project_points
|
||||
from easymocap.mytools.timer import Timer
|
||||
|
||||
class DistanceBase:
|
||||
# 这个类用于计算affinity
|
||||
# 主要基于关键点计算;未来可以考虑支持其他东西
|
||||
def __init__(self, cfg) -> None:
|
||||
self.cfg = cfg
|
||||
|
||||
def calculate_affinity_MxM(self, keypoints, cameras):
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def SimpleConstrain(dimGroups):
|
||||
constrain = np.ones((dimGroups[-1], dimGroups[-1]))
|
||||
for i in range(len(dimGroups)-1):
|
||||
start, end = dimGroups[i], dimGroups[i+1]
|
||||
constrain[start:end, start:end] = 0
|
||||
N = constrain.shape[0]
|
||||
constrain[range(N), range(N)] = 1
|
||||
return constrain
|
||||
|
||||
def skew_op(x):
|
||||
res = np.zeros((3, 3), dtype=x.dtype)
|
||||
# 0, -z, y
|
||||
res[0, 1] = -x[2, 0]
|
||||
res[0, 2] = x[1, 0]
|
||||
# z, 0, -x
|
||||
res[1, 0] = x[2, 0]
|
||||
res[1, 2] = -x[0, 0]
|
||||
# -y, x, 0
|
||||
res[2, 0] = -x[1, 0]
|
||||
res[2, 1] = x[0, 0]
|
||||
return res
|
||||
|
||||
def fundamental_op(K0, K1, R_0, T_0, R_1, T_1):
|
||||
invK0 = np.linalg.inv(K0)
|
||||
return invK0.T @ (R_0 @ R_1.T) @ K1.T @ skew_op(K1 @ R_1 @ R_0.T @ (T_0 - R_0 @ R_1.T @ T_1))
|
||||
|
||||
class EpipolarDistance(DistanceBase):
|
||||
@staticmethod
|
||||
def distance2d2d(pts0, pts1, K0, K1, R0, T0, R1, T1):
|
||||
F = fundamental_op(K0, K1, R0, T0, R1, T1)
|
||||
# Find epilines corresponding to points in left image (first image) and
|
||||
# drawing its lines on right image
|
||||
lines0 = cv2.computeCorrespondEpilines(pts0[..., :2].reshape (-1,1,2), 2, F)
|
||||
# Find epilines corresponding to points in right image (second image) and
|
||||
# drawing its lines on left image
|
||||
lines1 = cv2.computeCorrespondEpilines(pts1[..., :2].reshape(-1,1,2), 1, F)
|
||||
lines0 = lines0.reshape(pts0.shape)
|
||||
lines1 = lines1.reshape(pts1.shape)
|
||||
# dist: (D_v0, D_v1, nJoints)
|
||||
# TODO: / sqrt(A^2 + B^2)
|
||||
dist01 = np.abs(np.sum(lines0[:, None, :, :2] * pts1[None, :, :, :2], axis=-1) + lines0[:, None, :, 2])
|
||||
conf = (pts0[:, None, :, 2] * pts1[None, :, :, 2]) > 0
|
||||
dist10 = np.abs(np.sum(lines1[:, None, :, :2] * pts0[None, :, :, :2], axis=-1) + lines1[:, None, :, 2])
|
||||
|
||||
dist = np.sum(dist01 * conf + dist10.transpose(1, 0, 2) * conf, axis=-1)/(conf.sum(axis=-1) + 1e-5)/2
|
||||
return dist
|
||||
|
||||
def vis_affinity(self, aff, dimGroups, scale=10):
|
||||
aff = cv2.resize(aff, (aff.shape[1]*scale, aff.shape[0]*scale), interpolation=cv2.INTER_NEAREST)
|
||||
aff_float = aff.copy()
|
||||
aff = (aff * 255).astype(np.uint8)
|
||||
aff = cv2.applyColorMap(aff, cv2.COLORMAP_JET)
|
||||
transp = (aff_float * 255).astype(np.float32)
|
||||
for dim in dimGroups[1:-1]:
|
||||
cv2.line(aff, (0, dim*scale), (aff.shape[0], dim*scale), (255, 255, 255), thickness=1)
|
||||
cv2.line(aff, (dim*scale, 0), (dim*scale, aff.shape[0]), (255, 255, 255), thickness=1)
|
||||
cv2.line(transp, (0, dim*scale), (aff.shape[0], dim*scale), (255,), thickness=1)
|
||||
cv2.line(transp, (dim*scale, 0), (dim*scale, aff.shape[0]), (255,), thickness=1)
|
||||
# last line
|
||||
cv2.rectangle(aff, (0, 0), (aff.shape[0]-1, aff.shape[0]-1), (0, 0, 255), thickness=1)
|
||||
cv2.rectangle(transp, (0, 0), (aff.shape[0]-1, aff.shape[0]-1), (255,), thickness=1)
|
||||
aff = np.dstack([aff, transp])
|
||||
return aff
|
||||
|
||||
def calculate_affinity_MxM(self, keypoints, cameras):
|
||||
# 计算一下总长度
|
||||
dims = [d.shape[0] for d in keypoints]
|
||||
dimGroups = np.cumsum([0] + dims)
|
||||
M = dimGroups[-1]
|
||||
distance = np.eye((M), dtype=np.float32)
|
||||
nViews = len(keypoints)
|
||||
for v0 in range(nViews-1):
|
||||
# set the diag block
|
||||
for v1 in range(1, nViews):
|
||||
# calculate distance between (v0, v1)
|
||||
if v0 >= v1:
|
||||
continue
|
||||
pts0 = keypoints[v0]
|
||||
pts1 = keypoints[v1]
|
||||
if pts0.shape[0] == 0 or pts1.shape[0] == 0:
|
||||
continue
|
||||
K0, K1 = cameras['K'][v0], cameras['K'][v1] # K0, K1: (3, 3)
|
||||
R0, T0 = cameras['R'][v0], cameras['T'][v0]
|
||||
R1, T1 = cameras['R'][v1], cameras['T'][v1]
|
||||
dist = self.distance2d2d(pts0, pts1, K0, K1, R0, T0, R1, T1)
|
||||
conf0 = pts0[..., -1]
|
||||
conf1 = pts1[..., -1]
|
||||
common_count = ((conf0[:, None] > 0) & (conf1[None] > 0)).sum(axis=-1)
|
||||
common_affinity = np.sqrt(conf0[:, None] * conf1[None])
|
||||
dist /= (K0[0, 0] + K1[0, 0])/2
|
||||
dist[common_count < self.cfg.min_common_joints] = self.cfg.threshold * 10
|
||||
aff_geo = (self.cfg.threshold - dist)/self.cfg.threshold
|
||||
aff_conf = common_affinity.mean(axis=-1)
|
||||
aff_compose = aff_geo * aff_conf
|
||||
distance[dimGroups[v0]:dimGroups[v0+1], dimGroups[v1]:dimGroups[v1+1]] = aff_compose
|
||||
distance[dimGroups[v1]:dimGroups[v1+1], dimGroups[v0]:dimGroups[v0+1]] = aff_compose.T
|
||||
|
||||
affinity = np.clip(distance, 0, 1)
|
||||
return affinity, dimGroups
|
||||
|
||||
def _calculate_affinity_MxN(self, keypoints3d, keypoints, cameras):
|
||||
DEPTH_NEAR = 0.5
|
||||
dims = [d.shape[0] for d in keypoints]
|
||||
dimGroups = np.cumsum([0] + dims)
|
||||
M = dimGroups[-1]
|
||||
N = keypoints3d.shape[0]
|
||||
distance = np.zeros((M, N), dtype=np.float32)
|
||||
nViews = len(keypoints)
|
||||
kpts_proj = project_points(keypoints3d, cameras['P'], einsum='vab,pkb->vpka')
|
||||
depth = kpts_proj[..., -1]
|
||||
kpts_proj[depth<DEPTH_NEAR] = -10000
|
||||
# TODO: constrain the depth far
|
||||
affinity_all = []
|
||||
for v in range(nViews):
|
||||
if dims[v] == 0:
|
||||
continue
|
||||
focal = (cameras['K'][v][0, 0] + cameras['K'][v][1, 1])/2
|
||||
# pts2d: (N, J, 3)
|
||||
pts2d = keypoints[v]
|
||||
# pts_repro: (N3D, J, 3)
|
||||
pts_repro = kpts_proj[v]
|
||||
# conf: (N2D, N3D, J)
|
||||
conf = np.sqrt(pts2d[:, None, ..., -1]*keypoints3d[None, ..., -1])
|
||||
diff = np.linalg.norm(pts2d[:, None, ..., :2] - pts_repro[None, ..., :2], axis=-1)
|
||||
# (N2D, N3D)
|
||||
diff = np.sum(diff*conf, axis=-1)/(1e-5 + np.sum(conf, axis=-1))
|
||||
dist = diff / focal
|
||||
aff_geo = (self.cfg.threshold_track - dist)/self.cfg.threshold_track
|
||||
affinity_all.append(aff_geo)
|
||||
aff = np.vstack(affinity_all)
|
||||
aff = np.clip(aff, 0, 1)
|
||||
return aff
|
||||
|
||||
def low_rank_optimization(self, affinity, dimGroups, vis=False):
|
||||
if True:
|
||||
import pymatchlr
|
||||
observe = np.ones_like(affinity)
|
||||
aff_svt = pymatchlr.matchSVT(affinity, dimGroups, self.SimpleConstrain(dimGroups), observe, self.cfg.cfg_svt)
|
||||
else:
|
||||
aff_svt = affinity
|
||||
aff_svt[aff_svt<self.cfg.cfg_svt.aff_min] = 0.
|
||||
if vis:
|
||||
cv2.imwrite('debug.png', np.hstack([self.vis_affinity(affinity, dimGroups), self.vis_affinity(aff_svt, dimGroups)]))
|
||||
import ipdb; ipdb.set_trace()
|
||||
return aff_svt
|
||||
|
||||
class MatchBase:
|
||||
def __init__(self, cfg) -> None:
|
||||
self.cfg = cfg
|
||||
if cfg.distance.mode == 'epipolar':
|
||||
self.distance = EpipolarDistance(cfg.distance)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def set_previous(self, previous):
|
||||
prev_ids = [p['id'] for p in previous]
|
||||
prev_keypoints = [p['keypoints3d'] for p in previous]
|
||||
self.prev_ids = prev_ids
|
||||
self.prev_keypoints = prev_keypoints
|
||||
if len(prev_ids) > 0:
|
||||
self.prev_keypoints = np.stack(prev_keypoints)
|
||||
|
||||
@staticmethod
|
||||
def undistort(points, cameras):
|
||||
nViews = len(points)
|
||||
pelvis_undis = []
|
||||
for nv in range(nViews):
|
||||
K = cameras['K'][nv]
|
||||
dist = cameras['dist'][nv]
|
||||
points_nv = points[nv]
|
||||
points_nv_flat = points_nv.reshape(-1, 3)
|
||||
if points_nv_flat.shape[0] > 0:
|
||||
points_nv_flat = Undistort.points(points_nv_flat, K, dist)
|
||||
pelvis_undis.append(points_nv_flat.reshape(*points_nv.shape))
|
||||
return pelvis_undis
|
||||
|
||||
def _prepare_associate(self, affinity, keypoints):
|
||||
dimGroups = [0]
|
||||
views = []
|
||||
nViews = len(keypoints)
|
||||
affinity_sum = np.zeros((affinity.shape[0],))
|
||||
for nv in range(nViews):
|
||||
dimGroups.append(dimGroups[-1] + keypoints[nv].shape[0])
|
||||
views.extend([nv] * keypoints[nv].shape[0])
|
||||
start, end = dimGroups[nv], dimGroups[nv+1]
|
||||
if end > start:
|
||||
affinity_sum += affinity[:, start:end].max(axis=-1)
|
||||
return affinity_sum, dimGroups, views
|
||||
|
||||
def try_to_triangulate(self, keypoints, cameras, indices, previous=None):
|
||||
Pall, keypoints2d = [], []
|
||||
for nv in range(indices.shape[0]):
|
||||
if indices[nv] == -1:
|
||||
Pall.append(cameras['P'][nv])
|
||||
keypoints2d.append(np.zeros((25, 3), dtype=np.float32))
|
||||
# keypoints2d.append(keypoints[nv][indices[nv]])
|
||||
else:
|
||||
Pall.append(cameras['P'][nv])
|
||||
keypoints2d.append(keypoints[nv][indices[nv]])
|
||||
Pall = np.stack(Pall)
|
||||
keypoints2d = np.stack(keypoints2d)
|
||||
if previous is not None:
|
||||
kpts_proj = project_points(previous, cameras['P'], einsum='vab,kb->vka')
|
||||
# 注意,这里需要考虑深度,因为深度是已知的
|
||||
# 越近的地方这个阈值应该越大,越远的地方阈值越小
|
||||
# radius / depth * focal
|
||||
depth = kpts_proj[..., -1]
|
||||
# 超出这个track阈值的直接丢掉了;这样可以保证三角化出来的一定是小于阈值的
|
||||
# 如果对这个阈值有意见,应该增大这个阈值条件
|
||||
radius = self.cfg.triangulate.dist_track * cameras['K'][:, 0, 0][:, None] / depth
|
||||
dist = np.linalg.norm(kpts_proj[..., :2] - keypoints2d[..., :2], axis=-1)
|
||||
conf = np.sqrt(kpts_proj[..., -1] * keypoints2d[..., -1]) > 0
|
||||
not_track = (dist > radius) & conf
|
||||
if not_track.sum() > 0:
|
||||
log('[Tri] {} 2d joints not tracked'.format(not_track.sum()))
|
||||
keypoints2d[not_track] = 0.
|
||||
keypoints3d, k2d = iterative_triangulate(keypoints2d, Pall, previous=previous, **self.cfg.triangulate)
|
||||
not_valid_view = np.where((k2d[..., -1] < 0.1).all(axis=1))[0]
|
||||
indices[not_valid_view] = -1
|
||||
result = {
|
||||
'keypoints3d': keypoints3d,
|
||||
'indices': indices,
|
||||
'keypoints2d': k2d
|
||||
}
|
||||
return result, indices
|
||||
|
||||
@staticmethod
|
||||
def _indices_from_affinity(dimGroups, affinit_row, assigned, visited, nViews):
|
||||
proposals = []
|
||||
indices = np.zeros((nViews), dtype=np.int) - 1
|
||||
for nv in range(nViews):
|
||||
start, end = dimGroups[nv], dimGroups[nv+1]
|
||||
block = affinit_row[start:end]
|
||||
to_select = np.where((block>0.1) & \
|
||||
(~assigned[start:end]) & \
|
||||
(~visited[start:end]))[0]
|
||||
if to_select.shape[0] == 1:
|
||||
# 只有唯一的一个候选
|
||||
indices[nv] = to_select[0]
|
||||
elif to_select.shape[0] > 1:
|
||||
to_select_sort = sorted(to_select, key=lambda x:-block[x])
|
||||
indices[nv] = to_select_sort[0]
|
||||
for select_id in to_select_sort[1:]:
|
||||
proposals.append((nv, select_id, block[select_id]))
|
||||
elif to_select.shape[0] == 0:
|
||||
# empty
|
||||
pass
|
||||
return indices, proposals
|
||||
|
||||
def _check_indices(self, indices):
|
||||
return (indices > -1).sum() >= self.cfg.triangulate.min_view_body
|
||||
|
||||
def _simple_associate2d_triangulate(self, affinity, keypoints, cameras, assigned=None):
|
||||
# sum1 = affinity.sum(axis=1)
|
||||
# 注意:这里的排序应该是对每个视角,挑选最大的一个
|
||||
affinity_sum, dimGroups, views = self._prepare_associate(affinity, keypoints)
|
||||
nViews = len(keypoints)
|
||||
n2d = affinity.shape[0]
|
||||
# the assigned results of each person
|
||||
if assigned is None:
|
||||
assigned = np.zeros(n2d, dtype=np.bool)
|
||||
visited = np.zeros(n2d, dtype=np.bool)
|
||||
sortidx = np.argsort(-affinity_sum)
|
||||
k3dresults = []
|
||||
for idx in sortidx:
|
||||
if assigned[idx]:continue
|
||||
log('[Tri] Visited view{}: {}'.format(views[idx], idx-dimGroups[views[idx]]))
|
||||
affinit_row = affinity[idx]
|
||||
indices, proposals = self._indices_from_affinity(dimGroups, affinit_row, assigned, visited, nViews)
|
||||
# 注意:要再生成所有的proposal之后再设置visited
|
||||
visited[idx] = True
|
||||
if not self._check_indices(indices):continue
|
||||
# 只考虑有候选的;不考虑移除某个视角的
|
||||
log('[Tri] First try to triangulate of {}'.format(indices))
|
||||
indices_origin = indices.copy()
|
||||
result, indices = self.try_to_triangulate(keypoints, cameras, indices)
|
||||
if not self._check_indices(indices):
|
||||
# if the proposals is valid
|
||||
if len(proposals) > 0:
|
||||
proposals.sort(key=lambda x:-x[2])
|
||||
for (nviews, select_id, conf) in proposals:
|
||||
indices = indices_origin.copy()
|
||||
indices[nviews] = select_id
|
||||
log('[Tri] Max fail, then try to triangulate of {}'.format(indices))
|
||||
result, indices = self.try_to_triangulate(keypoints, cameras, indices)
|
||||
if self._check_indices(indices):
|
||||
break
|
||||
else:
|
||||
# overall proposals, not find any valid
|
||||
continue
|
||||
else:
|
||||
continue
|
||||
for nv in range(nViews):
|
||||
if indices[nv] == -1:
|
||||
continue
|
||||
assigned[indices[nv]+dimGroups[nv]] = True
|
||||
result['id'] = -1
|
||||
k3dresults.append(result)
|
||||
return k3dresults
|
||||
|
||||
def _check_speed(self, previous, current, verbo=False):
|
||||
conf = np.sqrt(previous[:, -1] * current[:, -1])
|
||||
conf[conf < self.cfg.triangulate.min_conf_3d] = 0.
|
||||
dist = np.linalg.norm(previous[:, :3] - current[:, :3], axis=-1)
|
||||
conf_mean = (conf * dist).sum()/(1e-5 + conf.sum()) * 1000
|
||||
if verbo:
|
||||
log('Track distance of each joints:')
|
||||
print(dist)
|
||||
print(conf_mean)
|
||||
return conf_mean < self.cfg.triangulate.dist_track
|
||||
|
||||
def _simple_associate2d3d_triangulate(self, keypoints3d, affinity, keypoints, dimGroups, cameras):
|
||||
nViews = len(keypoints)
|
||||
n2d = affinity.shape[0]
|
||||
# the assigned results of each person
|
||||
assigned = np.zeros(n2d, dtype=np.bool)
|
||||
visited = np.zeros(n2d, dtype=np.bool)
|
||||
affinity_sum = affinity.sum(axis=0)
|
||||
sortidx = np.argsort(-affinity_sum)
|
||||
k3dresults = []
|
||||
for idx3d in sortidx:
|
||||
log('[Tri] Visited 3D {}'.format(self.prev_ids[idx3d]))
|
||||
affinit_row = affinity[:, idx3d]
|
||||
indices, proposals = self._indices_from_affinity(dimGroups, affinit_row, assigned, visited, nViews)
|
||||
if not self._check_indices(indices):continue
|
||||
# 只考虑有候选的;不考虑移除某个视角的
|
||||
log('[Tri] First try to triangulate of {}'.format(indices))
|
||||
indices_origin = indices.copy()
|
||||
result, indices = self.try_to_triangulate(keypoints, cameras, indices, previous=keypoints3d[idx3d])
|
||||
|
||||
if not (self._check_indices(indices) and self._check_speed(keypoints3d[idx3d], result['keypoints3d'])):
|
||||
# if the proposals is valid
|
||||
previous = keypoints3d[idx3d]
|
||||
# select the best keypoints of each view
|
||||
previous_proj = project_points(previous, cameras['P'])
|
||||
dist_all = np.zeros((previous_proj.shape[0],)) + 999.
|
||||
indices_all = np.zeros((previous_proj.shape[0],), dtype=int)
|
||||
for nv in range(previous_proj.shape[0]):
|
||||
dist = np.linalg.norm(previous_proj[nv, :, :2][None] - keypoints[nv][:, :, :2], axis=-1)
|
||||
conf = (previous[..., -1] > 0.1)[None] & (keypoints[nv][:, :, -1] > 0.1)
|
||||
dist_mean = (dist * conf).sum(axis=-1) / (1e-5 + conf.sum(axis=-1))
|
||||
dist_all[nv] = dist_mean.min()
|
||||
indices_all[nv] = dist_mean.argmin()
|
||||
want_view = dist_all.argsort()[:self.cfg.triangulate.min_view_body]
|
||||
# TODO: add proposal
|
||||
proposal = (want_view, indices_all[want_view], -dist_all[want_view])
|
||||
proposals = [proposal]
|
||||
if len(proposals) > 0:
|
||||
proposals.sort(key=lambda x:-x[2])
|
||||
for (nv, select_id, conf) in proposals:
|
||||
indices = np.zeros_like(indices_origin) - 1
|
||||
indices[nv] = select_id
|
||||
log('[Tri] Max fail, then try to triangulate of {}'.format(indices))
|
||||
result, indices = self.try_to_triangulate(keypoints, cameras, indices, previous=keypoints3d[idx3d])
|
||||
if (self._check_indices(indices) and self._check_speed(keypoints3d[idx3d], result['keypoints3d'])):
|
||||
break
|
||||
else:
|
||||
# overall proposals, not find any valid
|
||||
mywarn('[Tri] {} Track fail after {} proposal'.format(idx3d, len(proposals)))
|
||||
import ipdb; ipdb.set_trace()
|
||||
continue
|
||||
else:
|
||||
mywarn('[Tri] Track fail {}'.format(indices))
|
||||
self._check_speed(keypoints3d[idx3d], result['keypoints3d'], verbo=True)
|
||||
continue
|
||||
log('[Tri] finally used indices: {}'.format(indices))
|
||||
for nv in range(nViews):
|
||||
if indices[nv] == -1:
|
||||
continue
|
||||
assigned[indices[nv]+dimGroups[nv]] = True
|
||||
result['id'] = self.prev_ids[idx3d]
|
||||
k3dresults.append(result)
|
||||
return k3dresults, assigned
|
||||
|
||||
def associate(self, cameras, keypoints):
|
||||
keypoints = self.undistort(keypoints, cameras)
|
||||
for kpts in keypoints:
|
||||
conf = kpts[..., -1]
|
||||
conf[conf < self.cfg.min_conf] = 0.
|
||||
if len(self.prev_ids) > 0:
|
||||
# naive track
|
||||
with Timer('affinity 2d'):
|
||||
affinity2d2d, dimGroups = self.distance.calculate_affinity_MxM(keypoints, cameras)
|
||||
with Timer('affinity 3d'):
|
||||
affinity2d3d = self.distance._calculate_affinity_MxN(self.prev_keypoints, keypoints, cameras)
|
||||
affinity_comp = np.vstack([
|
||||
np.hstack([affinity2d2d, affinity2d3d]),
|
||||
np.hstack([affinity2d3d.T, np.eye(len(self.prev_ids))])
|
||||
])
|
||||
with Timer('svt'):
|
||||
affinity2d2d_2d3d = self.distance.low_rank_optimization(
|
||||
affinity_comp,
|
||||
dimGroups.tolist() + [dimGroups[-1] + len(self.prev_ids)],
|
||||
vis=False)
|
||||
# 先associate2d 3d
|
||||
affinity2d3d = affinity2d2d_2d3d[:affinity2d2d.shape[0], affinity2d2d.shape[1]:]
|
||||
with Timer('associate 3d'):
|
||||
k3dresults, assigned = self._simple_associate2d3d_triangulate(self.prev_keypoints, affinity2d3d, keypoints, dimGroups, cameras)
|
||||
# 再associate2d 2d
|
||||
with Timer('associate 2d'):
|
||||
affinity2d2d = affinity2d2d_2d3d[:affinity2d2d.shape[0], :affinity2d2d.shape[1]]
|
||||
match_results = self._simple_associate2d_triangulate(affinity2d2d, keypoints, cameras, assigned=assigned)
|
||||
match_results = k3dresults + match_results
|
||||
else:
|
||||
affinity2d2d, dimGroups = self.distance.calculate_affinity_MxM(keypoints, cameras)
|
||||
affinity2d2d = self.distance.low_rank_optimization(affinity2d2d, dimGroups)
|
||||
# 直接associate2d
|
||||
match_results = self._simple_associate2d_triangulate(affinity2d2d, keypoints, cameras)
|
||||
return match_results
|
||||
|
||||
class TrackBase:
|
||||
# 这个类用于维护一般的track操作
|
||||
# 主要提供的接口:
|
||||
# 1. add
|
||||
# 2. remove
|
||||
# 3. smooth
|
||||
# 4. naive fit
|
||||
def __init__(self, cfg) -> None:
|
||||
self.cfg = cfg
|
||||
self.kintree = np.array(cfg.kintree)
|
||||
self.max_id = 0
|
||||
self.current_frame = -1
|
||||
self.record = {}
|
||||
|
||||
def update_frame(self, frame):
|
||||
# remove the results that are not in the frame
|
||||
self.current_frame = frame
|
||||
remove_id = []
|
||||
for pid, record in self.record.items():
|
||||
if frame - record['frames'][-1] > self.cfg.max_missing:
|
||||
mywarn('[Track] remove track {} with frames {}'.format(pid, record['frames']))
|
||||
remove_id.append(pid)
|
||||
for pid in remove_id:
|
||||
self.record.pop(pid)
|
||||
return True
|
||||
|
||||
def query_current(self, ret_final=False):
|
||||
# return the results that are in the frame
|
||||
prevs = []
|
||||
for pid, record in self.record.items():
|
||||
k3d = record['records'][-1]
|
||||
valid = k3d[:, -1] > 0.1
|
||||
if ret_final:
|
||||
# 判断一下valid range
|
||||
k3d_valid = k3d[valid]
|
||||
flag = (k3d_valid[:, 0] > self.cfg.final_ranges[0][0]) & \
|
||||
(k3d_valid[:, 0] < self.cfg.final_ranges[1][0]) & \
|
||||
(k3d_valid[:, 1] > self.cfg.final_ranges[0][1]) & \
|
||||
(k3d_valid[:, 1] < self.cfg.final_ranges[1][1]) & \
|
||||
(k3d_valid[:, 2] > self.cfg.final_ranges[0][2]) & \
|
||||
(k3d_valid[:, 2] < self.cfg.final_ranges[1][2])
|
||||
if flag.sum() < 5:
|
||||
continue
|
||||
prevs.append({
|
||||
'id': pid,
|
||||
'keypoints3d': record['records'][-1],
|
||||
'ages': len(record['frames'])
|
||||
})
|
||||
if ret_final:
|
||||
prevs.sort(key=lambda x:-x['ages'])
|
||||
prevs = prevs[:self.cfg.final_max_person]
|
||||
prevs.sort(key=lambda x:x['id'])
|
||||
return prevs
|
||||
|
||||
def add_track(self, res):
|
||||
# add a new track
|
||||
pid = self.max_id
|
||||
res['id'] = pid
|
||||
self.record[pid] = {
|
||||
'frames': [self.current_frame],
|
||||
'records': [res['keypoints3d']]
|
||||
}
|
||||
self.max_id += 1
|
||||
|
||||
def update_track(self, res):
|
||||
pid = res['id']
|
||||
N_UPDATE_LENGTH = 10
|
||||
if len(self.record[pid]['frames']) >= N_UPDATE_LENGTH and len(self.record[pid]['frames']) % N_UPDATE_LENGTH == 0:
|
||||
# 更新骨长
|
||||
# (nFrames, nJoints, 4)
|
||||
history = np.stack(self.record[pid]['records'])
|
||||
left = history[:, self.kintree[:, 0]]
|
||||
right = history[:, self.kintree[:, 1]]
|
||||
conf = np.minimum(left[..., -1], right[..., -1])
|
||||
conf[conf < 0.1] = 0.
|
||||
limb_length = np.linalg.norm(left[..., :3] - right[..., :3], axis=-1)
|
||||
limb_mean = (conf * limb_length).sum(axis=0)/(1e-5 + conf.sum(axis=0))
|
||||
conf_mean = conf.sum(axis=0)
|
||||
log('[Track] Update limb length of {} to \n {}'.format(pid, limb_mean))
|
||||
self.record[pid]['limb_length'] = (limb_mean, conf_mean)
|
||||
k3d = res['keypoints3d']
|
||||
if 'limb_length' in self.record[pid].keys():
|
||||
left = k3d[self.kintree[:, 0]]
|
||||
right = k3d[self.kintree[:, 1]]
|
||||
limb_now = np.linalg.norm(left[:, :3] - right[:, :3], axis=-1)
|
||||
limb_mean, conf_mean = self.record[pid]['limb_length']
|
||||
not_valid = ((limb_now > limb_mean * 1.5) | (limb_now < limb_mean * 0.5)) & (conf_mean > 0.1)
|
||||
if not_valid.sum() > 0:
|
||||
leaf = self.kintree[not_valid, 1]
|
||||
res['keypoints3d'][leaf] = 0.
|
||||
mywarn('[Track] {} remove {} joints'.format(pid, leaf))
|
||||
mywarn('[Track] mean: {}'.format(limb_mean[not_valid]))
|
||||
mywarn('[Track] current: {}'.format(limb_now[not_valid]))
|
||||
|
||||
self.record[pid]['frames'].append(self.current_frame)
|
||||
self.record[pid]['records'].append(res['keypoints3d'])
|
||||
|
||||
def track(self, match_results):
|
||||
wo_id_results = [r for r in match_results if r['id'] == -1]
|
||||
w_id_results = [r for r in match_results if r['id'] != -1]
|
||||
wo_id_results.sort(key=lambda x:-(x['indices']!=-1).sum())
|
||||
for res in wo_id_results:
|
||||
self.add_track(res)
|
||||
for res in w_id_results:
|
||||
self.update_track(res)
|
||||
return w_id_results + wo_id_results
|
||||
|
||||
class MatchAndTrack():
|
||||
def __init__(self, cfg_match, cfg_track) -> None:
|
||||
self.matcher = MatchBase(cfg_match)
|
||||
self.tracker = TrackBase(cfg_track)
|
||||
|
||||
def __call__(self, cameras, keypoints, meta):
|
||||
frame = meta['frame']
|
||||
# 1. query the previous frame
|
||||
self.tracker.update_frame(frame)
|
||||
previous = self.tracker.query_current()
|
||||
# 2. associate the current frame
|
||||
self.matcher.set_previous(previous)
|
||||
match_results = self.matcher.associate(cameras, keypoints)
|
||||
# 3. update the tracker
|
||||
self.tracker.track(match_results)
|
||||
results = self.tracker.query_current(ret_final=True)
|
||||
pids = [p['id'] for p in results]
|
||||
if len(pids) > 0:
|
||||
keypoints3d = np.stack([p['keypoints3d'] for p in results])
|
||||
else:
|
||||
keypoints3d = []
|
||||
log('[Match&Triangulate] Current ID: {}'.format(pids))
|
||||
return {'results': results, 'keypoints3d': keypoints3d, 'pids': pids}
|
@ -98,6 +98,7 @@ class Optimizer:
|
||||
for key, val in loss.items():
|
||||
self.used_infos.extend(val.key_from_infos)
|
||||
self.used_infos = list(set(self.used_infos))
|
||||
self.iter = 0
|
||||
|
||||
def log_loss(self, iter_, closure, print_loss=False):
|
||||
if iter_ % 10 == 0 or print_loss:
|
||||
@ -138,10 +139,13 @@ class Optimizer:
|
||||
infos_used = {key: infos[key] for key in self.used_infos if key in infos.keys()}
|
||||
infos_used = dict_of_numpy_to_tensor(infos_used, device=device)
|
||||
|
||||
log('[{}] Optimize {}'.format(self.__class__.__name__, self.optimize_keys))
|
||||
optimize_keys = self.optimize_keys
|
||||
if isinstance(optimize_keys[0], list):
|
||||
optimize_keys = optimize_keys[self.iter]
|
||||
log('[{}] Optimize {}'.format(self.__class__.__name__, optimize_keys))
|
||||
log('[{}] Loading {}'.format(self.__class__.__name__, self.used_infos))
|
||||
opt_params = {}
|
||||
for key in self.optimize_keys:
|
||||
for key in optimize_keys:
|
||||
if key in infos.keys(): # 优化的参数
|
||||
opt_params[key] = infos_used[key]
|
||||
elif key in params.keys():
|
||||
@ -160,7 +164,7 @@ class Optimizer:
|
||||
ret = {
|
||||
'params': params
|
||||
}
|
||||
for key in self.optimize_keys:
|
||||
for key in optimize_keys:
|
||||
if key in infos.keys():
|
||||
ret[key] = opt_params[key]
|
||||
ret = dict_of_tensor_to_numpy(ret)
|
||||
|
@ -26,6 +26,8 @@ class MultiStage:
|
||||
def load_final(self):
|
||||
at_finals = {}
|
||||
for key, val in self._at_final.items():
|
||||
if 'module' not in val.keys():
|
||||
continue
|
||||
if val['module'] == 'skip':
|
||||
mywarn('Stage {} is not used'.format(key))
|
||||
continue
|
||||
@ -35,7 +37,7 @@ class MultiStage:
|
||||
at_finals[key] = model
|
||||
self.model_finals = at_finals
|
||||
|
||||
def __init__(self, output, at_step, at_final) -> None:
|
||||
def __init__(self, output, at_step, at_final, keys_keep=[], timer=True) -> None:
|
||||
log('[{}] writing the results to {}'.format(self.__class__.__name__, output))
|
||||
at_steps = {}
|
||||
for key, val in at_step.items():
|
||||
@ -50,12 +52,15 @@ class MultiStage:
|
||||
self.model_steps = at_steps
|
||||
self._at_step = at_step
|
||||
self._at_final = at_final
|
||||
self.timer = Timer(at_steps, verbose=False)
|
||||
self.keys_keep = keys_keep
|
||||
self.timer = Timer(at_steps, verbose=timer)
|
||||
|
||||
def at_step(self, data, index):
|
||||
ret = {}
|
||||
if 'meta' in data:
|
||||
ret['meta'] = data['meta']
|
||||
for key in self.keys_keep:
|
||||
ret[key] = data[key]
|
||||
timer = {}
|
||||
for key, model in self.model_steps.items():
|
||||
for k in self._at_step[key].get('key_keep', []):
|
||||
@ -104,6 +109,7 @@ class MultiStage:
|
||||
for key, model in self.model_finals.items():
|
||||
for iter_ in range(self._at_final[key].get('repeat', 1)):
|
||||
inputs = {}
|
||||
model.iter = iter_
|
||||
for k in self._at_final[key].get('key_from_data', []):
|
||||
inputs[k] = data[k]
|
||||
for k in self._at_final[key].get('key_from_previous', []):
|
||||
@ -117,6 +123,7 @@ class MultiStage:
|
||||
ret.update(output)
|
||||
return ret
|
||||
|
||||
|
||||
class StageForFittingEach:
|
||||
def __init__(self, stages, keys_keep) -> None:
|
||||
stages_ = {}
|
||||
@ -132,6 +139,7 @@ class StageForFittingEach:
|
||||
|
||||
def __call__(self, results, **ret):
|
||||
for pid, result in results.items():
|
||||
print('[{}] Optimize person {} with {} frames'.format(self.__class__.__name__, pid, len(result['frames'])))
|
||||
ret0 = {}
|
||||
ret0.update(ret)
|
||||
for key, stage in self.stages.items():
|
||||
|
@ -26,8 +26,9 @@ class CheckFramePerson:
|
||||
}
|
||||
|
||||
class CollectMultiPersonMultiFrame:
|
||||
def __init__(self, key) -> None:
|
||||
def __init__(self, key, min_frame=10) -> None:
|
||||
self.key = key
|
||||
self.min_frame = min_frame
|
||||
|
||||
def __call__(self, keypoints3d, pids):
|
||||
records = {}
|
||||
@ -41,6 +42,12 @@ class CollectMultiPersonMultiFrame:
|
||||
}
|
||||
records[pid]['frames'].append(frame)
|
||||
records[pid]['keypoints3d'].append(keypoints3d[frame][i])
|
||||
remove_id = []
|
||||
for pid, record in records.items():
|
||||
print('[{}] Collect person {} with {} frames'.format(self.__class__.__name__, pid, len(record['frames'])))
|
||||
record['keypoints3d'] = np.stack(record['keypoints3d']).astype(np.float32)
|
||||
if len(record['frames']) < self.min_frame:
|
||||
remove_id.append(pid)
|
||||
for pid in remove_id:
|
||||
records.pop(pid)
|
||||
return {'results': records}
|
Loading…
Reference in New Issue
Block a user