Synchronize multi cams based on keypoints speed. (#76) @rlagnsals
@rlagnsals * synchronization * Auto Synchronization * Auto Synchronization * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Update README.md * Auto Synchronization * Update synchronize_cams.py * Auto Synchronization * Delete Pose2Sim/S00_Demo_Session/Config.toml * Add files via upload * Update Config.toml
This commit is contained in:
parent
ce0abe1929
commit
5ddef52185
@ -266,42 +266,42 @@ def synchronization(config=None):
|
||||
or the function can be called without an argument, in which case it the config directory is the current one.
|
||||
'''
|
||||
|
||||
raise NotImplementedError('This has not been integrated yet. \nPlease read README.md for further explanation')
|
||||
# Import the function
|
||||
from Pose2Sim.synchronize_cams import synchronize_cams_all
|
||||
|
||||
# #TODO
|
||||
# # Determine the level at which the function is called (session:3, participant:2, trial:1)
|
||||
# level, config_dicts = read_config_files(config)
|
||||
# Determine the level at which the function is called (session:3, participant:2, trial:1)
|
||||
level, config_dicts = read_config_files(config)
|
||||
|
||||
# if type(config)==dict:
|
||||
# config_dict = config_dicts[0]
|
||||
# if config_dict.get('project').get('project_dir') == None:
|
||||
# raise ValueError('Please specify the project directory in config_dict:\n \
|
||||
# config_dict.get("project").update({"project_dir":"<YOUR_TRIAL_DIRECTORY>"})')
|
||||
if type(config)==dict:
|
||||
config_dict = config_dicts[0]
|
||||
if config_dict.get('project').get('project_dir') == None:
|
||||
raise ValueError('Please specify the project directory in config_dict:\n \
|
||||
config_dict.get("project").update({"project_dir":"<YOUR_TRIAL_DIRECTORY>"})')
|
||||
|
||||
# # Set up logging
|
||||
# session_dir = os.path.realpath(os.path.join(config_dicts[0].get('project').get('project_dir'), '..', '..'))
|
||||
# setup_logging(session_dir)
|
||||
# Set up logging
|
||||
session_dir = os.path.realpath(os.path.join(config_dicts[0].get('project').get('project_dir'), '..', '..'))
|
||||
setup_logging(session_dir)
|
||||
|
||||
# # Batch process all trials
|
||||
# for config_dict in config_dicts:
|
||||
# start = time.time()
|
||||
# currentDateAndTime = datetime.now()
|
||||
# project_dir = os.path.realpath(config_dict.get('project').get('project_dir'))
|
||||
# seq_name = os.path.basename(project_dir)
|
||||
# frame_range = config_dict.get('project').get('frame_range')
|
||||
# frames = ["all frames" if frame_range == [] else f"frames {frame_range[0]} to {frame_range[1]}"][0]
|
||||
# Batch process all trials
|
||||
for config_dict in config_dicts:
|
||||
start = time.time()
|
||||
currentDateAndTime = datetime.now()
|
||||
project_dir = os.path.realpath(config_dict.get('project').get('project_dir'))
|
||||
seq_name = os.path.basename(project_dir)
|
||||
frame_range = config_dict.get('project').get('frame_range')
|
||||
frames = ["all frames" if frame_range == [] else f"frames {frame_range[0]} to {frame_range[1]}"][0]
|
||||
|
||||
# logging.info("\n\n---------------------------------------------------------------------")
|
||||
# logging.info("Camera synchronization")
|
||||
# logging.info(f"On {currentDateAndTime.strftime('%A %d. %B %Y, %H:%M:%S')}")
|
||||
# logging.info("---------------------------------------------------------------------")
|
||||
# logging.info(f"\nProject directory: {project_dir}")
|
||||
logging.info("\n\n---------------------------------------------------------------------")
|
||||
logging.info("Camera synchronization")
|
||||
logging.info(f"On {currentDateAndTime.strftime('%A %d. %B %Y, %H:%M:%S')}")
|
||||
logging.info("---------------------------------------------------------------------")
|
||||
logging.info(f"\nProject directory: {project_dir}")
|
||||
|
||||
# synchronize_cams_all(config_dict)
|
||||
synchronize_cams_all(config_dict)
|
||||
|
||||
# end = time.time()
|
||||
# elapsed = end-start
|
||||
# logging.info(f'Synchronization took {time.strftime("%Hh%Mm%Ss", time.gmtime(elapsed))}.')
|
||||
end = time.time()
|
||||
elapsed = end-start
|
||||
logging.info(f'Synchronization took {time.strftime("%Hh%Mm%Ss", time.gmtime(elapsed))}.')
|
||||
|
||||
|
||||
def personAssociation(config=None):
|
||||
|
@ -20,7 +20,7 @@
|
||||
[project]
|
||||
# multi_person = false # true for trials with multiple participants. If false, only the main person in scene is analyzed (and it run much faster).
|
||||
nb_persons_to_detect = 2 # checked only if multi_person is selected
|
||||
frame_rate = 60 # fps
|
||||
frame_rate = 120 # fps
|
||||
frame_range = [] # For example [10,300], or [] for all frames
|
||||
## N.B.: If you want a time range instead, use frame_range = time_range * frame_rate
|
||||
## For example if you want to analyze from 0.1 to 2 seconds with a 60 fps frame rate,
|
||||
@ -104,15 +104,9 @@ openpose_path = '' # only checked if OpenPose is used
|
||||
[synchronization]
|
||||
# COMING SOON!
|
||||
reset_sync = true # Recalculate synchronization even if already done
|
||||
frames = [2850,3490] # Frames to use for synchronization, should point to a moment with fast motion.
|
||||
cut_off_frequency = 10 # cut-off frequency for a 4th order low-pass Butterworth filter
|
||||
# Vertical speeds (on X, Y, or Z axis, or 2D speeds)
|
||||
speed_kind = 'y' # 'x', 'y', 'z', or '2D'
|
||||
vmax = 20 # px/s
|
||||
cam1_nb = 4
|
||||
cam2_nb = 3
|
||||
id_kpt = [9,10] # Pour plus tard aller chercher numéro depuis keypoint name dans skeleton.py. 'RWrist' BLAZEPOSE 16, BODY_25B 10, BODY_25 4 ; 'LWrist' BLAZEPOSE 15, BODY_25B 9, BODY_25 7
|
||||
weights_kpt = [1,1] # Pris en compte uniquement si on a plusieurs keypoints
|
||||
speed_kind = 'y' # 'y' showed best performance.
|
||||
id_kpt = [10] # number from keypoint name in skeleton.py. RWrist' BLAZEPOSE 16, BODY_25B 10, BODY_25 4 ; 'LWrist' BLAZEPOSE 15, BODY_25B 9, BODY_25 7
|
||||
weights_kpt = [1] # Only taken into account if you have several keypoints (Currently only one keypoint is supported).
|
||||
|
||||
|
||||
[personAssociation]
|
||||
|
448
Pose2Sim/synchronize_cams.py
Normal file
448
Pose2Sim/synchronize_cams.py
Normal file
@ -0,0 +1,448 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy import signal
|
||||
from scipy import interpolate
|
||||
import json
|
||||
import os
|
||||
import fnmatch
|
||||
import pickle as pk
|
||||
import re
|
||||
|
||||
|
||||
'''
|
||||
#########################################
|
||||
## Synchronize cameras ##
|
||||
#########################################
|
||||
|
||||
Steps undergone in this script
|
||||
0. Converting json files to pandas dataframe
|
||||
1. Computing speeds (vertical)
|
||||
2. Plotting paired correlations of speeds from one camera viewpoint to another (work on one single keypoint, or on all keypoints, or on a weighted selection of keypoints)
|
||||
3.
|
||||
Ideally, this should be done automatically for all views, checking pairs 2 by 2 with the highest correlation coefficient,
|
||||
and ask for confirmation before deleting the frames in question (actually renamed .json.del - reset_sync option in Config.toml).
|
||||
'''
|
||||
|
||||
|
||||
############
|
||||
# FUNCTIONS#
|
||||
############
|
||||
|
||||
def convert_json2csv(json_dir):
|
||||
"""
|
||||
Convert JSON files in a directory to a pandas DataFrame.
|
||||
|
||||
Args:
|
||||
json_dir (str): The directory path containing the JSON files.
|
||||
|
||||
Returns:
|
||||
pandas.DataFrame: A DataFrame containing the coordinates extracted from the JSON files.
|
||||
"""
|
||||
json_files_names = fnmatch.filter(os.listdir(os.path.join(json_dir)), '*.json') # modified ( 'json' to '*.json' )
|
||||
json_files_names.sort(key=lambda name: int(re.search(r'(\d+)_keypoints\.json', name).group(1)))
|
||||
json_files_path = [os.path.join(json_dir, j_f) for j_f in json_files_names]
|
||||
json_coords = []
|
||||
for i, j_p in enumerate(json_files_path):
|
||||
# if i in range(frames)
|
||||
with open(j_p) as j_f:
|
||||
try:
|
||||
json_data = json.load(j_f)['people'][0]['pose_keypoints_2d']
|
||||
except:
|
||||
print(f'No person found in {os.path.basename(json_dir)}, frame {i}')
|
||||
json_data = [0]*75
|
||||
json_coords.append(json_data)
|
||||
df_json_coords = pd.DataFrame(json_coords)
|
||||
return df_json_coords
|
||||
|
||||
def drop_col(df, col_nb):
|
||||
"""
|
||||
Drops every nth column from a DataFrame.
|
||||
|
||||
Parameters:
|
||||
df (pandas.DataFrame): The DataFrame from which columns will be dropped.
|
||||
col_nb (int): The column number to drop.
|
||||
|
||||
Returns:
|
||||
pandas.DataFrame: The DataFrame with dropped columns.
|
||||
"""
|
||||
|
||||
idx_col = list(range(col_nb-1, df.shape[1], col_nb))
|
||||
df_dropped = df.drop(idx_col, axis=1)
|
||||
df_dropped.columns = range(df_dropped.columns.size)
|
||||
return df_dropped
|
||||
|
||||
def speed_vert(df, axis='y'):
|
||||
"""
|
||||
Calculate the vertical speed of a DataFrame along a specified axis.
|
||||
|
||||
Parameters:
|
||||
df (DataFrame): The input DataFrame.
|
||||
axis (str): The axis along which to calculate the speed. Default is 'y'.
|
||||
|
||||
Returns:
|
||||
DataFrame: The DataFrame containing the vertical speed values.
|
||||
"""
|
||||
axis_dict = {'x':0, 'y':1, 'z':2}
|
||||
df_diff = df.diff()
|
||||
df_diff = df_diff.fillna(df_diff.iloc[1]*2)
|
||||
df_vert_speed = pd.DataFrame([df_diff.loc[:, 2*k + axis_dict[axis]] for k in range(int(df_diff.shape[1] / 2))]).T # modified ( df_diff.shape[1]*2 to df_diff.shape[1] / 2 )
|
||||
df_vert_speed.columns = np.arange(len(df_vert_speed.columns))
|
||||
return df_vert_speed
|
||||
|
||||
|
||||
def interpolate_nans(col, kind):
|
||||
'''
|
||||
Interpolate missing points (of value nan)
|
||||
|
||||
INPUTS
|
||||
- col pandas column of coordinates
|
||||
- kind 'linear', 'slinear', 'quadratic', 'cubic'. Default 'cubic'
|
||||
|
||||
OUTPUT
|
||||
- col_interp interpolated pandas column
|
||||
'''
|
||||
|
||||
idx = col.index
|
||||
idx_good = np.where(np.isfinite(col))[0] #index of non zeros
|
||||
if len(idx_good) == 10: return col
|
||||
# idx_notgood = np.delete(np.arange(len(col)), idx_good)
|
||||
|
||||
if not kind: # 'linear', 'slinear', 'quadratic', 'cubic'
|
||||
f_interp = interpolate.interp1d(idx_good, col[idx_good], kind='cubic', bounds_error=False)
|
||||
else:
|
||||
f_interp = interpolate.interp1d(idx_good, col[idx_good], kind=kind, bounds_error=False) # modified
|
||||
col_interp = np.where(np.isfinite(col), col, f_interp(idx)) #replace nans with interpolated values
|
||||
col_interp = np.where(np.isfinite(col_interp), col_interp, np.nanmean(col_interp)) #replace remaining nans
|
||||
|
||||
return col_interp #, idx_notgood
|
||||
|
||||
|
||||
def find_highest_wrist_position(df_coords, wrist_index):
|
||||
"""
|
||||
Find the frame with the highest wrist position in a list of coordinate DataFrames.
|
||||
Highest wrist position frame use for finding the fastest frame.
|
||||
|
||||
Args:
|
||||
df_coords (list): List of coordinate DataFrames.
|
||||
wrist_index (int): The index of the wrist in the keypoint list.
|
||||
|
||||
Returns:
|
||||
list: The index of the frame with the highest wrist position.
|
||||
"""
|
||||
|
||||
start_frames = []
|
||||
min_y_coords = []
|
||||
for df in df_coords:
|
||||
# Wrist y-coordinate column index (2n where n is the keypoint index)
|
||||
# Assuming wrist_index is a list and we want to use the first element
|
||||
y_col_index = wrist_index[0] * 2 + 1
|
||||
|
||||
# Replace 0 with NaN to avoid considering them and find the index of the lowest y-coordinate value
|
||||
min_y_coord = df.iloc[:, y_col_index].replace(0, np.nan).min()
|
||||
min_y_index = df.iloc[:, y_col_index].replace(0, np.nan).idxmin()
|
||||
if min_y_coord <= 100: # if the wrist is too high, it is likely to be an outlier
|
||||
print("The wrist is too high. Please check the data for outliers.")
|
||||
|
||||
start_frames.append(min_y_index)
|
||||
min_y_coords.append(min_y_coord)
|
||||
|
||||
return start_frames, min_y_coords
|
||||
|
||||
def find_motion_end(df_coords, wrist_index, start_frame, lowest_y, fps):
|
||||
"""
|
||||
Find the frame where hands down movement ends.
|
||||
Hands down movement is defined as the time when the wrist moves down from the highest position.
|
||||
|
||||
Args:
|
||||
df_coord (DataFrame): The coordinate DataFrame of the reference camera.
|
||||
wrist_index (int): The index of the wrist in the keypoint list.
|
||||
start_frame (int): The frame where the hands down movement starts.
|
||||
fps (int): The frame rate of the cameras in Hz.
|
||||
|
||||
Returns:
|
||||
int: The index of the frame where hands down movement ends.
|
||||
"""
|
||||
y_col_index = wrist_index * 2 + 1
|
||||
wrist_y_values = df_coords.iloc[:, y_col_index].values # wrist y-coordinates
|
||||
highest_y_value = lowest_y
|
||||
highest_y_index = start_frame
|
||||
|
||||
# Find the highest y-coordinate value and its index
|
||||
for i in range(highest_y_index + 1, len(wrist_y_values)):
|
||||
if wrist_y_values[i] - highest_y_value >= 50:
|
||||
start_increase_index = i
|
||||
break
|
||||
else:
|
||||
raise ValueError("The wrist does not move down.")
|
||||
|
||||
start = start_increase_index - start_frame
|
||||
time = (start + fps) / fps
|
||||
|
||||
return time
|
||||
|
||||
def find_fastest_frame(df_speed_list):
|
||||
"""
|
||||
Find the frame with the highest speed in a list of speed DataFrames.
|
||||
Fastest frame should locate in after highest wrist position frame.
|
||||
|
||||
Args:
|
||||
df_speed_list (list): List of speed DataFrames.
|
||||
df_speed (DataFrame): The speed DataFrame of the reference camera.
|
||||
fps (int): The frame rate of the cameras in Hz.
|
||||
lag_time (float): The time lag in seconds.
|
||||
|
||||
Returns:
|
||||
int: The index of the frame with the highest speed.
|
||||
"""
|
||||
|
||||
for speed_series in df_speed_list:
|
||||
max_speed = speed_series.abs().max()
|
||||
max_speed_index = speed_series.abs().idxmax()
|
||||
|
||||
if max_speed < 10:
|
||||
print(" !!Warning!! : The maximum speed is likely to be not representative of the actual movement. Consider increasing the time parameter in Config.toml.")
|
||||
return max_speed_index, max_speed
|
||||
|
||||
|
||||
def plot_time_lagged_cross_corr(camx, camy, ax, fps, lag_time, camx_max_speed_index, camy_max_speed_index):
|
||||
"""
|
||||
Calculate and plot the max correlation between two cameras with a time lag.
|
||||
How it works:
|
||||
1. Reference camera is camx and the other is camy. (Reference camera should record last. If not, the offset will be positive.)
|
||||
2. The initial shift alppied to camy to match camx is calculated.
|
||||
3. Additionally shift camy by max_lag frames to find the max correlation.
|
||||
|
||||
Args:
|
||||
camx (pandas.Series): The speed series of the reference camera.
|
||||
camy (pandas.Series): The speed series of the other camera.
|
||||
ax (matplotlib.axes.Axes): The axes to plot the correlation.
|
||||
fps (int): The frame rate of the cameras in Hz.
|
||||
lag_time (float): The time lag in seconds.
|
||||
camx_max_speed_index (int): The index of the frame with the highest speed in camx.
|
||||
camy_max_speed_index (int): The index of the frame with the highest speed in camy.
|
||||
|
||||
Returns:
|
||||
int: The offset value to apply to synchronize the cameras.
|
||||
float: The maximum correlation value.
|
||||
"""
|
||||
|
||||
# Initial shift of camy to match camx
|
||||
# initial_shift = -(camy_max_speed_index - camx_max_speed_index) + fps
|
||||
# camy = camy.shift(initial_shift).dropna()
|
||||
|
||||
max_lag = int(fps * lag_time)
|
||||
pearson_r = []
|
||||
lags = range(-max_lag, 1)
|
||||
|
||||
for lag in lags:
|
||||
if lag < 0:
|
||||
shifted_camy = camy.shift(lag).dropna() # shift the camy segment by lag
|
||||
|
||||
corr = camx.corr(shifted_camy) # calculate the correlation between the camx segment and the shifted camy segment
|
||||
elif lag == 0:
|
||||
corr = camx.corr(camy)
|
||||
else:
|
||||
continue
|
||||
pearson_r.append(corr)
|
||||
|
||||
|
||||
# Handle NaN values in pearson_r and find the max correlation ignoring NaNs
|
||||
pearson_r = np.array(pearson_r)
|
||||
max_corr = np.nanmax(pearson_r) # Use nanmax to ignore NaNs
|
||||
offset = np.nanargmax(pearson_r) - max_lag # Use nanargmax to find the index of the max correlation ignoring NaNs
|
||||
# real_offset = offset + initial_shift
|
||||
|
||||
# visualize
|
||||
ax.plot(lags, pearson_r)
|
||||
ax.axvline(offset, color='r', linestyle='--', label='Peak synchrony')
|
||||
plt.annotate(f'Max correlation={np.round(max_corr,2)}', xy=(0.05, 0.9), xycoords='axes fraction')
|
||||
# ax.set(title=f'Offset = {offset}{initial_shift} = {real_offset} frames', xlabel='Offset (frames)', ylabel='Pearson r')
|
||||
ax.set(title=f'Offset = {offset} frames', xlabel='Offset (frames)', ylabel='Pearson r')
|
||||
plt.legend()
|
||||
|
||||
return offset, max_corr
|
||||
|
||||
|
||||
def apply_offset(offset, json_dirs, reset_sync, cam1_nb, cam2_nb):
|
||||
"""
|
||||
Apply the offset to synchronize the cameras.
|
||||
Offset is always applied to the second camera.
|
||||
Offset would be always negative if the first camera is the last to start recording.
|
||||
Delete the camy json files from initial frame to offset frame.
|
||||
|
||||
Args:
|
||||
offset (int): The offset value to apply to synchronize the cameras.
|
||||
json_dirs (list): List of directories containing the JSON files for each camera.
|
||||
reset_sync (bool): Whether to reset the synchronization by deleting the .del files.
|
||||
cam1_nb (int): The number of the reference camera.
|
||||
cam2_nb (int): The number of the other camera.
|
||||
"""
|
||||
|
||||
if offset == 0:
|
||||
print(f"Cams {cam1_nb} and {cam2_nb} are already synchronized. No offset applied.")
|
||||
json_dir_to_offset = json_dirs[cam2_nb]
|
||||
elif offset > 0 and not reset_sync:
|
||||
print(f"Consider adjusting the lag time.")
|
||||
raise ValueError(f"Are you sure the reference camera is the last to start recording?")
|
||||
else:
|
||||
offset = abs(offset)
|
||||
json_dir_to_offset = json_dirs[cam2_nb]
|
||||
|
||||
json_files = sorted(fnmatch.filter(os.listdir(json_dir_to_offset), '*.json'), key=lambda x: int(re.findall('\d+', x)[0]))
|
||||
|
||||
if reset_sync:
|
||||
del_files = fnmatch.filter(os.listdir(json_dir_to_offset), '*.del')
|
||||
for del_file in del_files:
|
||||
os.rename(os.path.join(json_dir_to_offset, del_file), os.path.join(json_dir_to_offset, del_file[:-4]))
|
||||
else:
|
||||
for i in range(offset):
|
||||
os.rename(os.path.join(json_dir_to_offset, json_files[i]), os.path.join(json_dir_to_offset, json_files[i] + '.del'))
|
||||
|
||||
|
||||
|
||||
#################
|
||||
# Main Function #
|
||||
#################
|
||||
|
||||
def synchronize_cams_all(config_dict):
|
||||
|
||||
#############
|
||||
# CONSTANTS #
|
||||
#############
|
||||
|
||||
# get parameters from Config.toml
|
||||
project_dir = config_dict.get('project').get('project_dir')
|
||||
pose_dir = os.path.realpath(os.path.join(project_dir, 'pose'))
|
||||
fps = config_dict.get('project').get('frame_rate') # frame rate of the cameras (Hz)
|
||||
reset_sync = config_dict.get('synchronization').get('reset_sync') # Start synchronization over each time it is run
|
||||
|
||||
# Vertical speeds (on 'Y')
|
||||
speed_kind = config_dict.get('synchronization').get('speed_kind') # this maybe fixed in the future
|
||||
id_kpt = config_dict.get('synchronization').get('id_kpt') # get the numbers from the keypoint names in skeleton.py: 'RWrist' BLAZEPOSE 16, BODY_25B 10, BODY_25 4 ; 'LWrist' BLAZEPOSE 15, BODY_25B 9, BODY_25 7
|
||||
weights_kpt = config_dict.get('synchronization').get('weights_kpt') # only considered if there are multiple keypoints.
|
||||
|
||||
######################################
|
||||
# 0. CONVERTING JSON FILES TO PANDAS #
|
||||
######################################
|
||||
|
||||
# Also filter, and then save the filtered data
|
||||
pose_listdirs_names = next(os.walk(pose_dir))[1]
|
||||
pose_listdirs_names.sort(key=lambda name: int(re.search(r'(\d+)', name).group(1)))
|
||||
json_dirs_names = [k for k in pose_listdirs_names if 'json' in k]
|
||||
json_dirs = [os.path.join(pose_dir, j_d) for j_d in json_dirs_names] # list of json directories in pose_dir
|
||||
|
||||
# keypoints coordinates
|
||||
df_coords = []
|
||||
for i, json_dir in enumerate(json_dirs):
|
||||
df_coords.append(convert_json2csv(json_dir))
|
||||
df_coords[i] = drop_col(df_coords[i],3) # drop likelihood
|
||||
|
||||
## To save it and reopen it if needed
|
||||
with open(os.path.join(pose_dir, 'coords'), 'wb') as fp:
|
||||
pk.dump(df_coords, fp)
|
||||
with open(os.path.join(pose_dir, 'coords'), 'rb') as fp:
|
||||
df_coords = pk.load(fp)
|
||||
|
||||
#############################
|
||||
# 1. COMPUTING SPEEDS #
|
||||
#############################
|
||||
|
||||
# Vitesse verticale
|
||||
df_speed = []
|
||||
for i in range(len(json_dirs)):
|
||||
if speed_kind == 'y':
|
||||
df_speed.append(speed_vert(df_coords[i]))
|
||||
|
||||
#############################################
|
||||
# 2. PLOTTING PAIRED CORRELATIONS OF SPEEDS #
|
||||
#############################################
|
||||
|
||||
# Do this on all cam pairs
|
||||
# Choose pair with highest correlation
|
||||
|
||||
# on a particular point (typically the wrist on a vertical movement)
|
||||
# or on a selection of weighted points
|
||||
|
||||
# find the lowest position of the wrist
|
||||
lowest_frames, lowest_y_coords = find_highest_wrist_position(df_coords, id_kpt)
|
||||
|
||||
# set reference camera
|
||||
ref_cam_nb = 0
|
||||
max_speeds = []
|
||||
|
||||
for cam_nb in range(1, len(json_dirs)):
|
||||
# find the highest wrist position for each camera
|
||||
camx_start_frame = lowest_frames[ref_cam_nb]
|
||||
camy_start_frame = lowest_frames[cam_nb]
|
||||
|
||||
camx_lowest_y = lowest_y_coords[ref_cam_nb]
|
||||
camy_lowest_y = lowest_y_coords[cam_nb]
|
||||
|
||||
camx_time = find_motion_end(df_coords[ref_cam_nb], id_kpt[0], camx_start_frame, camx_lowest_y, fps)
|
||||
camy_time = find_motion_end(df_coords[cam_nb], id_kpt[0], camy_start_frame, camy_lowest_y, fps)
|
||||
|
||||
camx_end_frame = camx_start_frame + int(camx_time * fps)
|
||||
camy_end_frame = camy_start_frame + int(camy_time * fps)
|
||||
|
||||
camx_segment = df_speed[ref_cam_nb].iloc[camx_start_frame:camx_end_frame+1, id_kpt[0]]
|
||||
camy_segment = df_speed[cam_nb].iloc[camy_start_frame:camy_end_frame+1, id_kpt[0]]
|
||||
|
||||
|
||||
# Find the fastest speed and the frame
|
||||
camx_max_speed_index, camx_max_speed = find_fastest_frame([camx_segment])
|
||||
camy_max_speed_index, camy_max_speed = find_fastest_frame([camy_segment])
|
||||
max_speeds.append(camx_max_speed)
|
||||
max_speeds.append(camy_max_speed)
|
||||
vmax = max(max_speeds)
|
||||
|
||||
# Find automatically the best lag time
|
||||
lag_time = round((camy_max_speed_index - camx_max_speed_index) / fps + 1)
|
||||
|
||||
# FInd the fatest frame
|
||||
camx_start_frame = camx_max_speed_index - (fps) * (lag_time)
|
||||
if camx_start_frame < 0:
|
||||
camx_start_frame = 0
|
||||
else:
|
||||
camx_start_frame = int(camx_start_frame)
|
||||
camy_start_frame = camy_max_speed_index - (fps) * (lag_time)
|
||||
camx_end_frame = camx_max_speed_index + (fps) * (lag_time)
|
||||
camy_end_frame = camy_max_speed_index + (fps) * (lag_time)
|
||||
|
||||
if len(id_kpt) == 1 and id_kpt[0] != 'all':
|
||||
camx = df_speed[ref_cam_nb].iloc[camx_start_frame:camx_end_frame+1, id_kpt[0]]
|
||||
camy = df_speed[cam_nb].iloc[camy_start_frame:camy_end_frame+1, id_kpt[0]]
|
||||
elif id_kpt == ['all']:
|
||||
camx = df_speed[ref_cam_nb].iloc[camx_start_frame:camx_end_frame+1].sum(axis=1)
|
||||
camy = df_speed[cam_nb].iloc[camy_start_frame:camy_end_frame+1].sum(axis=1)
|
||||
elif len(id_kpt) == 1 and len(id_kpt) == len(weights_kpt):
|
||||
dict_id_weights = {i:w for i, w in zip(id_kpt, weights_kpt)}
|
||||
camx = df_speed[ref_cam_nb] @ pd.Series(dict_id_weights).reindex(df_speed[ref_cam_nb].columns, fill_value=0)
|
||||
camy = df_speed[cam_nb] @ pd.Series(dict_id_weights).reindex(df_speed[cam_nb].columns, fill_value=0)
|
||||
camx = camx.iloc[camx_start_frame:camx_end_frame+1]
|
||||
camy = camy.iloc[camy_start_frame:camy_end_frame+1]
|
||||
else:
|
||||
raise ValueError('wrong values for id_kpt or weights_kpt')
|
||||
|
||||
# filter the speeds
|
||||
camx = camx.where(lambda x: (x <= vmax) & (x >= -vmax), other=np.nan)
|
||||
camy = camy.where(lambda x: (x <= vmax) & (x >= -vmax), other=np.nan)
|
||||
|
||||
f, ax = plt.subplots(2,1)
|
||||
|
||||
# speed
|
||||
camx.plot(ax=ax[0], label = f'cam {ref_cam_nb+1}')
|
||||
camy.plot(ax=ax[0], label = f'cam {cam_nb+1}')
|
||||
ax[0].set(xlabel='Frame',ylabel='Speed (pxframe)')
|
||||
ax[0].legend()
|
||||
|
||||
# time lagged cross-correlation
|
||||
offset, max_corr = plot_time_lagged_cross_corr(camx, camy, ax[1], fps, lag_time, camx_max_speed_index, camy_max_speed_index)
|
||||
f.tight_layout()
|
||||
plt.show()
|
||||
print(f'Using number{id_kpt} keypoint, synchronized camera {ref_cam_nb+1} and camera {cam_nb+1}, with an offset of {offset} and a max correlation of {max_corr}.')
|
||||
|
||||
# apply offset
|
||||
apply_offset(offset, json_dirs, reset_sync, ref_cam_nb, cam_nb)
|
||||
|
||||
|
15
README.md
15
README.md
@ -307,7 +307,20 @@ All AlphaPose models are supported (HALPE_26, HALPE_68, HALPE_136, COCO_133, COC
|
||||
> _**Cameras need to be synchronized, so that 2D points correspond to the same position across cameras.**_\
|
||||
***N.B.:** Skip this step if your cameras are already synchronized.*
|
||||
|
||||
If your cameras are not natively synchronized, you can use [this script](https://github.com/perfanalytics/pose2sim/blob/main/Pose2Sim/Utilities/synchronize_cams_draft.py). This is still a draft, and will be updated in the future.\
|
||||
``` python
|
||||
from Pose2Sim import Pose2Sim
|
||||
Pose2Sim.synchronization()
|
||||
```
|
||||
|
||||
Reference camera (usally cam1) should start record at last between whole cameras.\
|
||||
Set fps, id_kpt, weight_kpt, reset_sync in Config.toml.\
|
||||
**How to get perfect sync point**
|
||||
1. Set cameras position where they can see person wrist clearly.
|
||||
2. Press record button, and what pressed last time to be reference camera.
|
||||
3. Walk to proper location( See 1 ).
|
||||
4. Raise your hands.
|
||||
5. Downward your hand fastly.
|
||||
|
||||
Alternatively, use a flashlight or a clap to synchronize them. GoPro cameras can also be synchronized with a timecode, by GPS (outdoors) or with a remote control (slightly less reliable).
|
||||
|
||||
</br>
|
||||
|
Loading…
Reference in New Issue
Block a user