EasyMocap/Readme.md
2021-01-14 22:48:55 +08:00

168 lines
6.3 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!--
* @Date: 2021-01-13 20:32:12
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-01-14 21:43:44
* @FilePath: /EasyMocapRelease/Readme.md
-->
# EasyMocap
**EasyMocap** is an open-source toolbox for **markerless human motion capture**.
## Results
|:heavy_check_mark: Skeleton|:heavy_check_mark: SMPL|
|----|----|
|![repro](doc/feng/repro_512.gif)|![smpl](doc/feng/smpl_512.gif)|
> The following codes are not released. We are now working hard on them.
- [ ] Whole body 3d keypoints estimation
- [ ] SMPL-H/SMPLX support
- [ ] Detailed mesh from sparse view
|:black_square_button: Whole Body|:black_square_button: [Detailed Mesh](https://zju3dv.github.io/neuralbody/)|
|----|----|
|<div align="center"><img src="doc/feng/total_512.gif" height="300" alt="mesh" align=center /></div>|<div align="center"><img src="doc/feng/body_256.gif" height="300" width="300" alt="mesh" align=center /></div>|
## Installation
### 1. Download SMPL models
To download the *SMPL* model go to [this](http://smpl.is.tue.mpg.de) (male and female models) and [this](http://smplify.is.tue.mpg.de) (gender neutral model) project website and register to get access to the downloads section. **Place them as following:**
```bash
data
└── smplx
├── J_regressor_body25.npy
└── smpl
   ├── SMPL_FEMALE.pkl
   ├── SMPL_MALE.pkl
   └── SMPL_NEUTRAL.pkl
```
### 2. Requirements
- torch==1.4.0
- torchvision==0.5.0
- opencv-python
- pyrender: for visualization
- chumpy: for loading SMPL model
Some of python libraries can be found in `requirements.txt`. You can test different version of PyTorch.
<!-- To download the *SMPL+H* model go to [this project website](http://mano.is.tue.mpg.de) and register to get access to the downloads section.
To download the *SMPL-X* model go to [this project website](https://smpl-x.is.tue.mpg.de) and register to get access to the downloads section. -->
## Quick Start
We provide an example multiview dataset[[dropbox](https://www.dropbox.com/s/24mb7r921b1g9a7/zju-ls-feng.zip?dl=0)][[BaiduDisk](https://pan.baidu.com/s/1lvAopzYGCic3nauoQXjbPw)(vg1z)]. After downloading the dataset, you can run the following example scripts.
```bash
data=path/to/data
out=path/to/output
# 0. extract the video to images
python3 scripts/preprocess/extract_video.py ${data}
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2. example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19
```
## Not Quick Start
### 0. Prepare Your Own Dataset
```bash
zju-ls-feng
├── extri.yml
├── intri.yml
└── videos
├── 1.mp4
├── 2.mp4
├── ...
├── 8.mp4
└── 9.mp4
```
The input videos are placed in `videos/`.
Here `intri.yml` and `extri.yml` store the camera intrinsici and extrinsic parameters. For example, if the name of a video is `1.mp4`, then there must exist `K_1`, `dist_1` in `intri.yml`, and `R_1((3, 1), rotation vector of camera)`, `T_1(3, 1)` in `extri.yml`. The file format is following [OpenCV format](https://docs.opencv.org/master/dd/d74/tutorial_file_input_output_with_xml_yml.html).
### 1. Run [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)
```bash
data=path/to/data
out=path/to/output
python3 scripts/preprocess/extract_video.py ${data} --openpose <openpose_path>
```
### 2. Run the code
```bash
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2. example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19
```
- `--vis_det`: visualize the detection
- `--vis_repro`: visualize the reprojection
- `--undis`: use to undistort the images
- `--sub_vis`: use to specify the views to visualize. If not set, the code will use all views
- `--vis_smpl`: use to render the SMPL mesh to images.
- `--start, --end`: control the begin and end number of frames.
### 3. Output
The results are saved in `json` format.
```bash
<output_root>
├── keypoints3d
│   ├── 000000.json
│   └── xxxxxx.json
└── smpl
   ├── 000000.jpg
   ├── 000000.json
   └── 000004.json
```
The data in `keypoints3d/000000.json` is a list, each element represents a human body.
```bash
{
'id': <id>,
'keypoints3d': [[x0, y0, z0, c0], [x1, y1, z0, c1], ..., [xn, yn, zn, cn]]
}
```
The data in `smpl/000000.json` is also a list, each element represents the SMPL parameters which is slightly different from official model.
```bash
{
"id": <id>,
"Rh": <(1, 3)>,
"Th": <(1, 3)>,
"poses": <(1, 72)>,
"shapes": <(1, 10)>
}
```
We set the first 3 dimensions of `poses` to zero, and add a new parameter `Rh` to represents the global oritentation, the vertices of SMPL model V = RX(theta, beta) + T.
## Acknowledgements
Here are some great resources we benefit:
- SMPL models and layer is borrowed from MPII [SMPL-X model](https://github.com/vchoutas/smplx).
- Some functions are borrowed from [SPIN](https://github.com/nkolot/SPIN), [VIBE](https://github.com/mkocabas/VIBE), [SMPLify-X](https://github.com/vchoutas/smplify-x)
- Our project is similar with [TotalCapture](http://www.cs.cmu.edu/~hanbyulj/totalcapture/)
We also would like to thank Wenduo Feng for the example data.
## Contact
Please open an issue if you have any questions.
## Citation
This project is the base of our other works: [iMocap](https://zju3dv.github.io/iMoCap/), [Neural Body](https://zju3dv.github.io/neuralbody/)
```bibtex
@inproceedings{dong2020motion,
title={Motion capture from internet videos},
author={Dong, Junting and Shuai, Qing and Zhang, Yuanqing and Liu, Xian and Zhou, Xiaowei and Bao, Hujun},
booktitle={European Conference on Computer Vision},
pages={210--227},
year={2020},
organization={Springer}
}
@article{peng2020neural,
title={Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans},
author={Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, Xiaowei Zhou},
journal={arXiv preprint arXiv:2012.15838},
year={2020}
}
```
<!-- ## License -->