2023-07-19 17:37:20 +08:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
2024-03-12 23:08:12 +08:00
###########################################################################
## FILTER 3D COORDINATES ##
###########################################################################
Filter trc 3 D coordinates .
Available filters : Butterworth , Butterworth on speed , Gaussian , LOESS , Median
Set your parameters in Config . toml
2023-07-19 17:37:20 +08:00
2024-03-12 23:08:12 +08:00
INPUTS :
- a trc file
- filtering parameters in Config . toml
OUTPUT :
- a filtered trc file
2023-07-19 17:37:20 +08:00
'''
## INIT
import os
2024-02-27 01:13:39 +08:00
import glob
2023-07-19 17:37:20 +08:00
import fnmatch
import numpy as np
import pandas as pd
import matplotlib . pyplot as plt
import logging
from scipy import signal
from scipy . ndimage import gaussian_filter1d
from statsmodels . nonparametric . smoothers_lowess import lowess
2023-08-19 14:59:34 +08:00
from filterpy . kalman import KalmanFilter , rts_smoother
from filterpy . common import Q_discrete_white_noise
2023-07-19 17:37:20 +08:00
from Pose2Sim . common import plotWindow
2024-04-16 17:14:25 +08:00
from Pose2Sim . common import trc_to_c3d
2023-07-19 17:37:20 +08:00
## AUTHORSHIP INFORMATION
__author__ = " David Pagnon "
__copyright__ = " Copyright 2021, Pose2Sim "
__credits__ = [ " David Pagnon " ]
__license__ = " BSD 3-Clause License "
2024-02-06 00:49:10 +08:00
__version__ = ' 0.6 '
2023-07-19 17:37:20 +08:00
__maintainer__ = " David Pagnon "
__email__ = " contact@david-pagnon.com "
__status__ = " Development "
## FUNCTIONS
2023-08-19 14:59:34 +08:00
def kalman_filter ( coords , frame_rate , measurement_noise , process_noise , nb_dimensions = 3 , nb_derivatives = 3 , smooth = True ) :
'''
Filters coordinates with a Kalman filter or a Kalman smoother
INPUTS :
- coords : array of shape ( nframes , ndims )
- frame_rate : integer
- measurement_noise : integer
- process_noise : integer
- nb_dimensions : integer , number of dimensions ( 3 if 3 D coordinates )
- nb_derivatives : integer , number of derivatives ( 3 if constant acceleration model )
- smooth : boolean . True if souble pass ( recommended ) , False if single pass ( if real - time )
OUTPUTS :
- kpt_coords_filt : filtered coords
'''
# Variables
dim_x = nb_dimensions * nb_derivatives # 9 state variables
dt = 1 / frame_rate
# Filter definition
f = KalmanFilter ( dim_x = dim_x , dim_z = nb_dimensions )
# States: initial position, velocity, accel, in 3D
def derivate_array ( arr , dt = 1 ) :
return np . diff ( arr , axis = 0 ) / dt
def repeat ( func , arg_func , nb_reps ) :
for i in range ( nb_reps ) :
arg_func = func ( arg_func )
return arg_func
x_init = [ ]
for n_der in range ( nb_derivatives ) :
x_init + = [ repeat ( derivate_array , coords , n_der ) [ 0 ] ] # pose*3D, vel*3D, accel*3D
f . x = np . array ( x_init ) . reshape ( nb_dimensions , nb_derivatives ) . T . flatten ( ) # pose, vel, accel *3D
# State transition matrix
F_per_coord = np . zeros ( ( int ( dim_x / nb_dimensions ) , int ( dim_x / nb_dimensions ) ) )
for i in range ( nb_derivatives ) :
for j in range ( min ( i + 1 , nb_derivatives ) ) :
F_per_coord [ j , i ] = dt * * ( i - j ) / np . math . factorial ( i - j )
f . F = np . kron ( np . eye ( nb_dimensions ) , F_per_coord )
# F_per_coord= [[1, dt, dt**2/2],
# [ 0, 1, dt ],
# [ 0, 0, 1 ]])
# No control input
f . B = None
# Measurement matrix (only positions)
H = np . zeros ( ( nb_dimensions , dim_x ) )
for i in range ( min ( nb_dimensions , dim_x ) ) :
H [ i , int ( i * ( dim_x / nb_dimensions ) ) ] = 1
f . H = H
# H = [[1., 0., 0., 0., 0., 0., 0., 0., 0.],
# [0., 0., 0., 1., 0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0., 0., 1., 0., 0.]]
# Covariance matrix
f . P * = measurement_noise
# Measurement noise
f . R = np . diag ( [ measurement_noise * * 2 ] * nb_dimensions )
# Process noise
f . Q = Q_discrete_white_noise ( nb_derivatives , dt = dt , var = process_noise * * 2 , block_size = nb_dimensions )
# Run filter: predict and update for each frame
mu , cov , _ , _ = f . batch_filter ( coords ) # equivalent to below
# mu = []
# for kpt_coord_frame in coords:
# f.predict()
# f.update(kpt_coord_frame)
# mu.append(f.x.copy())
ind_of_position = [ int ( d * ( dim_x / nb_dimensions ) ) for d in range ( nb_dimensions ) ]
coords_filt = np . array ( mu ) [ : , ind_of_position ]
# RTS smoother
if smooth == True :
mu2 , P , C , _ = f . rts_smoother ( mu , cov )
coords_filt = np . array ( mu2 ) [ : , ind_of_position ]
return coords_filt
def kalman_filter_1d ( config , col ) :
'''
1 D Kalman filter
Deals with nans
INPUT :
- col : Pandas dataframe column
- trustratio : int , ratio process_noise / measurement_noise
- framerate : int
- smooth : boolean , True if double pass ( recommended ) , False if single pass ( if real - time )
OUTPUT :
- col_filtered : Filtered pandas dataframe column
'''
2023-08-21 03:55:13 +08:00
trustratio = int ( config . get ( ' filtering ' ) . get ( ' kalman ' ) . get ( ' trust_ratio ' ) )
smooth = int ( config . get ( ' filtering ' ) . get ( ' kalman ' ) . get ( ' smooth ' ) )
2023-08-19 14:59:34 +08:00
framerate = config . get ( ' project ' ) . get ( ' frame_rate ' )
measurement_noise = 20
process_noise = measurement_noise * trustratio
# split into sequences of not nans
col_filtered = col . copy ( )
mask = np . isnan ( col_filtered ) | col_filtered . eq ( 0 )
falsemask_indices = np . where ( ~ mask ) [ 0 ]
gaps = np . where ( np . diff ( falsemask_indices ) > 1 ) [ 0 ] + 1
idx_sequences = np . split ( falsemask_indices , gaps )
if idx_sequences [ 0 ] . size > 0 :
idx_sequences_to_filter = [ seq for seq in idx_sequences ]
# Filter each of the selected sequences
for seq_f in idx_sequences_to_filter :
col_filtered [ seq_f ] = kalman_filter ( col_filtered [ seq_f ] , framerate , measurement_noise , process_noise , nb_dimensions = 1 , nb_derivatives = 3 , smooth = smooth ) . flatten ( )
return col_filtered
2023-07-19 17:37:20 +08:00
def butterworth_filter_1d ( config , col ) :
'''
1 D Zero - phase Butterworth filter ( dual pass )
Deals with nans
INPUT :
- col : numpy array
- order : int
- cutoff : int
- framerate : int
2023-08-19 14:59:34 +08:00
OUTPUT :
2023-07-19 17:37:20 +08:00
- col_filtered : Filtered pandas dataframe column
'''
2023-08-21 03:55:13 +08:00
type = ' low ' #config.get('filtering').get('butterworth').get('type')
order = int ( config . get ( ' filtering ' ) . get ( ' butterworth ' ) . get ( ' order ' ) )
cutoff = int ( config . get ( ' filtering ' ) . get ( ' butterworth ' ) . get ( ' cut_off_frequency ' ) )
2023-07-19 17:37:20 +08:00
framerate = config . get ( ' project ' ) . get ( ' frame_rate ' )
2023-08-19 14:59:34 +08:00
b , a = signal . butter ( order / 2 , cutoff / ( framerate / 2 ) , type , analog = False )
2023-07-19 17:37:20 +08:00
padlen = 3 * max ( len ( a ) , len ( b ) )
# split into sequences of not nans
col_filtered = col . copy ( )
mask = np . isnan ( col_filtered ) | col_filtered . eq ( 0 )
falsemask_indices = np . where ( ~ mask ) [ 0 ]
gaps = np . where ( np . diff ( falsemask_indices ) > 1 ) [ 0 ] + 1
idx_sequences = np . split ( falsemask_indices , gaps )
if idx_sequences [ 0 ] . size > 0 :
idx_sequences_to_filter = [ seq for seq in idx_sequences if len ( seq ) > padlen ]
# Filter each of the selected sequences
for seq_f in idx_sequences_to_filter :
col_filtered [ seq_f ] = signal . filtfilt ( b , a , col_filtered [ seq_f ] )
return col_filtered
def butterworth_on_speed_filter_1d ( config , col ) :
'''
1 D zero - phase Butterworth filter ( dual pass ) on derivative
INPUT :
- col : Pandas dataframe column
- frame rate , order , cut - off frequency , type ( from Config . toml )
2023-08-19 14:59:34 +08:00
OUTPUT :
2023-07-19 17:37:20 +08:00
- col_filtered : Filtered pandas dataframe column
'''
2023-08-21 03:55:13 +08:00
type = ' low ' # config.get('filtering').get('butterworth_on_speed').get('type')
order = int ( config . get ( ' filtering ' ) . get ( ' butterworth_on_speed ' ) . get ( ' order ' ) )
cutoff = int ( config . get ( ' filtering ' ) . get ( ' butterworth_on_speed ' ) . get ( ' cut_off_frequency ' ) )
2023-07-19 17:37:20 +08:00
framerate = config . get ( ' project ' ) . get ( ' frame_rate ' )
b , a = signal . butter ( order / 2 , cutoff / ( framerate / 2 ) , type , analog = False )
padlen = 3 * max ( len ( a ) , len ( b ) )
# derivative
col_filtered = col . copy ( )
col_filtered_diff = col_filtered . diff ( ) # derivative
col_filtered_diff = col_filtered_diff . fillna ( col_filtered_diff . iloc [ 1 ] / 2 ) # set first value correctly instead of nan
# split into sequences of not nans
mask = np . isnan ( col_filtered_diff ) | col_filtered_diff . eq ( 0 )
falsemask_indices = np . where ( ~ mask ) [ 0 ]
gaps = np . where ( np . diff ( falsemask_indices ) > 1 ) [ 0 ] + 1
idx_sequences = np . split ( falsemask_indices , gaps )
if idx_sequences [ 0 ] . size > 0 :
idx_sequences_to_filter = [ seq for seq in idx_sequences if len ( seq ) > padlen ]
# Filter each of the selected sequences
for seq_f in idx_sequences_to_filter :
col_filtered_diff [ seq_f ] = signal . filtfilt ( b , a , col_filtered_diff [ seq_f ] )
col_filtered = col_filtered_diff . cumsum ( ) + col . iloc [ 0 ] # integrate filtered derivative
return col_filtered
def gaussian_filter_1d ( config , col ) :
'''
1 D Gaussian filter
INPUT :
- col : Pandas dataframe column
- gaussian_filter_sigma_kernel : kernel size from Config . toml
2023-08-19 14:59:34 +08:00
OUTPUT :
2023-07-19 17:37:20 +08:00
- col_filtered : Filtered pandas dataframe column
'''
2023-08-21 03:55:13 +08:00
gaussian_filter_sigma_kernel = int ( config . get ( ' filtering ' ) . get ( ' gaussian ' ) . get ( ' sigma_kernel ' ) )
2023-07-19 17:37:20 +08:00
col_filtered = gaussian_filter1d ( col , gaussian_filter_sigma_kernel )
return col_filtered
def loess_filter_1d ( config , col ) :
'''
1 D LOWESS filter ( Locally Weighted Scatterplot Smoothing )
INPUT :
- col : Pandas dataframe column
- loess_filter_nb_values : window used for smoothing from Config . toml
frac = loess_filter_nb_values * frames_number
2023-08-19 14:59:34 +08:00
OUTPUT :
2023-07-19 17:37:20 +08:00
- col_filtered : Filtered pandas dataframe column
'''
2023-08-21 03:55:13 +08:00
kernel = config . get ( ' filtering ' ) . get ( ' LOESS ' ) . get ( ' nb_values_used ' )
2023-07-19 17:37:20 +08:00
col_filtered = col . copy ( )
mask = np . isnan ( col_filtered )
falsemask_indices = np . where ( ~ mask ) [ 0 ]
gaps = np . where ( np . diff ( falsemask_indices ) > 1 ) [ 0 ] + 1
idx_sequences = np . split ( falsemask_indices , gaps )
if idx_sequences [ 0 ] . size > 0 :
idx_sequences_to_filter = [ seq for seq in idx_sequences if len ( seq ) > kernel ]
# Filter each of the selected sequences
for seq_f in idx_sequences_to_filter :
col_filtered [ seq_f ] = lowess ( col_filtered [ seq_f ] , seq_f , is_sorted = True , frac = kernel / len ( seq_f ) , it = 0 ) [ : , 1 ]
return col_filtered
def median_filter_1d ( config , col ) :
'''
1 D median filter
INPUT :
- col : Pandas dataframe column
- median_filter_kernel_size : kernel size from Config . toml
2023-08-19 14:59:34 +08:00
OUTPUT :
2023-07-19 17:37:20 +08:00
- col_filtered : Filtered pandas dataframe column
'''
2023-08-21 03:55:13 +08:00
median_filter_kernel_size = config . get ( ' filtering ' ) . get ( ' median ' ) . get ( ' kernel_size ' )
2023-07-19 17:37:20 +08:00
col_filtered = signal . medfilt ( col , kernel_size = median_filter_kernel_size )
return col_filtered
def display_figures_fun ( Q_unfilt , Q_filt , time_col , keypoints_names ) :
'''
Displays filtered and unfiltered data for comparison
INPUTS :
- Q_unfilt : pandas dataframe of unfiltered 3 D coordinates
- Q_filt : pandas dataframe of filtered 3 D coordinates
- time_col : pandas column
- keypoints_names : list of strings
OUTPUT :
- matplotlib window with tabbed figures for each keypoint
'''
pw = plotWindow ( )
for id , keypoint in enumerate ( keypoints_names ) :
f = plt . figure ( )
axX = plt . subplot ( 311 )
plt . plot ( time_col . to_numpy ( ) , Q_unfilt . iloc [ : , id * 3 ] . to_numpy ( ) , label = ' unfiltered ' )
plt . plot ( time_col . to_numpy ( ) , Q_filt . iloc [ : , id * 3 ] . to_numpy ( ) , label = ' filtered ' )
plt . setp ( axX . get_xticklabels ( ) , visible = False )
axX . set_ylabel ( keypoint + ' X ' )
plt . legend ( )
axY = plt . subplot ( 312 )
plt . plot ( time_col . to_numpy ( ) , Q_unfilt . iloc [ : , id * 3 + 1 ] . to_numpy ( ) , label = ' unfiltered ' )
plt . plot ( time_col . to_numpy ( ) , Q_filt . iloc [ : , id * 3 + 1 ] . to_numpy ( ) , label = ' filtered ' )
plt . setp ( axY . get_xticklabels ( ) , visible = False )
axY . set_ylabel ( keypoint + ' Y ' )
plt . legend ( )
axZ = plt . subplot ( 313 )
plt . plot ( time_col . to_numpy ( ) , Q_unfilt . iloc [ : , id * 3 + 2 ] . to_numpy ( ) , label = ' unfiltered ' )
plt . plot ( time_col . to_numpy ( ) , Q_filt . iloc [ : , id * 3 + 2 ] . to_numpy ( ) , label = ' filtered ' )
axZ . set_ylabel ( keypoint + ' Z ' )
axZ . set_xlabel ( ' Time ' )
plt . legend ( )
pw . addPlot ( keypoint , f )
pw . show ( )
def filter1d ( col , config , filter_type ) :
'''
Choose filter type and filter column
INPUT :
- col : Pandas dataframe column
- filter_type : filter type from Config . toml
2023-08-19 14:59:34 +08:00
OUTPUT :
2023-07-19 17:37:20 +08:00
- col_filtered : Filtered pandas dataframe column
'''
# Choose filter
filter_mapping = {
2023-08-19 14:59:34 +08:00
' kalman ' : kalman_filter_1d ,
2023-07-19 17:37:20 +08:00
' butterworth ' : butterworth_filter_1d ,
' butterworth_on_speed ' : butterworth_on_speed_filter_1d ,
' gaussian ' : gaussian_filter_1d ,
' LOESS ' : loess_filter_1d ,
' median ' : median_filter_1d
}
filter_fun = filter_mapping [ filter_type ]
# Filter column
col_filtered = filter_fun ( config , col )
return col_filtered
def recap_filter3d ( config , trc_path ) :
'''
Print a log message giving filtering parameters . Also stored in User / logs . txt .
OUTPUT :
- Message in console
'''
# Read Config
2023-08-21 03:55:13 +08:00
filter_type = config . get ( ' filtering ' ) . get ( ' type ' )
kalman_filter_trustratio = int ( config . get ( ' filtering ' ) . get ( ' kalman ' ) . get ( ' trust_ratio ' ) )
kalman_filter_smooth = int ( config . get ( ' filtering ' ) . get ( ' kalman ' ) . get ( ' smooth ' ) )
2023-08-19 14:59:34 +08:00
kalman_filter_smooth_str = ' smoother ' if kalman_filter_smooth else ' filter '
2023-08-21 03:55:13 +08:00
butterworth_filter_type = ' low ' # config.get('filtering').get('butterworth').get('type')
butterworth_filter_order = int ( config . get ( ' filtering ' ) . get ( ' butterworth ' ) . get ( ' order ' ) )
butterworth_filter_cutoff = int ( config . get ( ' filtering ' ) . get ( ' butterworth ' ) . get ( ' cut_off_frequency ' ) )
butter_speed_filter_type = ' low ' # config.get('filtering').get('butterworth_on_speed').get('type')
butter_speed_filter_order = int ( config . get ( ' filtering ' ) . get ( ' butterworth_on_speed ' ) . get ( ' order ' ) )
butter_speed_filter_cutoff = int ( config . get ( ' filtering ' ) . get ( ' butterworth_on_speed ' ) . get ( ' cut_off_frequency ' ) )
gaussian_filter_sigma_kernel = int ( config . get ( ' filtering ' ) . get ( ' gaussian ' ) . get ( ' sigma_kernel ' ) )
loess_filter_nb_values = config . get ( ' filtering ' ) . get ( ' LOESS ' ) . get ( ' nb_values_used ' )
median_filter_kernel_size = config . get ( ' filtering ' ) . get ( ' median ' ) . get ( ' kernel_size ' )
2024-04-16 17:14:25 +08:00
2023-07-19 17:37:20 +08:00
# Recap
filter_mapping_recap = {
2023-08-19 14:59:34 +08:00
' kalman ' : f ' --> Filter type: Kalman { kalman_filter_smooth_str } . Measurements trusted { kalman_filter_trustratio } times as much as previous data, assuming a constant acceleration process. ' ,
2023-07-19 17:37:20 +08:00
' butterworth ' : f ' --> Filter type: Butterworth { butterworth_filter_type } -pass. Order { butterworth_filter_order } , Cut-off frequency { butterworth_filter_cutoff } Hz. ' ,
' butterworth_on_speed ' : f ' --> Filter type: Butterworth on speed { butter_speed_filter_type } -pass. Order { butter_speed_filter_order } , Cut-off frequency { butter_speed_filter_cutoff } Hz. ' ,
' gaussian ' : f ' --> Filter type: Gaussian. Standard deviation kernel: { gaussian_filter_sigma_kernel } ' ,
' LOESS ' : f ' --> Filter type: LOESS. Number of values used: { loess_filter_nb_values } ' ,
' median ' : f ' --> Filter type: Median. Kernel size: { median_filter_kernel_size } '
}
logging . info ( filter_mapping_recap [ filter_type ] )
2024-02-27 01:13:39 +08:00
logging . info ( f ' Filtered 3D coordinates are stored at { trc_path } . \n ' )
2023-07-19 17:37:20 +08:00
def filter_all ( config ) :
'''
Filter the 3 D coordinates of the trc file .
Displays filtered coordinates for checking .
INPUTS :
- a trc file
- filtration parameters from Config . toml
OUTPUT :
- a filtered trc file
'''
# Read config
project_dir = config . get ( ' project ' ) . get ( ' project_dir ' )
try :
2023-12-06 16:48:11 +08:00
pose_tracked_dir = os . path . join ( project_dir , ' pose-associated ' )
2023-09-20 20:39:40 +08:00
os . listdir ( pose_tracked_dir )
2023-07-19 17:37:20 +08:00
pose_dir = pose_tracked_dir
except :
2023-12-06 16:48:11 +08:00
pose_dir = os . path . join ( project_dir , ' pose ' )
2023-07-19 17:37:20 +08:00
frame_range = config . get ( ' project ' ) . get ( ' frame_range ' )
2023-12-17 05:15:12 +08:00
pose3d_dir = os . path . realpath ( os . path . join ( project_dir , ' pose-3d ' ) )
2023-08-19 14:59:34 +08:00
display_figures = config . get ( ' filtering ' ) . get ( ' display_figures ' )
filter_type = config . get ( ' filtering ' ) . get ( ' type ' )
2024-02-27 01:13:39 +08:00
seq_name = os . path . basename ( os . path . realpath ( project_dir ) )
2024-04-16 17:14:25 +08:00
make_c3d = config . get ( ' filtering ' ) . get ( ' make_c3d ' )
frame_rate = config . get ( ' project ' ) . get ( ' frame_rate ' )
2024-02-27 01:13:39 +08:00
2023-07-19 17:37:20 +08:00
# Frames range
pose_listdirs_names = next ( os . walk ( pose_dir ) ) [ 1 ]
2023-12-06 16:48:11 +08:00
json_dirs_names = [ k for k in pose_listdirs_names if ' json ' in k ]
2023-07-19 17:37:20 +08:00
json_files_names = [ fnmatch . filter ( os . listdir ( os . path . join ( pose_dir , js_dir ) ) , ' *.json ' ) for js_dir in json_dirs_names ]
f_range = [ [ 0 , min ( [ len ( j ) for j in json_files_names ] ) ] if frame_range == [ ] else frame_range ] [ 0 ]
# Trc paths
2024-02-27 01:13:39 +08:00
trc_path_in = [ file for file in glob . glob ( os . path . join ( pose3d_dir , ' *.trc ' ) ) if ' filt ' not in file ]
trc_f_out = [ f ' { os . path . basename ( t ) . split ( " . " ) [ 0 ] } _filt_ { filter_type } .trc ' for t in trc_path_in ]
trc_path_out = [ os . path . join ( pose3d_dir , t ) for t in trc_f_out ]
2023-07-19 17:37:20 +08:00
2024-02-27 01:13:39 +08:00
for t_in , t_out in zip ( trc_path_in , trc_path_out ) :
# Read trc header
with open ( t_in , ' r ' ) as trc_file :
header = [ next ( trc_file ) for line in range ( 5 ) ]
# Read trc coordinates values
trc_df = pd . read_csv ( t_in , sep = " \t " , skiprows = 4 )
frames_col , time_col = trc_df . iloc [ : , 0 ] , trc_df . iloc [ : , 1 ]
Q_coord = trc_df . drop ( trc_df . columns [ [ 0 , 1 ] ] , axis = 1 )
# Filter coordinates
Q_filt = Q_coord . apply ( filter1d , axis = 0 , args = [ config , filter_type ] )
# Display figures
if display_figures :
# Retrieve keypoints
keypoints_names = pd . read_csv ( t_in , sep = " \t " , skiprows = 3 , nrows = 0 ) . columns [ 2 : : 3 ] . to_numpy ( )
display_figures_fun ( Q_coord , Q_filt , time_col , keypoints_names )
# Reconstruct trc file with filtered coordinates
with open ( t_out , ' w ' ) as trc_o :
[ trc_o . write ( line ) for line in header ]
Q_filt . insert ( 0 , ' Frame# ' , frames_col )
Q_filt . insert ( 1 , ' Time ' , time_col )
2024-04-02 19:34:21 +08:00
# Q_filt = Q_filt.fillna(' ')
2024-02-27 01:13:39 +08:00
Q_filt . to_csv ( trc_o , sep = ' \t ' , index = False , header = None , lineterminator = ' \n ' )
# Recap
recap_filter3d ( config , t_out )
2024-04-16 17:14:25 +08:00
# Save c3d
if make_c3d == True :
trc_to_c3d ( project_dir , frame_rate , called_from = ' filtering ' )