136 lines
5.5 KiB
Python
136 lines
5.5 KiB
Python
import os
|
||
import numpy as np
|
||
import math
|
||
import cv2
|
||
import torch
|
||
from ..basetopdown import BaseTopDownModelCache
|
||
from .hrnet import HRNet
|
||
|
||
def get_max_preds(batch_heatmaps):
|
||
'''
|
||
get predictions from score maps
|
||
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
|
||
'''
|
||
assert isinstance(batch_heatmaps, np.ndarray), \
|
||
'batch_heatmaps should be numpy.ndarray'
|
||
assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim: {}'.format(batch_heatmaps.shape)
|
||
|
||
batch_size = batch_heatmaps.shape[0]
|
||
num_joints = batch_heatmaps.shape[1]
|
||
width = batch_heatmaps.shape[3]
|
||
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
|
||
idx = np.argmax(heatmaps_reshaped, 2)
|
||
maxvals = np.amax(heatmaps_reshaped, 2)
|
||
|
||
maxvals = maxvals.reshape((batch_size, num_joints, 1))
|
||
idx = idx.reshape((batch_size, num_joints, 1))
|
||
|
||
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
|
||
|
||
preds[:, :, 0] = (preds[:, :, 0]) % width
|
||
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
|
||
|
||
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
|
||
pred_mask = pred_mask.astype(np.float32)
|
||
|
||
preds *= pred_mask
|
||
return preds, maxvals
|
||
|
||
COCO17_IN_BODY25 = [0,16,15,18,17,5,2,6,3,7,4,12,9,13,10,14,11]
|
||
pairs = [[1, 8], [1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [8, 9], [9, 10], [10, 11], [8, 12], [12, 13], [13, 14], [1, 0], [0,15], [15,17], [0,16], [16,18], [14,19], [19,20], [14,21], [11,22], [22,23], [11,24]]
|
||
def coco17tobody25(points2d):
|
||
kpts = np.zeros((points2d.shape[0], 25, 3))
|
||
kpts[:, COCO17_IN_BODY25, :2] = points2d[:, :, :2]
|
||
kpts[:, COCO17_IN_BODY25, 2:3] = points2d[:, :, 2:3]
|
||
kpts[:, 8, :2] = kpts[:, [9, 12], :2].mean(axis=1)
|
||
kpts[:, 8, 2] = kpts[:, [9, 12], 2].min(axis=1)
|
||
kpts[:, 1, :2] = kpts[:, [2, 5], :2].mean(axis=1)
|
||
kpts[:, 1, 2] = kpts[:, [2, 5], 2].min(axis=1)
|
||
# 需要交换一下
|
||
# kpts = kpts[:, :, [1,0,2]]
|
||
return kpts
|
||
|
||
class MyHRNet(BaseTopDownModelCache):
|
||
def __init__(self, ckpt, single_person=True, num_joints=17, name='keypoints2d'):
|
||
super().__init__(name, bbox_scale=1.25, res_input=[288, 384])
|
||
# 如果启用,那么将每个视角最多保留一个,并且squeeze and stack
|
||
self.single_person = single_person
|
||
model = HRNet(48, num_joints, 0.1)
|
||
self.num_joints = num_joints
|
||
if not os.path.exists(ckpt) and ckpt.endswith('pose_hrnet_w48_384x288.pth'):
|
||
url = "11ezQ6a_MxIRtj26WqhH3V3-xPI3XqYAw"
|
||
text = '''Download `models/pytorch/pose_coco/pose_hrnet_w48_384x288.pth` from (OneDrive)[https://1drv.ms/f/s!AhIXJn_J-blW231MH2krnmLq5kkQ],
|
||
And place it into {}'''.format(os.path.dirname(ckpt))
|
||
print(text)
|
||
os.makedirs(os.path.dirname(ckpt), exist_ok=True)
|
||
cmd = 'gdown "{}" -O {}'.format(url, ckpt)
|
||
print('\n', cmd, '\n')
|
||
os.system(cmd)
|
||
assert os.path.exists(ckpt), f'{ckpt} not exists'
|
||
checkpoint = torch.load(ckpt, map_location='cpu')
|
||
model.load_state_dict(checkpoint)
|
||
model.eval()
|
||
self.model = model
|
||
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||
self.model.to(self.device)
|
||
|
||
@staticmethod
|
||
def get_max_preds(batch_heatmaps):
|
||
coords, maxvals = get_max_preds(batch_heatmaps)
|
||
|
||
heatmap_height = batch_heatmaps.shape[2]
|
||
heatmap_width = batch_heatmaps.shape[3]
|
||
|
||
# post-processing
|
||
if True:
|
||
for n in range(coords.shape[0]):
|
||
for p in range(coords.shape[1]):
|
||
hm = batch_heatmaps[n][p]
|
||
px = int(math.floor(coords[n][p][0] + 0.5))
|
||
py = int(math.floor(coords[n][p][1] + 0.5))
|
||
if 1 < px < heatmap_width-1 and 1 < py < heatmap_height-1:
|
||
diff = np.array(
|
||
[
|
||
hm[py][px+1] - hm[py][px-1],
|
||
hm[py+1][px]-hm[py-1][px]
|
||
]
|
||
)
|
||
coords[n][p] += np.sign(diff) * .25
|
||
coords = coords.astype(np.float32) * 4
|
||
pred = np.dstack((coords, maxvals))
|
||
return pred
|
||
|
||
def __call__(self, bbox, images, imgnames):
|
||
squeeze = False
|
||
if not isinstance(images, list):
|
||
images = [images]
|
||
imgnames = [imgnames]
|
||
bbox = [bbox]
|
||
squeeze = True
|
||
nViews = len(images)
|
||
kpts_all = []
|
||
for nv in range(nViews):
|
||
_bbox = bbox[nv]
|
||
if _bbox.shape[0] == 0:
|
||
if self.single_person:
|
||
kpts = np.zeros((1, self.num_joints, 3))
|
||
else:
|
||
kpts = np.zeros((_bbox.shape[0], self.num_joints, 3))
|
||
else:
|
||
img = images[nv]
|
||
# TODO: add flip test
|
||
out = super().__call__(_bbox, img, imgnames[nv])
|
||
output = out['params']['output']
|
||
kpts = self.get_max_preds(output)
|
||
kpts_ori = self.batch_affine_transform(kpts, out['params']['inv_trans'])
|
||
kpts = np.concatenate([kpts_ori, kpts[..., -1:]], axis=-1)
|
||
kpts = coco17tobody25(kpts)
|
||
kpts_all.append(kpts)
|
||
if self.single_person:
|
||
kpts_all = [k[0] for k in kpts_all]
|
||
kpts_all = np.stack(kpts_all)
|
||
if squeeze:
|
||
kpts_all = kpts_all[0]
|
||
return {
|
||
'keypoints': kpts_all
|
||
} |