EasyMocap/doc/02_output.md
2021-03-23 14:43:28 +08:00

4.9 KiB
Raw Permalink Blame History

EasyMocap Doc - Output

En | 中文

Contents

  1. Json Format
  2. Export to .bvh

Json Format

The results are saved in json format.

<output_root>
├── keypoints3d
│   ├── 000000.json
│   └── xxxxxx.json
└── smpl
    ├── 000000.jpg
    ├── 000000.json
    └── 000004.json

The data in keypoints3d/000000.json is a list, each element represents a human body.

{
    'id': <id>, # the person ID
    'keypoints3d': [[x0, y0, z0, c0], [x1, y1, z0, c1], ..., [xn, yn, zn, cn]], # x,y,z is the 3D coordinates, c means the confidence of this joint. If the c=0, it means this joint is invisible.
}

The definition of the joints is as body25.

The data in smpl/000000.json is also a list, each element represents the SMPL parameters which is slightly different from official model.

{
    "id": <id>,
    "Rh": <(1, 3)>,
    "Th": <(1, 3)>,
    "poses": <(1, 72/78/87)>,
    "expression": <(1, 10)>,
    "shapes": <(1, 10)>
}

If you use SMPL+H model, the poses contains 22x3+6+6. We use 6 pca coefficients for each hand. 3(jaw, left eye, right eye)x3 poses of head are added for SMPL-X model.

Attention (for SMPL/SMPL-X users)

This parameter is a little different from original SMPL/SMPL-X parameters.

We set the first 3 dimensions of poses to zero, and add a new parameter Rh to represents the global oritentation, the vertices of SMPL model V = RX(theta, beta) + T. Please note that the paramter Rh is not equal to global_orient in SMPL-X model. We take this representation because that changing paramters to new coordinate system in origin is difficult(see this link).

In our representation, you can just use R'@(RX + T) + T' to convert the model, and the new global rotaion and translation is simply written as R'@R and R'@T + T'

To compute the joints locations from these parameters, please refer to ./code/vis_render.py. The key steps are:

# 0. load SMPL model
from smplmodel import load_model
body_model = load_model(args.gender, model_type=args.model)
# 1. load parameters
infos = dataset.read_smpl(nf*step)
# 2. compute joints
joints = body_model(return_verts=False, return_tensor=False, **info)[0]
# 3. compute vertices
vertices = body_model(return_verts=True, return_tensor=False, **info)[0]

Export to bvh format

To export the SMPL results to bvh file, you need to download the SMPL-maya model from the website of SMPL. Place the .fbx model in ./data/smplx/SMPL_maya, it may be like this:

└── smplx
    ├── smpl
    │   ├── SMPL_FEMALE.pkl
    │   ├── SMPL_MALE.pkl
    │   └── SMPL_NEUTRAL.pkl
    ├── SMPL_maya
    │   ├── basicModel_f_lbs_10_207_0_v1.0.2.fbx
    │   ├── basicModel_m_lbs_10_207_0_v1.0.2.fbx
    │   ├── joints_mat_v1.0.2.pkl
    │   ├── README.txt
    │   ├── release_notes_v1.0.2.txt
    │   └── SMPL_maya_plugin_v1.0.2.py
    └── smplx

The Blender is also needed. The <path_to_output_smpl> is usually ${out}/smpl, which contanis the 000000.json, ... of SMPL parameters.

BLENDER_PATH=<path_to_blender>/blender-2.79a-linux-glibc219-x86_64
${BLENDER_PATH}/blender -b -t 12 -P scripts/postprocess/convert2bvh.py -- <path_to_output_smpl> --o <output_path>

We have not implement the export of SMPL+H, SMPL-X model yet. If you are interested on it, feel free to create a pull request to us.


输出

Json格式

关键点重建的结果会输出到${out}/keypoints3d路径下

<out>
├── keypoints3d
│   ├── 000000.json
│   └── xxxxxx.json
└── skel

每个json里面是一个列表包含了当前帧的所有人列表里的每一个元素表示一个人内容如下

{
    'id': <id>, # 表示人的跟踪的id
    'keypoints3d': [[x0, y0, z0, c0], [x1, y1, z0, c1], ..., [xn, yn, zn, cn]]: # (N, 4)表示人的关键点坐标c表示置信度置信度为0则该关节点不可见
}

关键点的定义使用OpenPose的BODY25格式

导出为bvh格式

这里使用Blender进行导出测试的Blender版本为2.79。需要先下载SMPL的fbx模型

BLENDER_PATH=<path_to_blender>/blender-2.79a-linux-glibc219-x86_64
${BLENDER_PATH}/blender -b -t 12 -P scripts/postprocess/convert2bvh.py -- <path_to_output_smpl> --o <path_to_bvh>