EasyMocap/Readmd.md
shuaiqing 55b3fef989 init
2021-01-14 21:17:40 +08:00

132 lines
4.7 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!--
* @Date: 2021-01-13 20:32:12
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-01-14 20:46:21
* @FilePath: /EasyMocapRelease/Readmd.md
-->
# EasyMocap
**EasyMocap** is an open-source toolbox for **markerless human motion capture**.
## Results
|:heavy_check_mark: Skeleton|:heavy_check_mark: SMPL|
|----|----|
|![repro](doc/feng/repro_512.gif)|![repro](doc/feng/smpl_512.gif)||
|:black_square_button: Whole Body|:black_square_button: [Detailed Mesh](https://zju3dv.github.io/neuralbody/)|
|----|----|
|<div align="center"><img src="doc/feng/total_512.gif" height="200" alt="3DPW" align=center /></div>|<div align="center"><img src="doc/feng/body_256.gif" height="200" width="200" alt="3DPW" align=center />
</div>|
## Installation
### 1. Download SMPL models
To download the *SMPL* model go to [this](http://smpl.is.tue.mpg.de) (male and female models) and [this](http://smplify.is.tue.mpg.de) (gender neutral model) project website and register to get access to the downloads section. **Place them as following:**
```bash
data
└── smplx
├── J_regressor_body25.npy
└── smpl
   ├── SMPL_FEMALE.pkl
   ├── SMPL_MALE.pkl
   └── SMPL_NEUTRAL.pkl
```
<!-- To download the *SMPL+H* model go to [this project website](http://mano.is.tue.mpg.de) and register to get access to the downloads section.
To download the *SMPL-X* model go to [this project website](https://smpl-x.is.tue.mpg.de) and register to get access to the downloads section. -->
## Quick Start
We provide an example multiview dataset[OneDrive](). After downloading the dataset, you can run the following example scripts.
```bash
data=path/to/data
out=path/to/output
# 0. extract the video to images
python3 scripts/preprocess/extract_video.py ${data}
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2. example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19
```
## Not Quick Start
### 0. Prepare Your Own Dataset
```bash
zju-ls-feng
├── extri.yml
├── intri.yml
└── videos
├── 1.mp4
├── 2.mp4
├── ...
├── 8.mp4
└── 9.mp4
```
The input videos are placed in `videos/`.
Here `intri.yml` and `extri.yml` store the camera intrinsici and extrinsic parameters. For example, if the name of a video is `1.mp4`, then there must exist `K_1`, `dist_1` in `intri.yml`, and `R_1((3, 1), rotation vector of camera)`, `T_1(3, 1)` in `extri.yml`. The file format is following [OpenCV format](https://docs.opencv.org/master/dd/d74/tutorial_file_input_output_with_xml_yml.html).
### 1. Run [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)
```bash
python3 scripts/preprocess/extract_video.py ${data} --openpose <openpose_path>
```
### 2. Run the code
### 3. Output
The results are saved in `json` format.
```bash
- <output_root>
├── keypoints3d
│   ├── 000000.json
│   └── xxxxxx.json
└── smpl
   ├── 000000.jpg
   ├── 000000.json
   └── 000004.json
```
The data in `keypoints3d/000000.json` is a list, each element represents a human body.
```bash
{
'id': <id>,
'keypoints3d': [[x0, y0, z0, c0], [x1, y1, z0, c1], ..., [xn, yn, zn, cn]]
}
```
The data in `smpl/000000.json` is also a list, each element represents the SMPL parameters which is slightly different from official model.
```bash
{
"id": <id>,
"Rh": <(1, 3)>,
"Th": <(1, 3)>,
"poses": <(1, 72)>,
"shapes": <(1, 10)>
}
```
We set the first 3 dimensions of `poses` to zero, and add a new parameter `Rh` to represents the global oritentation, the vertices of SMPL model V = RX(theta, beta) + T.
## Acknowledgements
Here are some great resources we benefit:
- SMPL models and layer is borrowed from MPII [SMPL-X model](https://github.com/vchoutas/smplx).
- Some functions are borrowed from [SPIN](https://github.com/nkolot/SPIN), [VIBE](https://github.com/mkocabas/VIBE), [SMPLify-X](https://github.com/vchoutas/smplify-x)
We also would like to thank Wenduo Feng for the example data.
## Contact
Please open an issue if you have any questions.
## Citation
This project is the base of our other works: [iMocap](https://zju3dv.github.io/iMoCap/), [Neural Body](https://zju3dv.github.io/neuralbody/)
```bibtex
@inproceedings{dong2020motion,
title={Motion capture from internet videos},
author={Dong, Junting and Shuai, Qing and Zhang, Yuanqing and Liu, Xian and Zhou, Xiaowei and Bao, Hujun},
booktitle={European Conference on Computer Vision},
pages={210--227},
year={2020},
organization={Springer}
}
```
<!-- ## License -->