add mvmp code

This commit is contained in:
shuaiqing 2023-07-10 22:11:18 +08:00
parent a66a138314
commit bc514523cc
11 changed files with 843 additions and 76 deletions

View File

@ -26,7 +26,7 @@ class ImageDataBase:
def try_to_extract_images(self, root, value):
if not os.path.exists(os.path.join(root, value['root'])) and os.path.exists(os.path.join(root, 'videos')):
print('[{}] Cannot find the images but find the videos, try to extract it'.format(self.__class__.__name__))
for videoname in os.listdir(os.path.join(root, 'videos')):
for videoname in sorted(os.listdir(os.path.join(root, 'videos'))):
videoext = '.' + videoname.split('.')[-1]
outdir = join(root, value['root'], videoname.replace(videoext, ''))
os.makedirs(outdir, exist_ok=True)

View File

@ -174,6 +174,11 @@ class MVDataset(ImageDataBase):
self.filter = filter
if len(self.subs) == 0:
self.subs = self.meta['subs']
if len(self.subs_vis) == 1:
if self.subs_vis[0] == '_all_':
self.subs_vis = self.subs
elif self.subs_vis[0] == '_sample_4_':
self.subs_vis = [self.subs[0], self.subs[len(self.subs)//3], self.subs[(len(self.subs)*2//3)], self.subs[-1]]
self.check_frames_length()
@staticmethod
@ -266,6 +271,11 @@ class MVDataset(ImageDataBase):
def check(self, index):
raise NotImplementedError
def __str__(self) -> str:
pre = super().__str__()
pre += ''' subs_vis: {}'''.format(self.subs_vis)
return pre
class MVMP(MVDataset):
def read_annots(self, annotnames):
val = []

View File

@ -43,8 +43,11 @@ class SMPLLoader:
'body_model': self.smplmodel,
'model': self.forward}
def forward(self, params):
keypoints = self.smplmodel.keypoints(params, return_tensor=True)
def forward(self, params, ret_vertices=False):
if ret_vertices:
keypoints = self.smplmodel.vertices(params, return_tensor=True)
else:
keypoints = self.smplmodel.keypoints(params, return_tensor=True)
ret = {
'keypoints': keypoints
}

View File

@ -57,13 +57,12 @@ class VisBase:
self.count += 1
class Vis3D(VisBase):
def __init__(self, scale, lw_factor=1, name='repro', **kwargs) -> None:
def __init__(self, scale, lw_factor=1, name='vis_repro', **kwargs) -> None:
super().__init__(scale, lw_factor, name, **kwargs)
def __call__(self, images, cameras, keypoints3d=None, results=None):
# keypoints3d: (nJoints, 4)
undist = False
cameras['dist'] = np.zeros_like(cameras['dist'])
vis_all = []
for nv in range(len(images)):
if isinstance(images[nv], str): continue
@ -77,25 +76,28 @@ class Vis3D(VisBase):
if results is None:
if len(keypoints3d.shape) == 2:
keypoints_repro, depth = projectPoints(keypoints3d, {key:cameras[key][nv] for key in ['R', 'T', 'K', 'dist']})
plot_keypoints_auto(vis, keypoints_repro, pid=0, use_limb_color=False)
plot_keypoints_auto(vis, keypoints_repro, pid=0, use_limb_color=True)
else:
for pid in range(keypoints3d.shape[0]):
keypoints_repro, depth = projectPoints(keypoints3d[pid], {key:cameras[key][nv] for key in ['R', 'T', 'K', 'dist']})
plot_keypoints_auto(vis, keypoints_repro, pid=pid, use_limb_color=False)
if (depth < 0.5).all():
continue
plot_keypoints_auto(vis, keypoints_repro, pid=pid, use_limb_color=True)
else:
for res in results:
k3d = res['keypoints3d']
k3d_rt = np.dot(k3d[:, :3], camera['R'].T) + camera['T'].T
keypoints_repro, depth = projectPoints(k3d, camera)
depth = k3d_rt[..., -1]
if k3d.shape[0] == 1:
x, y = keypoints_repro[0,0], keypoints_repro[0,1]
# if res['id'] == 6:
plot_cross(vis, x, y, col=get_rgb(res['id']), lw=self.lw, width=self.lw * 5)
elif k3d.shape[0] == 2: # limb
x1, y1 = keypoints_repro[0,0], keypoints_repro[0,1]
x2, y2 = keypoints_repro[1,0], keypoints_repro[1,1]
cv2.line(vis, (int(x1), int(y1)), (int(x2), int(y2)), get_rgb(res['id']), self.lw)
else:
plot_keypoints_auto(vis, keypoints_repro, pid=res['id'], use_limb_color=False, lw_factor=self.lw)
plot_keypoints_auto(vis, keypoints_repro, pid=res['id'], use_limb_color=True, lw_factor=self.lw)
cv2.putText(vis, '{}'.format(res['id']), (int(keypoints_repro[0,0]), int(keypoints_repro[0,1])),
cv2.FONT_HERSHEY_SIMPLEX, 2, get_rgb(res['id']), self.lw)
vis_all.append(vis)
@ -255,6 +257,8 @@ class Vis2D(VisBase):
plot_bbox(vis_, bbox[nv], 0)
else:
for pid in range(k2d.shape[0]):
plot_keypoints_auto(vis_, k2d[pid], pid=pid, use_limb_color=False)
plot_keypoints_auto(vis_, k2d[pid], pid=pid, use_limb_color=True)
if bbox is not None:
plot_bbox(vis_, bbox[nv][pid], pid=pid)
vis.append(vis_)
self.merge_and_write(vis)

View File

@ -38,7 +38,7 @@ class Render(VisBase):
self.merge_and_write([ret])
class Render_multiview(VisBase):
def __init__(self, view_list=[], name='render', model_name='body_model', render_mode='image', backend='pyrender', shape=[-1,-1], scale=1., **kwargs):
def __init__(self, view_list=[], name='vis_render', model_name='body_model', render_mode='image', backend='pyrender', shape=[-1,-1], scale=1., **kwargs):
self.scale3d = scale
super().__init__(name=name, scale=1., **kwargs)
self.view_list = view_list
@ -46,65 +46,65 @@ class Render_multiview(VisBase):
self.model_name = model_name
self.shape = shape
def render_(self, vertices, faces, cameras, imgnames):
for nf, img in enumerate(tqdm(imgnames, desc=self.name)):
mv_ret = []
if not isinstance(img, list):
img = [img]
for nv in self.view_list:
basename = os.path.basename(img[nv])
assert os.path.exists(img[nv]), img[nv]
vis = cv2.imread(img[nv])
vis = cv2.resize(vis, None, fx=self.scale3d, fy=self.scale3d)
vert = vertices[nf]
meshes = {}
if vert.ndim == 2:
meshes[0] = {
'vertices': vert,
def render_frame(self, imgname, vert, faces, cameras, pids=[]):
mv_ret = []
if not isinstance(imgname, list):
imgname = [imgname]
for nv in self.view_list:
basename = os.path.basename(imgname[nv])
assert os.path.exists(imgname[nv]), imgname[nv]
vis = cv2.imread(imgname[nv])
vis = cv2.resize(vis, None, fx=self.scale3d, fy=self.scale3d)
meshes = {}
if vert.ndim == 2:
meshes[0] = {
'vertices': vert,
'faces': faces,
'id': 0,
'name': 'human_{}'.format(0)
}
elif vert.ndim == 3:
if len(pids) == 0:
pids = list(range(vert.shape[0]))
for ipid, pid in enumerate(pids):
meshes[pid] = {
'vertices': vert[ipid],
'faces': faces,
'id': 0,
'name': 'human_{}'.format(0)
'id': pid,
'name': 'human_{}'.format(pid)
}
elif vert.ndim == 3:
for pid in range(vert.shape[0]):
meshes[pid] = {
'vertices': vert[pid],
'faces': faces,
'id': pid,
'name': 'human_{}'.format(pid)
}
if cameras['K'].ndim == 4:
K = cameras['K'][nf][nv].copy()
K[:2, :] *= self.scale
R = cameras['R'][nf][nv]
T = cameras['T'][nf][nv]
else:
K = cameras['K'][nv].copy()
K[:2, :] *= self.scale3d
R = cameras['R'][nv]
T = cameras['T'][nv]
# add ground
if self.render_mode == 'ground':
from easymocap.visualize.geometry import create_ground
ground = create_ground(
center=[0, 0, -0.05], xdir=[1, 0, 0], ydir=[0, 1, 0], # 位置
step=1, xrange=10, yrange=10, # 尺寸
white=[1., 1., 1.], black=[0.5,0.5,0.5], # 颜色
two_sides=True
)
meshes[1001] = ground
vis = np.zeros((self.shape[0], self.shape[1], 3), dtype=np.uint8) + 255
focal = min(self.shape) * 1.2
K = np.array([
[focal,0,vis.shape[0]/2],
[0,focal,vis.shape[1]/2],
[0,0,1]])
ret = plot_meshes(vis, meshes, K, R, T, mode='rgb')
else:
ret = plot_meshes(vis, meshes, K, R, T, mode=self.render_mode)
ret = add_logo(ret)
mv_ret.append(ret)
self.merge_and_write(mv_ret)
K = cameras['K'][nv].copy()
K[:2, :] *= self.scale3d
R = cameras['R'][nv]
T = cameras['T'][nv]
# add ground
if self.render_mode == 'ground':
from easymocap.visualize.geometry import create_ground
ground = create_ground(
center=[0, 0, -0.05], xdir=[1, 0, 0], ydir=[0, 1, 0], # 位置
step=1, xrange=10, yrange=10, # 尺寸
white=[1., 1., 1.], black=[0.5,0.5,0.5], # 颜色
two_sides=True
)
meshes[1001] = ground
vis = np.zeros((self.shape[0], self.shape[1], 3), dtype=np.uint8) + 255
focal = min(self.shape) * 1.2
K = np.array([
[focal,0,vis.shape[0]/2],
[0,focal,vis.shape[1]/2],
[0,0,1]])
ret = plot_meshes(vis, meshes, K, R, T, mode='rgb')
else:
ret = plot_meshes(vis, meshes, K, R, T, mode=self.render_mode)
ret = add_logo(ret)
mv_ret.append(ret)
self.merge_and_write(mv_ret)
def render_(self, vertices, faces, cameras, imgnames, pids=[]):
for nf, imgname in enumerate(tqdm(imgnames, desc=self.name)):
vert = vertices[nf]
camera_ = {cam: val[nf] for cam, val in cameras.items()}
self.render_frame(imgname, vert, faces, camera_, pids=pids)
def __call__(self, params, cameras, imgnames, **kwargs):
body_model = kwargs[self.model_name]
@ -112,6 +112,33 @@ class Render_multiview(VisBase):
faces = body_model.faces
self.render_(vertices, faces, cameras, imgnames)
class RenderAll_multiview(Render_multiview):
def __call__(self, results, cameras, imgnames, meta, **kwargs):
body_model = kwargs[self.model_name]
for index in tqdm(meta['index'], desc=self.name):
results_frame = []
for pid, result in results.items():
if index >= result['frames'][0] and index <= result['frames'][-1]:
frame_rel = result['frames'].index(index)
results_frame.append({
'id': pid,
})
for key in ['Rh', 'Th', 'poses', 'shapes']:
if result['params'][key].shape[0] == 1:
results_frame[-1][key] = result['params'][key]
else:
results_frame[-1][key] = result['params'][key][frame_rel:frame_rel+1]
params = {}
for key in results_frame[0].keys():
if key != 'id':
params[key] = np.concatenate([res[key] for res in results_frame], axis=0)
pids = [res['id'] for res in results_frame]
vertices = body_model.vertices(params, return_tensor=False)
camera_ = {cam: val[index] for cam, val in cameras.items()}
self.render_frame(imgnames[index], vertices, body_model.faces, camera_, pids=pids)
# self.render_frame(vertices, body_model.faces, camera_, imgnames[index], pids=pids)
# self.render_frame(vertices, body_model.faces, camera_, imgnames[index], pids=pids)
class Render_nocam:
def __init__(self, scale=0.5, backend='pyrender',view_list=[0]) -> None:
self.name = 'render'

View File

@ -1,5 +1,5 @@
import os
from easymocap.mytools.file_utils import write_keypoints3d, write_smpl
from easymocap.mytools.file_utils import write_keypoints3d, write_smpl, write_vertices
from easymocap.annotator.file_utils import save_annot
from os.path import join
from tqdm import tqdm
@ -66,8 +66,10 @@ class Write2D:
save_annot(dumpname, annots)
class WriteSMPL:
def __init__(self, name='smpl') -> None:
def __init__(self, name='smpl', write_vertices=False) -> None:
self.name = name
# TODO: make available
self.write_vertices = write_vertices
def __call__(self, params=None, results=None, meta=None, model=None):
results_all = []
@ -91,7 +93,14 @@ class WriteSMPL:
param = results_frame[-1]
pred = model(param)['keypoints'][0]
results_frame[-1]['keypoints3d'] = pred
if self.write_vertices:
vert = model(param, ret_vertices=True)['keypoints'][0]
results_frame[-1]['vertices'] = vert
write_smpl(join(self.output, self.name, '{:06d}.json'.format(meta['frame'][index])), results_frame)
write_keypoints3d(join(self.output, 'keypoints3d', '{:06d}.json'.format(meta['frame'][index])), results_frame)
if self.write_vertices:
write_vertices(join(self.output, 'vertices', '{:06d}.json'.format(meta['frame'][index])), results_frame)
for res in results_frame:
res.pop('vertices')
results_all.append(results_frame)
return {'results_perframe': results_all}

View File

@ -0,0 +1,137 @@
import numpy as np
import itertools
from easymocap.mytools.triangulator import batch_triangulate, project_points
from easymocap.mytools.debug_utils import log, mywarn, myerror
def project_and_distance(kpts3d, RT, kpts2d):
kpts_proj = project_points(kpts3d, RT)
# 1. distance between input and projection
conf = (kpts3d[None, :, -1] > 0) * (kpts2d[:, :, -1] > 0)
dist = np.linalg.norm(kpts_proj[..., :2] - kpts2d[..., :2], axis=-1) * conf
return kpts_proj[..., -1], dist, conf
def remove_outview(kpts2d, out_view, debug):
if len(out_view) == 0:
return False
elif len(out_view) == 1:
# directly remove the outlier view
outv = out_view[0]
if debug:
log('[triangulate] remove outview: {}'.format(outv))
else:
# only remove the first outlier view
outv = out_view[0]
if debug:
mywarn('[triangulate] remove first outview: {} from {}'.format(outv, out_view))
kpts2d[outv] = 0.
return True
def remove_outjoint(kpts2d, Pall, out_joint, dist_max, dist_track, min_view=3, previous=None, debug=False):
MIN_CONF_3D = 0.1
if len(out_joint) == 0:
return False
if debug:
mywarn('[triangulate] remove outjoint: {}'.format(out_joint))
nviews = np.arange(kpts2d.shape[0])
for nj in out_joint:
valid = np.where(kpts2d[:, nj, -1] > 0)[0]
if len(valid) < min_view:
# if less than 3 visible view, set these unvisible
kpts2d[:, nj, -1] = 0
continue
kpts_nj = kpts2d[valid, nj]
Pall_nj = Pall[valid]
view_index = nviews[valid]
view_local = np.arange(valid.shape[0])
comb_views = np.array(list(itertools.combinations(view_local.tolist(), min_view))).T
comb_kpts = kpts_nj[comb_views]
comb_Pall = Pall_nj[comb_views]
comb_k3d = batch_triangulate(comb_kpts, comb_Pall)
depth, dist, conf = project_and_distance(comb_k3d, comb_Pall, comb_kpts)
# 依次选择置信度最高的
sort_by_conf = (-comb_kpts[..., -1].sum(axis=0)).argsort()
flag = (dist[:, sort_by_conf]<dist_max).all(axis=0)
if previous is not None:
dist3d = np.linalg.norm(previous[[nj], :3] - comb_k3d[:, :3], axis=-1) * 1000
flag = flag & ((dist3d[sort_by_conf] < dist_track) | (previous[nj, 3] < MIN_CONF_3D))
valid = sort_by_conf[flag]
if valid.shape[0] == 0:
if debug:
mywarn('[triangulate] cannot find valid combinations of joint {}'.format(nj))
kpts2d[:, nj, -1] = 0
else:
# check all 2D keypoints
k3d = comb_k3d[valid[0]].reshape(1, 4)
depth, dist, conf = project_and_distance(k3d, Pall_nj, kpts_nj[:, None])
valid_view = view_index[np.where(dist < dist_max)[0]]
# 这里需要尝试三角化一下,如果按照新的三角化之后误差更大的话,不应该用新的,而是使用老的
if debug:
log('[triangulate] {} find valid combinations of joint: {}'.format(nj, valid_view))
log('[triangulate] {} distance 2d pixel (max {}): {}'.format(nj, dist_max, dist[np.where(dist < dist_max)[0], 0]))
if previous is not None and previous[nj, 3] > MIN_CONF_3D:
_dist3d = np.linalg.norm(previous[[nj], :3] - k3d[:, :3], axis=-1) * 1000
log('[triangulate] {} distance 3d mm (max {}): {}'.format(nj, dist_track, _dist3d))
if _dist3d > dist_track:
import ipdb; ipdb.set_trace()
set0 = np.zeros(kpts2d.shape[0])
set0[valid_view] = 1.
kpts2d[:, nj, -1] *= set0
return True
def iterative_triangulate(kpts2d, RT,
min_conf=0.1, min_view=3, min_joints=3, dist_max=0.05, dist_track=50,
thres_outlier_view=0.4, thres_outlier_joint=0.4, debug=True,
previous=None,
**kwargs):
kpts2d = kpts2d.copy()
conf = kpts2d[..., -1]
kpts2d[conf<min_conf] = 0.
if debug:
log('[triangulate] kpts2d: {}'.format(kpts2d.shape))
while True:
# 0. triangulate and project
kpts3d = batch_triangulate(kpts2d, RT, min_view=min_view)
depth, dist, conf = project_and_distance(kpts3d, RT, kpts2d)
# 2. find the outlier
vv, jj = np.where(dist > dist_max)
if vv.shape[0] < 1:
if debug:
log('[triangulate] Not found outlier, break')
break
ratio_outlier_view = (dist>dist_max).sum(axis=1)/(1e-5 + (conf > 0.).sum(axis=1))
ratio_outlier_joint = (dist>dist_max).sum(axis=0)/(1e-5 + (conf > 0.).sum(axis=0))
# 3. find the totally wrong detections
out_view = np.where(ratio_outlier_view > thres_outlier_view)[0]
error_joint = dist.sum(axis=0)/(1e-5 + (conf > 0.).sum(axis=0))
# for joint, we calculate the mean distance of this joint
out_joint = np.where((ratio_outlier_joint > thres_outlier_joint) & (error_joint > dist_max))[0]
if len(out_view) > 1:
# TODO: 如果全都小于0的话相当于随机丢了应该增加视角的置信度
# 应该生成多个proposal然后递归的去寻找
# 不应该直接抛弃的
# 如果有previous的情况应该用previous来作为判断标准
# cfg = dict(min_conf=min_conf, min_view=min_view, min_joints=min_joints, dist_max=dist_max, dist_track=dist_track,
# thres_outlier_view=thres_outlier_view, thres_outlier_joint=0.4, debug=True, previous=None)
if debug: mywarn('[triangulate] More than one outlier view: {}, stop triangulation.'.format(ratio_outlier_view))
return kpts3d, np.zeros_like(kpts2d)
if debug: mywarn('[triangulate] Remove outlier view give outlier ratio: {}'.format(ratio_outlier_view))
dist_view = dist.sum(axis=1)/(1e-5 + (conf > 0.).sum(axis=1))
out_view = out_view.tolist()
out_view.sort(key=lambda x:-dist_view[x])
if remove_outview(kpts2d, out_view, debug): continue
if len(out_joint) > 0:
if debug:
print(dist[:, out_joint])
mywarn('[triangulate] Remove outlier joint {} given outlier ratio: {}'.format(out_joint, ratio_outlier_joint[out_joint]))
remove_outjoint(kpts2d, RT, out_joint, dist_max, dist_track, previous=previous, debug=debug)
continue
if debug:
log('[triangulate] Directly remove {}, {}'.format(vv, jj))
kpts2d[vv, jj, -1] = 0.
if debug:
log('[triangulate] finally {} valid points, {} not valid'.format((kpts3d[..., -1]>0).sum(), np.where(kpts3d[..., -1]<=0)[0]))
if (kpts3d[..., -1]>0).sum() < min_joints:
kpts3d[..., -1] = 0.
kpts2d[..., -1] = 0.
return kpts3d, kpts2d
return kpts3d, kpts2d

View File

@ -0,0 +1,558 @@
import numpy as np
import cv2
from easymocap.mytools.camera_utils import Undistort
from easymocap.mytools.debug_utils import log, mywarn, myerror
from .iterative_triangulate import iterative_triangulate
from easymocap.mytools.triangulator import project_points
from easymocap.mytools.timer import Timer
class DistanceBase:
# 这个类用于计算affinity
# 主要基于关键点计算;未来可以考虑支持其他东西
def __init__(self, cfg) -> None:
self.cfg = cfg
def calculate_affinity_MxM(self, keypoints, cameras):
raise NotImplementedError
@staticmethod
def SimpleConstrain(dimGroups):
constrain = np.ones((dimGroups[-1], dimGroups[-1]))
for i in range(len(dimGroups)-1):
start, end = dimGroups[i], dimGroups[i+1]
constrain[start:end, start:end] = 0
N = constrain.shape[0]
constrain[range(N), range(N)] = 1
return constrain
def skew_op(x):
res = np.zeros((3, 3), dtype=x.dtype)
# 0, -z, y
res[0, 1] = -x[2, 0]
res[0, 2] = x[1, 0]
# z, 0, -x
res[1, 0] = x[2, 0]
res[1, 2] = -x[0, 0]
# -y, x, 0
res[2, 0] = -x[1, 0]
res[2, 1] = x[0, 0]
return res
def fundamental_op(K0, K1, R_0, T_0, R_1, T_1):
invK0 = np.linalg.inv(K0)
return invK0.T @ (R_0 @ R_1.T) @ K1.T @ skew_op(K1 @ R_1 @ R_0.T @ (T_0 - R_0 @ R_1.T @ T_1))
class EpipolarDistance(DistanceBase):
@staticmethod
def distance2d2d(pts0, pts1, K0, K1, R0, T0, R1, T1):
F = fundamental_op(K0, K1, R0, T0, R1, T1)
# Find epilines corresponding to points in left image (first image) and
# drawing its lines on right image
lines0 = cv2.computeCorrespondEpilines(pts0[..., :2].reshape (-1,1,2), 2, F)
# Find epilines corresponding to points in right image (second image) and
# drawing its lines on left image
lines1 = cv2.computeCorrespondEpilines(pts1[..., :2].reshape(-1,1,2), 1, F)
lines0 = lines0.reshape(pts0.shape)
lines1 = lines1.reshape(pts1.shape)
# dist: (D_v0, D_v1, nJoints)
# TODO: / sqrt(A^2 + B^2)
dist01 = np.abs(np.sum(lines0[:, None, :, :2] * pts1[None, :, :, :2], axis=-1) + lines0[:, None, :, 2])
conf = (pts0[:, None, :, 2] * pts1[None, :, :, 2]) > 0
dist10 = np.abs(np.sum(lines1[:, None, :, :2] * pts0[None, :, :, :2], axis=-1) + lines1[:, None, :, 2])
dist = np.sum(dist01 * conf + dist10.transpose(1, 0, 2) * conf, axis=-1)/(conf.sum(axis=-1) + 1e-5)/2
return dist
def vis_affinity(self, aff, dimGroups, scale=10):
aff = cv2.resize(aff, (aff.shape[1]*scale, aff.shape[0]*scale), interpolation=cv2.INTER_NEAREST)
aff_float = aff.copy()
aff = (aff * 255).astype(np.uint8)
aff = cv2.applyColorMap(aff, cv2.COLORMAP_JET)
transp = (aff_float * 255).astype(np.float32)
for dim in dimGroups[1:-1]:
cv2.line(aff, (0, dim*scale), (aff.shape[0], dim*scale), (255, 255, 255), thickness=1)
cv2.line(aff, (dim*scale, 0), (dim*scale, aff.shape[0]), (255, 255, 255), thickness=1)
cv2.line(transp, (0, dim*scale), (aff.shape[0], dim*scale), (255,), thickness=1)
cv2.line(transp, (dim*scale, 0), (dim*scale, aff.shape[0]), (255,), thickness=1)
# last line
cv2.rectangle(aff, (0, 0), (aff.shape[0]-1, aff.shape[0]-1), (0, 0, 255), thickness=1)
cv2.rectangle(transp, (0, 0), (aff.shape[0]-1, aff.shape[0]-1), (255,), thickness=1)
aff = np.dstack([aff, transp])
return aff
def calculate_affinity_MxM(self, keypoints, cameras):
# 计算一下总长度
dims = [d.shape[0] for d in keypoints]
dimGroups = np.cumsum([0] + dims)
M = dimGroups[-1]
distance = np.eye((M), dtype=np.float32)
nViews = len(keypoints)
for v0 in range(nViews-1):
# set the diag block
for v1 in range(1, nViews):
# calculate distance between (v0, v1)
if v0 >= v1:
continue
pts0 = keypoints[v0]
pts1 = keypoints[v1]
if pts0.shape[0] == 0 or pts1.shape[0] == 0:
continue
K0, K1 = cameras['K'][v0], cameras['K'][v1] # K0, K1: (3, 3)
R0, T0 = cameras['R'][v0], cameras['T'][v0]
R1, T1 = cameras['R'][v1], cameras['T'][v1]
dist = self.distance2d2d(pts0, pts1, K0, K1, R0, T0, R1, T1)
conf0 = pts0[..., -1]
conf1 = pts1[..., -1]
common_count = ((conf0[:, None] > 0) & (conf1[None] > 0)).sum(axis=-1)
common_affinity = np.sqrt(conf0[:, None] * conf1[None])
dist /= (K0[0, 0] + K1[0, 0])/2
dist[common_count < self.cfg.min_common_joints] = self.cfg.threshold * 10
aff_geo = (self.cfg.threshold - dist)/self.cfg.threshold
aff_conf = common_affinity.mean(axis=-1)
aff_compose = aff_geo * aff_conf
distance[dimGroups[v0]:dimGroups[v0+1], dimGroups[v1]:dimGroups[v1+1]] = aff_compose
distance[dimGroups[v1]:dimGroups[v1+1], dimGroups[v0]:dimGroups[v0+1]] = aff_compose.T
affinity = np.clip(distance, 0, 1)
return affinity, dimGroups
def _calculate_affinity_MxN(self, keypoints3d, keypoints, cameras):
DEPTH_NEAR = 0.5
dims = [d.shape[0] for d in keypoints]
dimGroups = np.cumsum([0] + dims)
M = dimGroups[-1]
N = keypoints3d.shape[0]
distance = np.zeros((M, N), dtype=np.float32)
nViews = len(keypoints)
kpts_proj = project_points(keypoints3d, cameras['P'], einsum='vab,pkb->vpka')
depth = kpts_proj[..., -1]
kpts_proj[depth<DEPTH_NEAR] = -10000
# TODO: constrain the depth far
affinity_all = []
for v in range(nViews):
if dims[v] == 0:
continue
focal = (cameras['K'][v][0, 0] + cameras['K'][v][1, 1])/2
# pts2d: (N, J, 3)
pts2d = keypoints[v]
# pts_repro: (N3D, J, 3)
pts_repro = kpts_proj[v]
# conf: (N2D, N3D, J)
conf = np.sqrt(pts2d[:, None, ..., -1]*keypoints3d[None, ..., -1])
diff = np.linalg.norm(pts2d[:, None, ..., :2] - pts_repro[None, ..., :2], axis=-1)
# (N2D, N3D)
diff = np.sum(diff*conf, axis=-1)/(1e-5 + np.sum(conf, axis=-1))
dist = diff / focal
aff_geo = (self.cfg.threshold_track - dist)/self.cfg.threshold_track
affinity_all.append(aff_geo)
aff = np.vstack(affinity_all)
aff = np.clip(aff, 0, 1)
return aff
def low_rank_optimization(self, affinity, dimGroups, vis=False):
if True:
import pymatchlr
observe = np.ones_like(affinity)
aff_svt = pymatchlr.matchSVT(affinity, dimGroups, self.SimpleConstrain(dimGroups), observe, self.cfg.cfg_svt)
else:
aff_svt = affinity
aff_svt[aff_svt<self.cfg.cfg_svt.aff_min] = 0.
if vis:
cv2.imwrite('debug.png', np.hstack([self.vis_affinity(affinity, dimGroups), self.vis_affinity(aff_svt, dimGroups)]))
import ipdb; ipdb.set_trace()
return aff_svt
class MatchBase:
def __init__(self, cfg) -> None:
self.cfg = cfg
if cfg.distance.mode == 'epipolar':
self.distance = EpipolarDistance(cfg.distance)
else:
raise NotImplementedError
def set_previous(self, previous):
prev_ids = [p['id'] for p in previous]
prev_keypoints = [p['keypoints3d'] for p in previous]
self.prev_ids = prev_ids
self.prev_keypoints = prev_keypoints
if len(prev_ids) > 0:
self.prev_keypoints = np.stack(prev_keypoints)
@staticmethod
def undistort(points, cameras):
nViews = len(points)
pelvis_undis = []
for nv in range(nViews):
K = cameras['K'][nv]
dist = cameras['dist'][nv]
points_nv = points[nv]
points_nv_flat = points_nv.reshape(-1, 3)
if points_nv_flat.shape[0] > 0:
points_nv_flat = Undistort.points(points_nv_flat, K, dist)
pelvis_undis.append(points_nv_flat.reshape(*points_nv.shape))
return pelvis_undis
def _prepare_associate(self, affinity, keypoints):
dimGroups = [0]
views = []
nViews = len(keypoints)
affinity_sum = np.zeros((affinity.shape[0],))
for nv in range(nViews):
dimGroups.append(dimGroups[-1] + keypoints[nv].shape[0])
views.extend([nv] * keypoints[nv].shape[0])
start, end = dimGroups[nv], dimGroups[nv+1]
if end > start:
affinity_sum += affinity[:, start:end].max(axis=-1)
return affinity_sum, dimGroups, views
def try_to_triangulate(self, keypoints, cameras, indices, previous=None):
Pall, keypoints2d = [], []
for nv in range(indices.shape[0]):
if indices[nv] == -1:
Pall.append(cameras['P'][nv])
keypoints2d.append(np.zeros((25, 3), dtype=np.float32))
# keypoints2d.append(keypoints[nv][indices[nv]])
else:
Pall.append(cameras['P'][nv])
keypoints2d.append(keypoints[nv][indices[nv]])
Pall = np.stack(Pall)
keypoints2d = np.stack(keypoints2d)
if previous is not None:
kpts_proj = project_points(previous, cameras['P'], einsum='vab,kb->vka')
# 注意,这里需要考虑深度,因为深度是已知的
# 越近的地方这个阈值应该越大,越远的地方阈值越小
# radius / depth * focal
depth = kpts_proj[..., -1]
# 超出这个track阈值的直接丢掉了这样可以保证三角化出来的一定是小于阈值的
# 如果对这个阈值有意见,应该增大这个阈值条件
radius = self.cfg.triangulate.dist_track * cameras['K'][:, 0, 0][:, None] / depth
dist = np.linalg.norm(kpts_proj[..., :2] - keypoints2d[..., :2], axis=-1)
conf = np.sqrt(kpts_proj[..., -1] * keypoints2d[..., -1]) > 0
not_track = (dist > radius) & conf
if not_track.sum() > 0:
log('[Tri] {} 2d joints not tracked'.format(not_track.sum()))
keypoints2d[not_track] = 0.
keypoints3d, k2d = iterative_triangulate(keypoints2d, Pall, previous=previous, **self.cfg.triangulate)
not_valid_view = np.where((k2d[..., -1] < 0.1).all(axis=1))[0]
indices[not_valid_view] = -1
result = {
'keypoints3d': keypoints3d,
'indices': indices,
'keypoints2d': k2d
}
return result, indices
@staticmethod
def _indices_from_affinity(dimGroups, affinit_row, assigned, visited, nViews):
proposals = []
indices = np.zeros((nViews), dtype=np.int) - 1
for nv in range(nViews):
start, end = dimGroups[nv], dimGroups[nv+1]
block = affinit_row[start:end]
to_select = np.where((block>0.1) & \
(~assigned[start:end]) & \
(~visited[start:end]))[0]
if to_select.shape[0] == 1:
# 只有唯一的一个候选
indices[nv] = to_select[0]
elif to_select.shape[0] > 1:
to_select_sort = sorted(to_select, key=lambda x:-block[x])
indices[nv] = to_select_sort[0]
for select_id in to_select_sort[1:]:
proposals.append((nv, select_id, block[select_id]))
elif to_select.shape[0] == 0:
# empty
pass
return indices, proposals
def _check_indices(self, indices):
return (indices > -1).sum() >= self.cfg.triangulate.min_view_body
def _simple_associate2d_triangulate(self, affinity, keypoints, cameras, assigned=None):
# sum1 = affinity.sum(axis=1)
# 注意:这里的排序应该是对每个视角,挑选最大的一个
affinity_sum, dimGroups, views = self._prepare_associate(affinity, keypoints)
nViews = len(keypoints)
n2d = affinity.shape[0]
# the assigned results of each person
if assigned is None:
assigned = np.zeros(n2d, dtype=np.bool)
visited = np.zeros(n2d, dtype=np.bool)
sortidx = np.argsort(-affinity_sum)
k3dresults = []
for idx in sortidx:
if assigned[idx]:continue
log('[Tri] Visited view{}: {}'.format(views[idx], idx-dimGroups[views[idx]]))
affinit_row = affinity[idx]
indices, proposals = self._indices_from_affinity(dimGroups, affinit_row, assigned, visited, nViews)
# 注意要再生成所有的proposal之后再设置visited
visited[idx] = True
if not self._check_indices(indices):continue
# 只考虑有候选的;不考虑移除某个视角的
log('[Tri] First try to triangulate of {}'.format(indices))
indices_origin = indices.copy()
result, indices = self.try_to_triangulate(keypoints, cameras, indices)
if not self._check_indices(indices):
# if the proposals is valid
if len(proposals) > 0:
proposals.sort(key=lambda x:-x[2])
for (nviews, select_id, conf) in proposals:
indices = indices_origin.copy()
indices[nviews] = select_id
log('[Tri] Max fail, then try to triangulate of {}'.format(indices))
result, indices = self.try_to_triangulate(keypoints, cameras, indices)
if self._check_indices(indices):
break
else:
# overall proposals, not find any valid
continue
else:
continue
for nv in range(nViews):
if indices[nv] == -1:
continue
assigned[indices[nv]+dimGroups[nv]] = True
result['id'] = -1
k3dresults.append(result)
return k3dresults
def _check_speed(self, previous, current, verbo=False):
conf = np.sqrt(previous[:, -1] * current[:, -1])
conf[conf < self.cfg.triangulate.min_conf_3d] = 0.
dist = np.linalg.norm(previous[:, :3] - current[:, :3], axis=-1)
conf_mean = (conf * dist).sum()/(1e-5 + conf.sum()) * 1000
if verbo:
log('Track distance of each joints:')
print(dist)
print(conf_mean)
return conf_mean < self.cfg.triangulate.dist_track
def _simple_associate2d3d_triangulate(self, keypoints3d, affinity, keypoints, dimGroups, cameras):
nViews = len(keypoints)
n2d = affinity.shape[0]
# the assigned results of each person
assigned = np.zeros(n2d, dtype=np.bool)
visited = np.zeros(n2d, dtype=np.bool)
affinity_sum = affinity.sum(axis=0)
sortidx = np.argsort(-affinity_sum)
k3dresults = []
for idx3d in sortidx:
log('[Tri] Visited 3D {}'.format(self.prev_ids[idx3d]))
affinit_row = affinity[:, idx3d]
indices, proposals = self._indices_from_affinity(dimGroups, affinit_row, assigned, visited, nViews)
if not self._check_indices(indices):continue
# 只考虑有候选的;不考虑移除某个视角的
log('[Tri] First try to triangulate of {}'.format(indices))
indices_origin = indices.copy()
result, indices = self.try_to_triangulate(keypoints, cameras, indices, previous=keypoints3d[idx3d])
if not (self._check_indices(indices) and self._check_speed(keypoints3d[idx3d], result['keypoints3d'])):
# if the proposals is valid
previous = keypoints3d[idx3d]
# select the best keypoints of each view
previous_proj = project_points(previous, cameras['P'])
dist_all = np.zeros((previous_proj.shape[0],)) + 999.
indices_all = np.zeros((previous_proj.shape[0],), dtype=int)
for nv in range(previous_proj.shape[0]):
dist = np.linalg.norm(previous_proj[nv, :, :2][None] - keypoints[nv][:, :, :2], axis=-1)
conf = (previous[..., -1] > 0.1)[None] & (keypoints[nv][:, :, -1] > 0.1)
dist_mean = (dist * conf).sum(axis=-1) / (1e-5 + conf.sum(axis=-1))
dist_all[nv] = dist_mean.min()
indices_all[nv] = dist_mean.argmin()
want_view = dist_all.argsort()[:self.cfg.triangulate.min_view_body]
# TODO: add proposal
proposal = (want_view, indices_all[want_view], -dist_all[want_view])
proposals = [proposal]
if len(proposals) > 0:
proposals.sort(key=lambda x:-x[2])
for (nv, select_id, conf) in proposals:
indices = np.zeros_like(indices_origin) - 1
indices[nv] = select_id
log('[Tri] Max fail, then try to triangulate of {}'.format(indices))
result, indices = self.try_to_triangulate(keypoints, cameras, indices, previous=keypoints3d[idx3d])
if (self._check_indices(indices) and self._check_speed(keypoints3d[idx3d], result['keypoints3d'])):
break
else:
# overall proposals, not find any valid
mywarn('[Tri] {} Track fail after {} proposal'.format(idx3d, len(proposals)))
import ipdb; ipdb.set_trace()
continue
else:
mywarn('[Tri] Track fail {}'.format(indices))
self._check_speed(keypoints3d[idx3d], result['keypoints3d'], verbo=True)
continue
log('[Tri] finally used indices: {}'.format(indices))
for nv in range(nViews):
if indices[nv] == -1:
continue
assigned[indices[nv]+dimGroups[nv]] = True
result['id'] = self.prev_ids[idx3d]
k3dresults.append(result)
return k3dresults, assigned
def associate(self, cameras, keypoints):
keypoints = self.undistort(keypoints, cameras)
for kpts in keypoints:
conf = kpts[..., -1]
conf[conf < self.cfg.min_conf] = 0.
if len(self.prev_ids) > 0:
# naive track
with Timer('affinity 2d'):
affinity2d2d, dimGroups = self.distance.calculate_affinity_MxM(keypoints, cameras)
with Timer('affinity 3d'):
affinity2d3d = self.distance._calculate_affinity_MxN(self.prev_keypoints, keypoints, cameras)
affinity_comp = np.vstack([
np.hstack([affinity2d2d, affinity2d3d]),
np.hstack([affinity2d3d.T, np.eye(len(self.prev_ids))])
])
with Timer('svt'):
affinity2d2d_2d3d = self.distance.low_rank_optimization(
affinity_comp,
dimGroups.tolist() + [dimGroups[-1] + len(self.prev_ids)],
vis=False)
# 先associate2d 3d
affinity2d3d = affinity2d2d_2d3d[:affinity2d2d.shape[0], affinity2d2d.shape[1]:]
with Timer('associate 3d'):
k3dresults, assigned = self._simple_associate2d3d_triangulate(self.prev_keypoints, affinity2d3d, keypoints, dimGroups, cameras)
# 再associate2d 2d
with Timer('associate 2d'):
affinity2d2d = affinity2d2d_2d3d[:affinity2d2d.shape[0], :affinity2d2d.shape[1]]
match_results = self._simple_associate2d_triangulate(affinity2d2d, keypoints, cameras, assigned=assigned)
match_results = k3dresults + match_results
else:
affinity2d2d, dimGroups = self.distance.calculate_affinity_MxM(keypoints, cameras)
affinity2d2d = self.distance.low_rank_optimization(affinity2d2d, dimGroups)
# 直接associate2d
match_results = self._simple_associate2d_triangulate(affinity2d2d, keypoints, cameras)
return match_results
class TrackBase:
# 这个类用于维护一般的track操作
# 主要提供的接口:
# 1. add
# 2. remove
# 3. smooth
# 4. naive fit
def __init__(self, cfg) -> None:
self.cfg = cfg
self.kintree = np.array(cfg.kintree)
self.max_id = 0
self.current_frame = -1
self.record = {}
def update_frame(self, frame):
# remove the results that are not in the frame
self.current_frame = frame
remove_id = []
for pid, record in self.record.items():
if frame - record['frames'][-1] > self.cfg.max_missing:
mywarn('[Track] remove track {} with frames {}'.format(pid, record['frames']))
remove_id.append(pid)
for pid in remove_id:
self.record.pop(pid)
return True
def query_current(self, ret_final=False):
# return the results that are in the frame
prevs = []
for pid, record in self.record.items():
k3d = record['records'][-1]
valid = k3d[:, -1] > 0.1
if ret_final:
# 判断一下valid range
k3d_valid = k3d[valid]
flag = (k3d_valid[:, 0] > self.cfg.final_ranges[0][0]) & \
(k3d_valid[:, 0] < self.cfg.final_ranges[1][0]) & \
(k3d_valid[:, 1] > self.cfg.final_ranges[0][1]) & \
(k3d_valid[:, 1] < self.cfg.final_ranges[1][1]) & \
(k3d_valid[:, 2] > self.cfg.final_ranges[0][2]) & \
(k3d_valid[:, 2] < self.cfg.final_ranges[1][2])
if flag.sum() < 5:
continue
prevs.append({
'id': pid,
'keypoints3d': record['records'][-1],
'ages': len(record['frames'])
})
if ret_final:
prevs.sort(key=lambda x:-x['ages'])
prevs = prevs[:self.cfg.final_max_person]
prevs.sort(key=lambda x:x['id'])
return prevs
def add_track(self, res):
# add a new track
pid = self.max_id
res['id'] = pid
self.record[pid] = {
'frames': [self.current_frame],
'records': [res['keypoints3d']]
}
self.max_id += 1
def update_track(self, res):
pid = res['id']
N_UPDATE_LENGTH = 10
if len(self.record[pid]['frames']) >= N_UPDATE_LENGTH and len(self.record[pid]['frames']) % N_UPDATE_LENGTH == 0:
# 更新骨长
# (nFrames, nJoints, 4)
history = np.stack(self.record[pid]['records'])
left = history[:, self.kintree[:, 0]]
right = history[:, self.kintree[:, 1]]
conf = np.minimum(left[..., -1], right[..., -1])
conf[conf < 0.1] = 0.
limb_length = np.linalg.norm(left[..., :3] - right[..., :3], axis=-1)
limb_mean = (conf * limb_length).sum(axis=0)/(1e-5 + conf.sum(axis=0))
conf_mean = conf.sum(axis=0)
log('[Track] Update limb length of {} to \n {}'.format(pid, limb_mean))
self.record[pid]['limb_length'] = (limb_mean, conf_mean)
k3d = res['keypoints3d']
if 'limb_length' in self.record[pid].keys():
left = k3d[self.kintree[:, 0]]
right = k3d[self.kintree[:, 1]]
limb_now = np.linalg.norm(left[:, :3] - right[:, :3], axis=-1)
limb_mean, conf_mean = self.record[pid]['limb_length']
not_valid = ((limb_now > limb_mean * 1.5) | (limb_now < limb_mean * 0.5)) & (conf_mean > 0.1)
if not_valid.sum() > 0:
leaf = self.kintree[not_valid, 1]
res['keypoints3d'][leaf] = 0.
mywarn('[Track] {} remove {} joints'.format(pid, leaf))
mywarn('[Track] mean: {}'.format(limb_mean[not_valid]))
mywarn('[Track] current: {}'.format(limb_now[not_valid]))
self.record[pid]['frames'].append(self.current_frame)
self.record[pid]['records'].append(res['keypoints3d'])
def track(self, match_results):
wo_id_results = [r for r in match_results if r['id'] == -1]
w_id_results = [r for r in match_results if r['id'] != -1]
wo_id_results.sort(key=lambda x:-(x['indices']!=-1).sum())
for res in wo_id_results:
self.add_track(res)
for res in w_id_results:
self.update_track(res)
return w_id_results + wo_id_results
class MatchAndTrack():
def __init__(self, cfg_match, cfg_track) -> None:
self.matcher = MatchBase(cfg_match)
self.tracker = TrackBase(cfg_track)
def __call__(self, cameras, keypoints, meta):
frame = meta['frame']
# 1. query the previous frame
self.tracker.update_frame(frame)
previous = self.tracker.query_current()
# 2. associate the current frame
self.matcher.set_previous(previous)
match_results = self.matcher.associate(cameras, keypoints)
# 3. update the tracker
self.tracker.track(match_results)
results = self.tracker.query_current(ret_final=True)
pids = [p['id'] for p in results]
if len(pids) > 0:
keypoints3d = np.stack([p['keypoints3d'] for p in results])
else:
keypoints3d = []
log('[Match&Triangulate] Current ID: {}'.format(pids))
return {'results': results, 'keypoints3d': keypoints3d, 'pids': pids}

View File

@ -98,6 +98,7 @@ class Optimizer:
for key, val in loss.items():
self.used_infos.extend(val.key_from_infos)
self.used_infos = list(set(self.used_infos))
self.iter = 0
def log_loss(self, iter_, closure, print_loss=False):
if iter_ % 10 == 0 or print_loss:
@ -138,10 +139,13 @@ class Optimizer:
infos_used = {key: infos[key] for key in self.used_infos if key in infos.keys()}
infos_used = dict_of_numpy_to_tensor(infos_used, device=device)
log('[{}] Optimize {}'.format(self.__class__.__name__, self.optimize_keys))
optimize_keys = self.optimize_keys
if isinstance(optimize_keys[0], list):
optimize_keys = optimize_keys[self.iter]
log('[{}] Optimize {}'.format(self.__class__.__name__, optimize_keys))
log('[{}] Loading {}'.format(self.__class__.__name__, self.used_infos))
opt_params = {}
for key in self.optimize_keys:
for key in optimize_keys:
if key in infos.keys(): # 优化的参数
opt_params[key] = infos_used[key]
elif key in params.keys():
@ -160,7 +164,7 @@ class Optimizer:
ret = {
'params': params
}
for key in self.optimize_keys:
for key in optimize_keys:
if key in infos.keys():
ret[key] = opt_params[key]
ret = dict_of_tensor_to_numpy(ret)

View File

@ -26,6 +26,8 @@ class MultiStage:
def load_final(self):
at_finals = {}
for key, val in self._at_final.items():
if 'module' not in val.keys():
continue
if val['module'] == 'skip':
mywarn('Stage {} is not used'.format(key))
continue
@ -35,7 +37,7 @@ class MultiStage:
at_finals[key] = model
self.model_finals = at_finals
def __init__(self, output, at_step, at_final) -> None:
def __init__(self, output, at_step, at_final, keys_keep=[], timer=True) -> None:
log('[{}] writing the results to {}'.format(self.__class__.__name__, output))
at_steps = {}
for key, val in at_step.items():
@ -50,12 +52,15 @@ class MultiStage:
self.model_steps = at_steps
self._at_step = at_step
self._at_final = at_final
self.timer = Timer(at_steps, verbose=False)
self.keys_keep = keys_keep
self.timer = Timer(at_steps, verbose=timer)
def at_step(self, data, index):
ret = {}
if 'meta' in data:
ret['meta'] = data['meta']
for key in self.keys_keep:
ret[key] = data[key]
timer = {}
for key, model in self.model_steps.items():
for k in self._at_step[key].get('key_keep', []):
@ -104,6 +109,7 @@ class MultiStage:
for key, model in self.model_finals.items():
for iter_ in range(self._at_final[key].get('repeat', 1)):
inputs = {}
model.iter = iter_
for k in self._at_final[key].get('key_from_data', []):
inputs[k] = data[k]
for k in self._at_final[key].get('key_from_previous', []):
@ -117,6 +123,7 @@ class MultiStage:
ret.update(output)
return ret
class StageForFittingEach:
def __init__(self, stages, keys_keep) -> None:
stages_ = {}
@ -132,6 +139,7 @@ class StageForFittingEach:
def __call__(self, results, **ret):
for pid, result in results.items():
print('[{}] Optimize person {} with {} frames'.format(self.__class__.__name__, pid, len(result['frames'])))
ret0 = {}
ret0.update(ret)
for key, stage in self.stages.items():

View File

@ -26,8 +26,9 @@ class CheckFramePerson:
}
class CollectMultiPersonMultiFrame:
def __init__(self, key) -> None:
def __init__(self, key, min_frame=10) -> None:
self.key = key
self.min_frame = min_frame
def __call__(self, keypoints3d, pids):
records = {}
@ -41,6 +42,12 @@ class CollectMultiPersonMultiFrame:
}
records[pid]['frames'].append(frame)
records[pid]['keypoints3d'].append(keypoints3d[frame][i])
remove_id = []
for pid, record in records.items():
print('[{}] Collect person {} with {} frames'.format(self.__class__.__name__, pid, len(record['frames'])))
record['keypoints3d'] = np.stack(record['keypoints3d']).astype(np.float32)
if len(record['frames']) < self.min_frame:
remove_id.append(pid)
for pid in remove_id:
records.pop(pid)
return {'results': records}